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Abstract: Biodiesel has received worldwide attention as a renewable energy resource that reduces
greenhouse gas (GHG) emissions. Unlike traditional fossil fuels, such as coal, oil, and natural gas,
biodiesel made of vegetable oils, animal fats, or recycled restaurant grease incurs higher production
costs, so its supply chain should be managed efficiently for operational cost reduction. To this
end, multiple machine learning technologies have recently been applied to estimate feedstock yield,
biodiesel productivity, and biodiesel quality. This study aims to identify the machine learning
technologies useful in particular areas of supply chain management by review of the scientific
literature. As a result, nine machine learning algorithms, the Gaussian process model (GPM), random
forest (RF), artificial neural network (ANN), support vector machine (SVM), k-nearest neighbor
(KNN), AdaBoost regression, multiple linear regression (MLR), linear regression (LR). and multilayer
perceptron (MLP), are used for feedstock yield estimation, biodiesel productivity prediction, and
biodiesel quality prediction. Among these, RF and ANN were identified as the most appropriate
algorithms, providing high prediction accuracy. This finding will help engineers and managers
understand concepts of machine learning technologies so they can use appropriate technology to
solve operational problems in supply chain management.

Keywords: biodiesel; renewable energy; machine learning; sustainability; supply chain management

1. Introduction

For decades, worldwide attention has focused on renewable energy production to
mitigate greenhouse gas (GHG) emissions. Although biodiesel cannot entirely replace
petroleum-based fossil fuels, it remains a good option to reduce greenhouse gas (GHG)
emissions and environmental pollution problems [1]. For example, biodiesel that is made
of either vegetable oils or animal fat produces only 702.96 g of CO2 per liter, so it can
reduce GHG emissions of petroleum diesel by 74% (i.e., 2689.27 g of CO2 per liter) [2].
Moreover, compared with petroleum diesel, biodiesel has two significant advantages. First,
it is non-flammable and non-explosive, with a flash point of 423 K for biodiesel, compared
to 337 K for petroleum diesel [3]. Second, it is biodegradable and non-toxic, and when
burned as a fuel, significantly reduces toxic and other emissions [4].

Recently, due to the increase in petroleum prices and the implementation of financial
incentives for its use [5], the cost of biodiesel use has become competitive compared to
petroleum diesel. Illukpitiya and de Koff [6] found the total production cost of canola-based
biodiesel involving feedstock and processing costs to be between USD 1.46 and 1.69 per liter.
On the other hand, petroleum diesel production cost involving crude oil and refining costs
is USD 0.50 per liter [7]. Although the production cost of biodiesel is approximately three
times that of petroleum diesel production, incentive policies, such as biodiesel production
and blending tax credit, provide USD 0.26 per liter in the U.S. [8], and biodiesel blending
regulations for transportation use [9] have been enacted to increase the use of biodiesel.
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However, from a long-term perspective, to make the cost of biodiesel competitive
without any incentives and monetary supports given by government agencies, an efficient
supply chain management of biodiesel should be considered. Traditionally, the cost of
petroleum diesel consists of crude oil cost (51%), refining cost (21%), distribution and mar-
keting cost (11%), and tax (16%) [7]. Similar to petroleum diesel, the efficient management
of supply chain directly influences refining cost involving feedstock warehousing and
the distribution cost of biodiesel, so that from the supply chain management perspective,
there is the possibility of mitigating the sales cost of biodiesel [10]. Efficient supply chain
management is one of the critical issues for the operational excellence of an organization; it
can reduce operational costs while also improving the productivity of a supply chain [11].
With the growth of interest in environment-friendly and sustainable supply chain manage-
ment, it becomes a more challenging issue for the long-term success of an organization [12].
This trend is not exceptional for the biofuel supply chain that produces either biodiesel or
bioethanol using cellulose, hemicellulose, and lignin [13].

The goal of this study is to investigate how machine learning technologies are utilized
for the supply chain management of biodiesel. In particular, the literature of three ma-
jor application areas of feedstock yield prediction, biodiesel productivity prediction, and
biodiesel quality prediction is reviewed. This review article contributes to informing engi-
neers of which machine learning technologies are appropriate for a particular application
area to enable the efficient management of a biodiesel supply chain.

The remaining sections are organized as follows: Section 2 addresses the characteristics
of biodiesel supply chains, while Section 3 investigates recent studies of machine learning
technologies applied to the supply chain management of biodiesel. Section 4 discusses
the advantages and disadvantages of machine learning technology use in supply chain
management; then, Section 5 concludes the study and findings.

2. Biodiesel Supply Chain Management
2.1. Biodiesel Production

The first step in biodiesel production involves selecting the appropriate feedstock,
which relies on factors such as the chemical process, economic consideration, and the oil
content in the chosen feedstock [14]. Biodiesel production can utilize various types of
vegetable oil, animal fat, microbial oil, algal oil, and discarded oil [15]. Vegetable oils
include soybean oil in the U.S., linseed and olive oil in Spain, sunflower oil in France,
palm oil in Indonesia, guang pi in China, rapeseed oil in Germany, and canola oil in South
Korea [16,17]. Four popular technologies can convert vegetable oil and/or animal fat
to biodiesel [18]. These technologies are the direct use of mixed oil, the microemulsion
of oil, the pyrolysis of oil, and the transesterification of oil. Among these technologies,
transesterification is generally preferred for producing biodiesel, because it effectively
reduces the viscosity [19].

Triglycerides are esters of saturated and unsaturated monocarboxylic acids and tri-
hydric alcohol glycerides that are found in vegetable oils and animal oils, which in the
presence of a catalyst can undergo a reaction with alcohol [20,21]. Due to the chemical and
physical advantages, cost-effectiveness, and rapid reaction with triglycerides, methanol is
normally used for the alcohol [2]. From this process, biodiesel is produced as the main prod-
uct, while glycerin is a by-product [1]. Although transesterification is commonly used for
biodiesel production, it is no longer efficient due to the high consumption of alcohol, which
is associated with higher production cost [22]. Therefore, more environment-friendly meth-
ods with lower energy consumption have been explored, such as ultrasonic, microwave,
hydrodynamic cavitation, membrane, plasma, reactive distillation, supercritical, co-solvent,
rotatory, and plug flow techniques [23]. These methods can minimize the reaction time,
energy consumption, and catalyst requirements.
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2.2. Supply Chain Management

Similar to other manufacturing industries, the goal of supply chain management of
biofuel is to identify a way of generating efficient flows of materials among vendors, facility
warehouses, and customers [24]. In general, a supply chain consists of retailers, distributors,
transporters, storage facilities, and suppliers [25]. It is the integration of all stages of the
production lifecycle, starting from design and material sourcing, through manufacturing, to
delivery to customers [26]. Supply chain management has been widely used to coordinate
all the stages that in other contexts might appear independent. It acknowledges that any
factor impacting a specific point in the supply chain influences its overall performance [27].

Although there are multiple issues involved in improving the performance of a
biodiesel supply chain, the significant issues include transportation cost minimization, pro-
ductivity maximization, and production cost minimization [28]. Therefore, in a grain-based
biodiesel supply chain, activities involving feedstock harvesting, feedstock conversion to
biodiesel, and biodiesel distribution should be considered for cost-effective supply chain
management [29]. More specifically, the supply chain for grain-based biodiesel consists of
seven stages of biomass production farm, biomass storage sites, pre-processing facilities,
biorefineries, distribution centers, service stations, and customers. The first stage is to
build cultivation facilities. This is because biodiesel is an energy made up of biomass,
such as soybean and sunflower. The yield of biomass is heavily influenced by factors such
as the duration of the harvest season, the timing of harvesting operations, and weather
condition [30]. Therefore, the land availability and suitability for producing raw materials
need to be determined [27]. After harvesting crops from cultivation facilities, they are
moved to biomass storage sites. The storage of biomass is challenging; due to its high mois-
ture content, it is necessary to use specialized storage systems to minimize any loss in the
quantity and quality of biomass. Therefore, growers should focus not only on maximizing
biomass yield but also on equipment availability, weather conditions, and the maturity of
the plants [31]. The biomass is then moved to pre-processing facilities. Biomass should
be pre-processed to reduce its moisture content and particle size. Smaller particles can
improve the efficiency and speed of conversion [32]. After it is pre-processed, it is moved
to biorefineries. In the above process of transporting feedstock, trailer trucks are mainly
used [33]. The biomass can be converted into biodiesel in biorefineries [34]. In this process,
transesterification is normally used to produce biodiesel [1]. Vegetable oil is transesterified
with alcohol to produce biodiesel and glycerol [35]. The produced biodiesel is then moved
to distribution centers and service stations that can supply customers [30]. In contrast to
the trailer trucks used to transport feedstock, tanker trucks are used when transporting
liquid such as biodiesel [33]. Biodiesel can be marketed either as pure biodiesel (B100) or
transported to blending facilities to create a 10% blend (B10), which is then stored and
distributed [35].

In addition, there are three decisions that should be considered to make an efficient
biofuel supply chain. The decisions involve strategic, tactical, and operational decisions.
The strategic decisions are decisions that are challenging to change in a short period, and
these can be used to design a supply chain, including the location, capacity, and technology
used in biorefineries. The tactical decisions are medium-term activities, ranging from a
few months to one year, such as inventory planning. Lastly, the operational decisions
are short-term activities that involve creating schedules for biofuel production units [36].
Therefore, to design an efficient biofuel supply chain, decisions must be optimized to
reduce total costs or maximize profits for the entire system [24].

3. Machine Learning in Supply Chain Management of Biodiesel

Traditionally, mathematical modeling has been used as a tool to evaluate the perfor-
mance of the supply chain of biodiesel [27]. However, over the decades, the number of
studies applying machine learning technology to biodiesel has increased, because machine
learning offers a promising alternative to conventional modeling methods dealing with the
nonlinear and complex characteristics of the biodiesel supply chain [37]. Machine learning
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(ML), one of the types of artificial intelligence, has been widely recognized as a component
of the Fourth Industrial Revolution in different scientific fields, including bioenergy [38].
It is a technology that enables computers to learn and make decisions without explicit
programming [39]. Also, it provides a set of advanced data analysis methods based on
mathematical, probability, and statistical principles that identify patterns among features
within a dataset and enable prediction [40].

Nine popular machine learning algorithms used for the supply chain management
of biodiesel are the Gaussian process model (GPM), random forest (RF), artificial neural
network (ANN), support vector machine (SVM), k-nearest neighbor (KNN), AdaBoost
regression, multiple linear regression (MLR), linear regression (LR), and multilayer per-
ceptron (MLP). These nine algorithms are applied to feedstock yield estimation, biodiesel
productivity prediction, and biodiesel quality prediction.

GPM refers to a set of random variables that when considered together follow a
multivariate Gaussian distribution [41]. Also, it provides a robust Bayesian framework
to effectively formulate an approximation problem, and it has been proven to provide
predictions with good accuracy for geophysical studies [42]. RF is an ensemble of tree pre-
dictors, where each individual tree relies on the outcome of a random vector independently
sampled and having an identical distribution for every tree within the forest. It has the
advantage of preventing overfitting through the bagging process, which can improve pre-
diction accuracy [43]. ANN is operated as an effective solution for modeling complex and
poorly defined problems, and it is usefully applied to pattern recognition and a target value
estimation [44]. SVM, which was first introduced by Cortes and Vapnik, originated from
statistical learning theory and the concept of minimizing structural risk [45]. Initially used
to solve classification, it was successfully developed over time and used for regression [41].
Recently, it has been implemented for classification, pattern recognition, and the analysis of
regression due to it outperforming other methodologies [46]. KNN is an algorithm that
was initially used in statistical applications. The fundamental idea of KNN is to identify a
set of k samples from the training dataset that are closest to a given unknown sample [47].
In KNN, the K parameter, indicating the count of the nearest neighbors, plays an important
role in determining the performance of the classifiers [48]. The AdaBoost algorithm was
initially proposed by Yoav Freund and Robert Shapire as an approach to creating a robust
classifier from a collection of weak classifiers [49]. Weight, indicating relative importance, is
allocated during each training. Instances that were incorrectly classified by the last iteration
are given greater weights, which are adjusted after each iteration [50]. MLR is a complex
version of the simple LR designed for the dataset that involves multiple predictor variables
and outcome variables [51]. MLP stands out as one of the most recognized ANN models.
Due to its good capacity for nonlinear mapping, it has been widely utilized in pattern
recognition, image processing, fusion approximation, and optimization computation [52].
The following sections address applications of these nine algorithms.

3.1. Machine Learning Algorithms for Feedstock Yield Estimation

The cost of biodiesel is greatly influenced by the feedstock used to produce biodiesel [53].
Therefore, predicting feedstock yield is a significant factor for the efficient supply chain
management of biodiesel. Figure 1 illustrates a general process of crop yield estimation
model development via a machine learning algorithm. Since each machine learning al-
gorithm requires observed data for its modeling process, most studies collect data (e.g.,
climate data, climate change data, soil parameter data, and crop data) from a field exper-
iment. Remote sensors such as a thermometer and a photosynthetically active radiation
(PAR) sensor can be utilized for the data collection [54]. Once the dataset is built, supervised
learning is conducted to develop a yield estimation model for a certain crop. The validated
machine learning model is used to estimate crop yield under a designed scenario (e.g., a
climate change scenario), and researchers can analyze the estimated results.
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Yang et al. [55] sought to predict the yields of corn, soybean, winter wheat, spring
wheat, cotton, and alfalfa using a two-step machine learning approach consisting of GPM
and RF. In order to derive land productivity index and identify potential marginal lands,
county-level crop yield data and remote sensed gross primary productivity (GPP) data are
preprocessed and downscaled for machine learning. To be more specific, GPM estimated
the ratio αi for a specific crop i in Equation (1):

αi = YDi/GPPi (1)

where YDi is a crop yield, and GPPi is the growing season GPP value of a specific crop i.
County-level crop yield data averaged over the years 2008–2017, county average tempera-
ture, water availability involving the ratio of evapotranspiration (ET) over precipitation,
and the percentage of land being irrigated were used to train GPM. The estimated ratio
α̂i was applied to train the RF for each crop i (see Equation (2)), and each trained RF was
applied to estimate the yield of each feedstock:

ˆYDi = α̂iGPPi (2)

Figure 2 shows that RF generates bootstrap samples (i.e., L1, L2, . . . , LB) from the origi-
nal dataset L involving the independent variable x and dependent variable y. The bootstrap
samples are used to train the individual decision tree ϕ(x, Lb), and the aggregation process
in RF generates ϕ(x) via Equation (3) to estimate the value of y [56]:

ϕ(x) =
1
B∑B

b=1 ϕ(x, Lb) (3)

As a result, the two-step machine learning approach showed that the coefficient of
determination (R2) values of corn, soybean, winter wheat, spring wheat, cotton, and alfalfa
were (0.95, 0.90, 0.92, 0.93, 0.86 and 0.83), respectively [55]. Since this approach narrows
down the scope of modeling training, it is possible to accurately capture uncertainty
associated with the production of each crop type.

Barbosa et al. [57] estimated the soybean yield in Brazil based on three different
machine learning algorithms of RF, ANN, and SVM. The study collected the meteorological
information and soybean yield data from 2008 to 2017, and seven independent variables (i.e.,
temperature, precipitation, crop evapotranspiration, real crop evapotranspiration, storage,
deficit, and surplus) were considered for the yield prediction. Particularly, the NASA-
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POWER platform was used to collect meteorological data., and Camargo’s 1971 method
was used to compute potential evapotranspiration and cultivation evapotranspiration.
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Figure 2. Overall procedure of random forest (RF).

Table 1 describes the database matrix of 36 columns by 936 rows. In Table 1, each
independent variable was stratified into five sub-variables from November to March (i.e.,
five months) according to the grain planting and harvesting calendar in Brazil [57].

Table 1. Data structure [57].

Independent Variables Nov. Dec. Jan. Feb. Mar. Dependent
Variable

Temperature
(T, ◦C) T1 T2 T3 T4 T5

Annual average
yield data

Precipitation
(P, mm) P1 P2 P3 P4 P5

Crop evapotranspiration
(CET, mm) CET1 CET2 CET3 CET4 CET5

Real crop evapotranspiration
(AET, mm) AET1 AET2 AET3 AET4 AET5

Storage
(STO, mm) STO1 STO2 STO3 STO4 STO5

Deficit
(DEF, mm) DEF1 DEF2 DEF3 DEF4 DEF5

Surplus
(EXC, mm) EXC1 EXC2 EXC3 EXC4 EXC5

Phases Sowing &
Vegetative Flowering Frutification Maturation Harvest

The preprocessed database matrix was used for machine learning with RF, ANN, and
SVM. Unlike the RF algorithm shown in Figure 2, the ANN model consists of multiple
layers, and Equation (4) represents the nth output at layer L (aL

n) in ANN:

aL
n =

[
σ
(
∑m θL

nm

[
· · ·

[
σ
(
∑j θ2

kj

[
σ
(
∑i θ1

jixi + b1
j

)]
+ b2

k

)]
· · ·

]
m
+ bL

n

)]
n

(4)

where bl
n is the bias with n nodes at l layer; θl

nm is a weight between l and (l − 1) layers; and
xi is an input node I [58]. The Python scikit-learn version 0.23.2 was used to conduct the
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machine learning, and hyperparameters such as a rectified linear unit function, an opti-
mization solver weight using the Quasi-Newton method, a learning rate, an alpha penalty
parameter, the number of interactions, and the number of neurons in each layer were de-
fined to identify the optimum structure of ANN in terms of estimation accuracy [57]. Three
different measures were utilized to evaluate the estimation accuracy, and Equations (5)–(7)
illustrate the root mean square error (RMSE), coefficient of determination (R2), and mean
estimation error (ME), respectively.

RMSE =
√

∑N
i=1(yi − ŷi)

2/N (5)

R2 = ∑N
i=1(ŷi − yi)

2/∑N
i=1(yi − yi)

2 (6)

ME = ∑N
i=1(yi − ŷi)

2/N (7)

where yi is the observed data; ŷi is the estimated data; yi is the mean of the observed
data; and N is the total number of estimated data. The three measures were used in
the k-fold cross-validation (CV) test, which divides a test dataset into smaller k sets for
performance evaluation of a machine learning algorithm in the Scikit-Learn library. This
model validation process was also applied to the SVM modeling illustrated in Equation (8).

f (x) = wTϕ(x) + b (8)

where x ∈ RL is a vector of L input features; ϕ : x → ϕ(x) ∈ RH is any nonlinear function
mapping the input data into a high-dimensional feature space with H ≥ L; w is a weight
vector; and b is the hyperplane bias. To estimate an appropriate weight vector, a kernel
function (K(x, x′) = ϕ(x)·ϕ(x′)), such as radial basis function kernel, linear kernel, and
polynomial kernel, can be used [56]. Equation (9) represents the radial basis function (RBF)
kernel which is known as the squared Euclidean distance between two feature vectors such
as x and x′. Equation (10) represents the linear kernel which is used when the observed
data are linearly separable. Equation (11) represents a polynomial kernel with the degree of
polynomials (d), and it is used when the observed data can be explained by a polynomial
combination of existing features.

K
(
x, x′

)
= exp

(
−
∥∥x − x′

∥∥2/2σ2
)

(9)

K
(
x, x′

)
= x·x′ (10)

K
(
x, x′

)
=

(
1 + x·x′

)d (11)

Table 2 describes the estimation accuracy of RF, ANN, and SVM with three different
kernels. Barbosa et al. [57] found that RF showed the best performance in terms of R2 with
a value of 0.81, while the R2 values of ANN and SVM were 0.77 and 0.74, respectively.
Nevertheless, all three algorithms showed a high prediction accuracy of feedstock yield.

Table 2. Estimation accuracy of random forest (RF), artificial neural network (ANN), and support
vector machine (SVM) [57].

Algorithm RMSE R2 ME

RF 176.93 0.81 1.99
ANN 194.22 0.77 −4.3

SVM with radial base function kernel 213.58 0.74 −15.06
SVM with linear kernel 203.55 0.76 4.82

SVM with polynomial kernel 188.04 0.79 3.67
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3.2. Machine Learning Algorithms for Biodiesel Productivity Prediction

Similar to the yield prediction, multiple machine learning algorithms have been used
for biodiesel productivity prediction. Jin et al. [50] estimated the biodiesel production
quantity using four different machine learning algorithms of RF, KNN, SVM, and AdaBoost
regression. The dataset involving 381 individual observations with 13 distinct experimental
cases was collected under five independent variables of catalyst loading (wt.%), feedstock
type, molar ratio of methanol to oil, reaction time (min), and reaction temperature (◦C).
Table 3 describes the input and output variables used in the study.

Table 3. Description of input and output variables [50].

Type No. Variables Unit Description

Inputs

1 Reaction time (t) min Numerical variable, 20–180 min
2 Reaction temperature (T) ◦C Numerical variable, 30–70 ◦C
3 Catalyst weight (Wc) wt.% Numerical variable, 0.4–2%
4 Methanol/oil molar ratio (M) Not applicable Numerical variable 3–15
5 Feedstock types (F) Not applicable Categorical variable, different biomass oil

Outputs 1 Biodiesel yield (Y) % Numerical variable, 53.12–98.92%

In the study, the performance of the four machine learning algorithms was evaluated
via RMSE (see Equation (5)). Equation (12) is used to estimate the output y via the average
of the nearest neighbor output yk(x) in KNN. Unlike RF and SVM (see Section 3.1 for
more detail about the algorithms), KNN computes distance (e.g., Euclidian distance and
Manhattan distance) between data points for its modeling training:

ŷ =
1
K ∑K

k=1 yk(x) (12)

In KNN, the selection of k-nearest neighbors is the most critical task because it signif-
icantly affects the estimation accuracy of the algorithm. To this end, the interest-specific
classification technique selects k by evaluating the prediction accuracy over different k
values. Table 4 describes the selection result of k-nearest neighbors in the study [50].

Table 4. Root mean square error (RMSE) of k-nearest neighbor (KNN) with different k values [50].

k Values
RMSE

Result
Training Validation

3 4.081 6.332 Optimum
4 4.567 6.444
5 4.848 6.895
6 5.186 7.166
8 5.399 6.805
10 5.670 6.520
12 5.883 6.630
16 6.101 6.969
20 6.196 7.148

The optimum value of k was selected in terms of RMSE so that the devised KNN has
the minimum deviation between observed data and estimated data when k = 3 in Table 4.

On the other hand, AdaBoost regression trains weight via multiple iterations with
different sub-training datasets. Initially, a model has an equal weight as dataset D, and
replace sampling is performed on D to obtain an adjusted weight with sub-dataset D1. This
replace sampling continues until the best weight with the least value of a loss function is
identified. Figure 3 illustrates the overall process of AdaBoost regression [59].
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Among the four algorithms, RF was selected as the best algorithm to predict biodiesel
production quantity with the lowest values of RMSE for both the training (2.778) and
validation (5.178) datasets. In the training dataset, the RMSE values of KNN, SVM, and
AdaBoost were 4.081, 8.650, and 6.941, while in the validation dataset, the RMSE values
were 6.332, 12.122, and 8.332, respectively.

Gautam et al. [60] utilized linear regression (LR), multilayer perceptron (MLP), and
KNN to estimate the production quantity of biodiesel from three independent variables of
reaction duration, catalyst concentration, and methanol quantity/molar ratio. Notice that
MLP can be illustrated as a feed-forward ANN, so that the weight between l and (l − 1)
layers (θl

nm) in Equation (4) is trained without feedback loops [58]. Figure 4 illustrates
MLP with two hidden layers [61]. In Figure 4, all nodes in the hidden and output layers
are neurons with nonlinear activation functions. Backpropagation is widely used for
supervised learning in MLP. The learning process consists of four steps: (1) the sum of the
product of inputs and their weights is computed; (2) a bias factor is added; (3) the sum with
the activation function is fed into MLP; and (4) the output of the perceptron is achieved as
its outcome [60].
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Table 5 describes the results of estimation performance evaluation of LR, KNN, and
MLP. The mean absolute percentage error (MAPE) between the observed data (yi) and
estimated data (ŷi) was used for the evaluation (see Equation (13)), and the minimum value
of MAPE represents the highest estimation accuracy.

MAPE =
1
N ∑N

i=1|yi − ŷi/yi| (13)

Table 5. Estimation performance of linear regression (LR), multilayer perceptron (MLP), and k-nearest
neighbor (KNN) [60].

Model
NPLME WPLME EPLME

R2 MAPE R2 MAPE R2 MAPE

LR 0.7309 14.4841 0.6824 9.8820 0.6959 9.1998
KNN 0.8680 7.9753 0.8217 5.5745 0.8765 4.7121
MLP 0.8415 8.5512 0.7761 7.9917 0.7417 7.6580

In the evaluation, three different dependent variables were considered such as Non-Pre-
treated Linseed Methyl Ester (NPLME), Water Pre-treated Linseed Methyl Ester (WPLME),
and Enzymatic Pre-treated Linseed Methyl Ester (EPLME). The R2 values of LR, KNN, and
MLP were 0.7030, 0.8554, and 0.7864, respectively. Therefore, KNN was selected as the best
machine learning algorithm for biodiesel productivity prediction [60].

3.3. Machine Learning Algorithms for Biodiesel Quality Prediction

In general, the quality of biodiesel is evaluated in terms of density, viscosity, and
cetane number. These properties play a crucial role in fuel combustion [62]. According
to Rocabruno–Valdes et al. [63], ANN can be adapted to predict the density, dynamic
viscosity, and cetane number of biodiesel from four independent variables involving the
temperature, composition of methyl esters (C8:0, C10:0, C12:0, C14:0, C16:0, C16:1, C18:0,
C18:1, C18:2, C18:3, C20:0, C20:1, C22:0, C22:1, C24:0), number of carbon atoms, and
number of hydrogen atoms. Since ANN requires many data points for its training, the
study collected 780 experimental points from different scientific articles. The collected data
were randomly divided into a training set (60%), testing set (20%), and validation set (20%).

Figure 5 illustrates the general modeling procedure of ANN consisting of experimental
data collection, ANN modeling, and validation and statistical analysis between the simu-
lated and experimental outputs [64]. Rocabruno–Valdes et al. [63] utilized Matlab software
(2015a) with a neural network toolbox for the ANN modeling, and they conducted sensitiv-
ity analysis on independent variables to identify the impact of independent variables on the
response variables. The results showed that the correlation coefficient values for density,
dynamic viscosity, and cetane number were 0.99208, 0.98255, and 0.91946, respectively.
ANN provided high prediction accuracy for the three performance measures representing
biodiesel quality.

Mairizal et al. [65] predicted the density (kg/m3), higher heating value (MJ/kg), viscos-
ity at 40 ◦C (mm2/s), flash point (◦C), and oxidative stability (min) of biodiesel via multiple
linear regression (or multivariate linear regression), which is a well-known traditional statis-
tical model. Three independent variables of feedstock polyunsaturated/monounsaturated
fatty acids balance (PU/MU), iodine value (IV), and saponification value (SV) were consid-
ered. Seventeen oil types involving sunflower oil, peanut oil, hydrogenated coconut oil,
hydrogenated copra oil, beef tallow, rapeseed oil, walnut oil, and another 10 blends, were
considered. The study demonstrated strong correlations among most parameters except
for flash point and oxidative stability. Equations (14)–(18) show the five multiple linear
regression models.
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Density = 993 − 0.899(IV)− 1.091(SV) + 78.87(PU/MU)+
32.5 × 10−4(IV)(SV)− 0.189(IV)(PU/MU)− 0.29(SV)(PU/MU)+

28.4 × 10−4(IV)2 + 22.95 × 10−4(SV)2 + 0.22(PU/MU)2
(14)

Higher heating value = 41.76 + 0.0045IV − 0.0139SV (15)

Viscosity = 9.152 + 0.00572IV − 3.522(PU/MU)− 1.37 × 10−5(IV)(SV)+
0.00533(IV)(PU/MU) + 0.013(SV)(PU/MU)

(16)

Flash point = −11749 − 4.364(IV) + 173.76(SV)− 8.07(PU/MU)+
0.0276(IV)(SV)− 0.418(IV)(PU/MU)− 0.0149(SV)(PU/MU)−
0.0249(IV)2 − 0.833(SV)2 + 17.718(PU/MU)2 + 0.00016(IV)3+

0.00131(SV)3 − 1.8135(PU/MU)3

(17)

Oxidative stability = 15.157 − 0.0169(IV)− 10.284(PU/MU)+

0.0214(IV)(PU/MU) + 0.00084(IV)2 + 4.54(PU/MU)2 − 5.37 × 10−6(IV)3−
0.688(PU/MU)3

(18)

The R2 value of the density model was 95.4%, so the prediction model offers high
prediction accuracy. The R2 values of the higher heating value, viscosity at 40 ◦C, flash
point, and oxidative stability of biodiesel were 76%, 95.5%, 95.7%, and 94.1%, respectively.
Unlike other machine learning algorithms, MLP enables the identification of significant
factors in the prediction model, and it provides equations requiring simple calculation
without using any machine learning library, as shown in Equations (14)–(18).

4. Discussion

In Section 3, applications of machine learning (ML) algorithms, feedstock yield predic-
tion, biodiesel productivity prediction, and biodiesel quality prediction were investigated.
Nine machine learning algorithms, namely, GPM, RF, ANN, SVM, KNN, AdaBoost regres-
sion, MLR, LR, and MLP, were applied to feedstock yield estimation, biodiesel productivity
prediction, and biodiesel quality prediction. Although there are multiple machine learning
algorithms, there exists a general machine learning procedure consisting of data collection,
machine learning with a training dataset, model evaluation with a test dataset, and model
validation. The validated model can be utilized to estimate values of a dependent vari-
able (e.g., feedstock yield, biodiesel productivity, and biodiesel quality) under a designed
scenario (e.g., a climate change scenario).

In feedstock yield prediction, supervised machine learning algorithms involving RF,
GPM, ANN, and SVM are frequently used with historical climate data (e.g., temperature,
precipitation, crop evapotranspiration, real crop evapotranspiration, storage, deficit, and
surplus). Among the four ML algorithms, RF is selected as the best-performing algorithm.

Similarly, RF is also widely used in biodiesel productivity prediction with high predic-
tion accuracy. Jin et al. [50] found that RF showed better performance than KNN, SVM, and
AdaBoost regression to predict biodiesel production quantity from five independent vari-
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ables (i.e., catalyst loading (wt.%), feedstock type, molar ratio of methanol to oil, reaction
time (min), and reaction temperature (◦C)). On the other hand, KNN [60] also provided
high prediction accuracy, with an R2 value of 0.8554 among LR, MLP, and KNN under
three independent variables of reaction duration, catalyst concentration, and methanol
quantity/molar ratio. Unlike LR, KNN does not require any correlations between variables,
so it enables the development of more flexible models than LR. However, the performance
of KNN is heavily dependent on the selection of the K parameter, which may result in
unreliable performance in different datasets [48].

In biodiesel quality prediction, ANN and MLR were widely utilized to predict the
density, dynamic viscosity, flash point, higher heating value, oxidative stability, and cetane
number [63,65]. Because there are multiple factors influencing the quality of biodiesel, the
ML algorithms involving multivariate inputs are mainly utilized, and correlation analysis
was simultaneously conducted. Traditional statistical modeling algorithms, such as LR
and MLR, provided lower prediction accuracy than other machine learning algorithms
that enable nonlinear relationships between variables to be explained [66]. Nevertheless,
those statistical approaches can identify significant variables (or predictors) in the predic-
tion model. Considering that machine learning algorithms are recognized as a black-box
approach [67], the limitation can be resolved by integrating the advantages of multiple al-
gorithms.

5. Conclusions and Future Directions

This study reviewed the scientific literature to identify the machine learning technolo-
gies that are useful in particular areas of supply chain management. Nine machine learning
algorithms of the Gaussian process model (GPM), random forest (RF), artificial neural
network (ANN), support vector machine (SVM), k-nearest neighbor (KNN), AdaBoost
regression, multiple linear regression (MLR), linear regression (LR), and multilayer per-
ceptron (MLP) were used for feedstock yield estimation, biodiesel productivity prediction,
and biodiesel quality prediction. Among the nine algorithms, RF was recognized as the
best algorithm for feedstock yield estimation and biodiesel productivity prediction. Its
R2 values were higher than 0.80 in different cases. ANN also provided high prediction
accuracy, and its R2 values were higher than 0.75; in particular, it was utilized in biodiesel
quality prediction. Another seven algorithms also provided reasonable prediction accuracy
in various supply chain management cases. Considering that most machine learning algo-
rithms can provide high prediction accuracy in different problems, their popularity can
be expected to increase in the future. Nevertheless, most machine learning algorithms are
still recognized as a black-box approach; hence, traditional statistical approaches should be
simultaneously utilized to overcome the limitations of machine learning algorithms.
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