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Abstract: This present review explores the application of artificial intelligence (AI) methods in
analysing the prediction of thermophysical properties of nanofluids. Nanofluids, colloidal solutions
comprising nanoparticles dispersed in various base fluids, have received significant attention for
their enhanced thermal properties and broad application in industries ranging from electronics
cooling to renewable energy systems. In particular, nanofluids’ complexity and non-linear behaviour
necessitate advanced predictive models in heat transfer applications. The AI techniques, which
include genetic algorithms (GAs) and machine learning (ML) methods, have emerged as powerful
tools to address these challenges and offer novel alternatives to traditional mathematical and physical
models. Artificial Neural Networks (ANNs) and other AI algorithms are highlighted for their capacity
to process large datasets and identify intricate patterns, thereby proving effective in predicting
nanofluid thermophysical properties (e.g., thermal conductivity and specific heat capacity). This
review paper presents a comprehensive overview of various published studies devoted to the
thermal behaviour of nanofluids, where AI methods (like ANNs, support vector regression (SVR),
and genetic algorithms) are employed to enhance the accuracy of predictions of their thermophysical
properties. The reviewed works conclusively demonstrate the superiority of AI models over the
classical approaches, emphasizing the role of AI in advancing research for nanofluids used in heat
transfer applications.

Keywords: nanofluid; machine learning; heat transfer augmentation; viscosity; thermal conductivity;
specific heat capacity

1. Introduction

Nanofluids are colloidal solutions of nanometre-sized particles in certain base fluids.
The nanoparticles can be obtained from various solids such as Cu, CuO, Al2O3, and carbon
nanotubes (CNT). Base fluids may include water, EG, MO, and others. Nanometre-sized
particles are crucial as they are more stable in the colloidal system than microparticles due to
vigorous Brownian motion [1]. In addition, the nanoparticles do not clog conduits in equipment,
which renders nanofluids attractive in engineering and technological applications.

Numerous techniques, including direct evaporation [2,3], laser ablation [4,5], sub-
merged arc nanoparticle synthesis systems [6,7], and others, can be used to prepare nanoflu-
ids. These techniques can be categorized as One-step and Two-step methods. The synthesis
of nanoparticles and their dispersion in the base fluid co-occurs in the One-step Method;
in the Two-step Method, nanoparticles and their mixing in base fluids occur in different
steps. However, nanoparticles’ high surface activity and enhanced surface-area–volume
ratio make them prone to aggregation; the nanoparticles must be stabilized to avoid aggre-
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gation [8]. Various techniques can achieve this stabilization, such as surface treatment [9]
or using surfactants or polymers [10], as well as other methods.

Adding nanoparticles in base fluids alters the base fluids’ rheological and thermo-
physical properties, often rendering exciting and novel engineering applications. Many
kinds of nanofluids have been synthesized for various applications, which include brake
fluids [11], coolant fluids [12], home refrigerators [13], magnetic-field-assisted hyperther-
mia [14], delivery of drugs [15], optical filters [16], defect sensors [17], cosmetics, and solar
devices [18,19]. As the synthesis techniques do away with sedimentation, clogging, and
fouling, the application of nanofluids as efficient coolants has attracted significant attention
from researchers over the decades [20–23]. In addition, better optical and radiative proper-
ties and higher thermal conductivity and heat capacity values make nanofluids better than
conventional working fluids in thermal engineering applications.

In particular, the enhanced heat transfer rates, higher values of critical heat flux, and
enhanced thermal conductivity of nanofluids are three primal characteristics that make
them promising coolants. For instance, machines must efficiently dissipate significant heat
during their operation. The equipment’s electrical and mechanical components could heat
up beyond desirable levels if the generated heat does not adequately disperse. This fact
lowers the system’s overall energy efficiency or potentially degrades the performance of
mechanical and electrical components [24]. In these situations, the use of efficient coolants
becomes necessary.

A notable trend in the research and development on nanofluids has been the sig-
nificant rise in sustainable and renewable energy systems [25]. Many renewable energy
sources, including solar, wind, and geothermal energy, have found extensive applications
for nanofluids.

For example, an Al2O3–water nanofluid as a coolant in wind turbines has been pro-
posed by De Risi et al. [26]. This nanofluid significantly lowers the maximum temperature
generated in the machinery. Rostamzadeh and Rostami [27] have used a nanofluid as the
working fluid to transfer heat produced in wind turbine generators (employed to desalinate
seawater). The CuO/water nanofluid has shown the highest cooling efficiency in the desali-
nation process among the five nanofluids, as tested by the authors. In geothermal borehole
heat exchangers, nanofluids can produce promising heat transfer enhancement [28–30].

A literature review has shown that nanofluids have been the preferred working fluid
in solar collectors over the last two decades [31–33]. Solar collectors absorb solar radiation
and convert it into usable thermal energy stored or transported by the working fluid [34–36].
Adequate energy flow between the working fluid and the absorber is necessary. Sardarabadi
et al. [37] have found that a SiO2–water nanofluid, respectively at 1% weight and 3% weight
concentrations, could enhance the collector efficiency by 7.6% and 12.8%, as compared with
the pure water in the PV/T system.

The thermophysical properties of working fluids, such as viscosity, SHC (Specific Heat
Capacity), and TC (Thermal Conductivity), are significant factors that impact engineering
and industrial uses. Several variables, including the type and/or size of the nanoparticles
and the characteristics of the base fluids, affect these properties. For instance, for a given
particle size (say 50 nm), ‘N’ types of nanoparticles and ‘M’ types of base fluids can
theoretically yield (N × M) types of nanofluids. Multiple high-thermal-conductivity
nanoparticles, which include graphene [38], SiO2 [39], MgO [40], SiC [41], Ni [42], TiO2 [43],
Cu [44], CuO [45], Fe3O4 [46], CNTs [47], Ag [48], Al2O3 [48,49], CeO2 [50], and others,
have been experimented with for preparing nanofluids.

Heat exchangers are an essential tool in engineering applications. With the adoption
of heat exchangers, high-efficiency heat transfer enhancement is always possible. Using
a fluid with superior thermal properties is the most promising technique to improve
heat transfer rates and effectiveness in heat exchangers [51]. Nanofluids have been used
in various heat exchangers in recent years. According to recent studies conducted in
shell-and-tube heat exchangers, nanofluids with nanoparticles, such as Ag [52], TiO2 [53],
CuO [54], Al2O3 [53,55], and graphene oxide [56], have shown better thermal performances
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as compared with their respective base fluids. A range of nanofluids, such as Al2O3–
water [57], Ag–EG/water [58,59], fly ash with metal-oxides–water [60], Cu/CuO/CNT–
water [61], Fe3O4–water [62,63], and MgO–oil [64], have all been investigated for double-
pipe heat exchangers. This shows that a variety of nanoparticles can effectively improve the
heat transfer performance of plate heat exchangers, which include Al2O3 [65–67], CuO [68],
TiO2 [69], Ag [70–72], SiO [73,74], CNT [75,76], and ZnO [77].

Nanofluids exhibit complex thermophysical properties, and their relationships with
heat transfer, radiative and optical performance, and fluid flow are non-linear. The per-
formance of heat transfer processes and/or devices depends on the properties of working
fluids. The accurate measurements and prediction of nanofluid thermophysical properties
are essential. However, a variety of factors affect a nanofluid’s thermophysical proper-
ties, such as concentration, kind, size, and shape of the nanoparticles, the temperature of
the system in which they are suspended, the shear rates, the pH level, the preparation
process, the kind of base fluid [78], the flow conditions, etc. As a result, determining
the thermophysical properties of nanofluids is a challenging and ongoing endeavour in
thermo-fluids research. Measurements of these properties through experimentation are
expensive and usually yield a small (parametric) dataset. However, for numerical and/or
analytical approaches, the knowledge of property values and interactions between the base
fluids and the nanoparticles becomes necessary under various operational parameters (for
validation purposes).

These complex mathematical and physical models can be avoided largely by using
AI techniques like GA and ML [79]. These are also more efficient and cost-saving than
experimental procedures. Consequently, AI techniques like ML and GA hold significant
potential and warrant greater utilization in the nanofluid and renewable energy sectors.
These techniques present new strategies, promising a bright future in nanofluid research.
The use of AI techniques in nanofluid research has steadily grown in the past decade. This
trend is depicted in Figure 1, which indicates the number of papers on AI applications in
the nanofluid domain per year, as retrieved from the Scopus database.
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In recent years, several researchers have used AI, ML, and GA techniques to model
nanofluids’ thermophysical properties. The present work comprehensively reviews the
recent works on nanofluids’ thermophysical property modelling using AI techniques. From
the surveyed literature, it has been observed that AI models outperform traditional meth-
ods, showcasing their potential for widespread application. This is due to the capability of
AI methods to model the complex behaviour of nanofluids, which is difficult to capture
by traditional theoretical models. However, specific challenges deserve mention. These
primarily include enhancing the generalizability and addressing data availability, among
other issues. The field, though nascent and upcoming, is growing steadily and has the po-
tential to contribute as a novel alternative and an economically viable method for predicting
nanofluid thermophysical properties for academic and industrial purposes.

This review paper begins with a brief description of the essential thermophysical
properties of nanofluids, followed by a concise overview of the most common AI techniques
and algorithms used in the relevant literature surveyed. A survey of recent published
works is then carried out, coupled with an analysis of the investigations, the methodologies
adopted, and the principal outcomes from these studies. The paper concludes with research
gaps and potential avenues for possible future work.

2. Thermophysical Properties of Nanofluids

A brief explanation and overview of the main thermophysical properties of nanofluids,
viz. TC, viscosity, and SHC, along with different correlation-based models for the same, are
presented in the following subsections.

2.1. Thermal Conductivity

The TC is the ability of a substance to transfer heat by the phenomenon of conduction.
Here, thermal energy is transferred by the kinetic energy of the molecules, atoms, ions,
or constituent particles in motion. Unlike convection, no macroscopic movement of bulk
substance occurs in conduction.

One of the main drawbacks in many industrial applications is the typically low
values of TC of heat transfer fluids. Intending to increase the (effective) heat conductivity
of the working medium, dispersing solid particles in liquids has garnered interest for
almost a century. This technique is motivated by numerous possible uses for efficient TC
augmentation, which include electronics cooling systems, the automobile industry, and the
biomedical field, to mention a few.

The published literature presents several methods for measuring the TC, including
the steady-state parallel plate method, the three-omega approach, the transient hot-wire
method, and the thermal constants analyser methods. The TC enhancement of a nanofluid
is affected by the fluid temperature, the solid nanoparticles’ TC, their volume fraction, and
their size. In general, adding nanoparticles to a base fluid increases its heat conductivity.
A prevalent finding is that, at higher temperature values, the increase in TC is more
pronounced for higher particle fractions [80–83], which renders particle-dispersed liquid
systems effective as heat-removal agents in applications with higher thermal loads. Relative
TC, a measure of enhancement (of heat transfer rates) relative to the base fluid, is the ratio
of the TCs of the nanofluid to that of the base fluid. It was reported that the relative TC
increases when concentration increases. It turns out that the temperature, agglomeration,
shape, size, and surface functionalization of the nanoparticles, as well as their Brownian
motion within the base fluid, all affect the TC of the nanofluids.

Numerous researchers have worked to create numerical models for predicting a
nanofluid’s TC. Some of them [84–87] are summarised in Table 1.
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Table 1. A few correlations-based models for nanofluid thermal conductivity.

Authors Formula

Maxwell, 1881 [84] kn f =
knp + 2kb f + 2(knp − kb f )φ

knp + 2kb f − (knp − kb f )φ
kb f

Hamilton and Crosser, 1962 [85] kn f =
knp + (n−1)kb f − (n − 1)(knp − kb f )φ

knp + (n − 1)kb f + (kb f − knp)φ
kb f

Koo and Kleinstreuer, 2004 [86]
kn f =

knp + 2kb f − 2(kb f − knp)φ

knp + 2kb f + (kb f − knp)φ
kb f + 5 × 104βφρb f Cp,b f

√
κT

ρnpdnp
f (T, φ)

f (T, φ) = (−6.04φ + 0.4705)T + (1722.3φ − 134.63)

Sundar et al., 2021 [87] khn f = 1.041kb f

[
(1 + φ)0.39 ×

(
Tmin
Tmax

)0.383×10−1]

In the equations presented in Table 1, the symbol kn f refers to the TC of the nanofluid,
knp indicates the TC of the nanoparticle, kb f is the TC of the base fluid, and khn f is the
TC of the hybrid nanofluid. The symbol φ represents the volume fraction, ρb f is the
density of the base fluid, ρnp is the density of the nanoparticle, dnp is the diameter of
the nanoparticle, Cp,b f is the SHC of the base fluid, κ is the Boltzmann constant, T is the
temperature of the nanofluid, and β is a function that depends on the volume fraction [86].
The equation presented by the Hamilton and Crosser model, for instance, uses the shape
factor to determine the effective TC of a fluid containing spherical- and cylindrical-shaped
nanoparticles. The factor n depends on the particle shape and the shape factor [85].

To date, no standard general model forecasts the TC of either unitary or hybrid
nanofluids. In recent years, several research approaches have been conducted for AI
methods to predict nanofluids’ TC [88–98]. These works have been reviewed and elaborated
in Section 4.1.

2.2. Viscosity

The ability of a fluid to resist deformation under shear stress is measured by its vis-
cosity [99]. The internal friction creates flow resistance between the fluid layers to varying
degrees. To cite a simple instance, water is not as viscous as honey. Since viscosity directly
affects pumping power and energy consumption rates, optimizing flow parameters for the
industrial applications of nanofluids is a crucial characteristic. There is no unanimous agree-
ment in the literature regarding the rheological behaviour of nanofluids as non-Newtonian
or Newtonian (fluids). However, nanofluids are observed to behave as non-Newtonian
fluids above low volume fractions (by ‘low’, we mean less than 0.02%) [100]. Researchers
have studied how the temperature, base fluid viscosity, and the size, shape, and volume
concentration of the nanoparticles affect the nanofluid viscosity. Several correlation-based
models have been developed to predict nanofluids’ viscosity. Some of these [101–105] are
described in Table 2.

Table 2. A few correlation-based models for nanofluid viscosity.

Authors Equation

Einstein, 1906 [101] µn f = µb f

(
1 + 5

2 φ
)

Andrade, 1930 [102] µb f = Ae
B
T

Batchelor, 1977 [103] µn f = µb f

(
1 + 5

2 φ + 6.2φ2
)

Bicerano et al., 1999 [104] µn f = µb f
(
1 + ηφ + KH φ2 + . . .

)
Vajjha and Das, 2008 [105] µn f

µb f
= A1e(A2 φ)

In the equations presented in Table 2, the symbol µn f refers to the viscosity of the
nanofluid, µb f denotes the viscosity of the base fluid, φ refers to the volume fraction, and T
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is the temperature. The symbols A, B, A1, and A2 are empirical constants. In the equation
by Bicerano et al., 1999 [104], η is a viral coefficient (called the intrinsic viscosity), and KH
is the Huggins coefficient [104]. For a detailed exposition, the reader should consult the
cited references. Table 2 also shows that the relationship of nanofluid viscosity with its
volumetric concentration is either a higher-order polynomial or an exponential function.
In recent years, applications of AI and ML in the prediction of nanofluid viscosity have
gained popularity [45,88,95,106–114], which have been discussed elaborately in Section 4.2.

2.3. Specific Heat Capacity

The SHC of a substance is the amount of thermal energy required to raise the tempera-
ture of the unit mass of any substance by one degree. Thus, a substance of high SHC will
absorb more heat than an equal mass of a lower-SHC substance for the same temperature
increase. This aspect becomes particularly useful in designing coolants for heat transfer
applications. Specifically, the coolant should absorb a large amount of heat energy from
the workpiece while not showing too much increase in temperature, as that would reduce
its cooling efficiency. The AI tools like the DSC [115,116] and the MDSC [117] are typically
used to assess the SHC of nanofluids.

Several factors influence the SHC in nanofluid applications, which include the volume
fraction, the temperature, the base fluid type, and the type of particle used [118]. Several
analytical models have been developed to determine a nanofluid’s specific heat capacity.
Some of these [119–121] are summarised in Table 3.

Table 3. A few correlation-based models for nanofluid specific heat capacity.

Authors Formula

Pak et al. [119] Cp,n f = φCp,np + (1 − φ) Cp,b f

Xuan et al. [120] Cp.n f =
φρnpCp,np + (1 − φ)ρb f C

p,b f

φρnp + (1 − φ)ρb f

Sundar et al. [121] Cp,hnp =
ρnp,1ω1 + ρnp,2ω2

ω1 + ω2

In the equations presented in Table 3, Cp,n f refers to the SHC of the nanofluid, Cp,np
refers to the SHC of the nanoparticle, and Cp,b f denotes the SHC of the base fluid. The
symbol φ is the volume fraction, ρnp is the density of the nanoparticle, and ρb f is the
density of the base fluid. The equation by Sundar et al. [121], as depicted in the last row
of Table 3, can be used to determine the (effective) SHC of hybrid nanoparticles

(
Cp,hnp

)
.

In this equation, subscripts 1 and 2 refer to the different types of nanoparticles, and ω1
and ω2 are the weight percentages of the nanoparticles. The SHC of hybrid nanoparticles
obtained from this equation can be substituted in the equations by Pak et al. [117] or
Xuan et al. [120] to obtain the SHC of the hybrid nanofluid. In recent years, several models
based on ML, AI, and GA methods have been developed by the researchers to predict the
SHC of nanofluids [122–129]. These are discussed in detail in Section 4.3.

3. Algorithms

Various algorithms and techniques have been employed by diverse research
groups in the surveyed literature. A brief overview of such algorithms is presented in
the following subsections.

3.1. Artificial Neural Network

The ANNs are computational models that mimic the human brain’s neural structure,
providing a foundation for advancements in AI. These networks consist of interconnected
nodes or neurons, which process input data and produce output, much like the biological
neurons in the brain [130]. The basic structure of an ANN includes an input layer, one or
more hidden layers, and an output layer [131]. Figure 2 depicts a simple ANN with an
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input layer of four neurons, one hidden layer of three neurons, and an output layer of one
neuron. The learning process in ANNs involves adjusting the synaptic weights, which
are the parameters that determine the strength of the connection between neurons. This
adjustment is typically completed using backpropagation, a method that minimizes the
error in the network’s output by propagating the error backward through the network [132].
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The most common algorithm in training ANNs is gradient descent, which iteratively
adjusts weights to minimize a loss function [133]. The methodology of ANNs is applied to
various tasks, which include image and speech recognition, natural language processing,
and complex problem-solving in various scientific fields [132,134]. Their ability to learn
from large datasets and identify data patterns makes them particularly effective for big
data tasks [135].

3.1.1. RBF Neural Network

In ML, the RBF is a crucial tool used in NNs and function approximation. This real-
valued function’s effectiveness is derived from its dependency on the distance from a
central point, which is instrumental in spatial transformations and pattern recognition. An
RBF network is a feedforward network with two layers that utilize the RBF and the linear
activation function in their hidden and output layers, respectively [136]. It was introduced
by Broomhead and Lowe in 1988 [137]. The standout feature of RBFs is their proficiency in
managing non-linear problems, attributed to their localized and radial symmetry properties.
It makes them highly suitable for classification and regression tasks, where they can adeptly
model complex relationships even with limited training data.

3.1.2. GMDH-Type Neural Network

The GMDH-type NN represents another significant approach in ML. Developed by
Ivakhnenko in the 1960s, the GMDH is a self-organizing method that creates a model by
systematically adding layers of neurons based on their correlation with the target vari-
able [138]. This iterative process involves selecting the best neurons based on a predefined
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criterion, such as the least squares method, and then combining these neurons to form a
more complex structure in subsequent layers.

3.2. Support Vector Machine

The SVMs are a class of supervised learning algorithms widely used to classify and
perform ML regression tasks. Introduced by Vapnik and Chervonenkis in the 1960s, SVMs
gained prominence due to their robustness and efficacy in handling high-dimensional
data [139,140]. The fundamental idea behind SVMs is to find a hyperplane in a high-
dimensional space that distinctly classifies the data points. For linearly separable data,
SVMs aim to maximize the margin between the data points of different classes, effectively
finding the optimal separating hyperplane [140]. Figure 3 represents an SVM in the 2D plane
for two-class classification problems. In cases where the data are not linearly separable,
SVMs employ the kernel trick. This technique transforms the data into a higher-dimensional
space where a separating hyperplane can be found [141].
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By incorporating the BSVR concept, SVMs expand their applicability to regression
tasks [142,143]. Based on Bayesian inference principles, BSVR estimates a posterior dis-
tribution over the model parameters, providing a probabilistic interpretation of the SVM
regression [144]. This approach enables the assessment of uncertainty in predictions, which
is a crucial aspect in numerous real-world applications [145].

The SVMs utilize different types of kernels to accommodate various data distributions.
The linear, polynomial, RBF, and sigmoid kernels are among the most common ones. Each
kernel carries its strengths and is selected based on the data’s nature and the specific task
at hand [146]. The linear kernel is adequate for linearly separable data, while the RBF
and polynomial kernels are better suited for non-linear relationships [147]. This flexibility
allows SVMs to deliver strong performance across various scenarios, from simple linear
separations to complex, high-dimensional classification and regression tasks. SVMs are
generally renowned for their effectiveness in high-dimensional spaces and adaptability in
handling diverse data types, such as text and images [148,149]. Moreover, they exhibit a
reduced vulnerability to overfitting, significantly when the number of dimensions surpasses
the number of samples [150].
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3.3. Decision Tree

Decision Trees are a fundamental method in ML-model decisions and their possible
consequences, including chance event outcomes, resource costs, and utility. The concept of
decision trees is obtained from the works of Breiman et al. [151], who laid the groundwork
for many current algorithms. A decision tree consists of internal nodes representing a ‘test’.
Each branch depicts an outcome of the test, whereas each leaf node represents a class label.
The paths from root to leaf are the classification rules [152].

One of the critical advantages of decision trees is their interpretability and simplicity.
They can be visualized, which makes them easy to understand and interpret. This observa-
tion contrasts with more complex models like NNs, where the decision-making process is
often opaque. However, decision trees must be more balanced, especially when dealing
with complex structures and large datasets. Techniques like pruning (reducing the size of
the tree), setting a minimum number of samples per leaf, or limiting the depth of the tree
are often used to prevent this [151]. Several advanced techniques have been developed to
extend the decision tree methodology.

3.3.1. Decision Tree Regression

This approach extends decision trees to regression problems. Instead of predicting a
class, these trees predict a continuous value. The tree splits the dataset into branches, lead-
ing to terminal nodes representing that segment’s mean or median values. It is beneficial
for capturing non-linear relationships in data [153].

3.3.2. Alternating Decision Tree

The ADTree is an advanced classification model that combines several weak decision
trees into a more robust model. Unlike traditional decision trees, ADTrees consist of
decision nodes that specify a condition and prediction nodes that provide a score. These
scores are added up to make a final prediction. ADTrees are known for their interpretability
and improved accuracy over single decision trees [154].

3.3.3. M5 Tree

The M5 model tree is specifically used for regression tasks. It differs from traditional
regression trees by fitting linear regression models at the leaves instead of just the mean
or median [155]. This allows for capturing both the hierarchical structure of the features
and linear relationships among them, making M5 trees more accurate for continuous
data predictions.

3.3.4. Random Forest

The RF is an ensemble learning method that builds a ‘forest’ of decision trees. Each
tree in the forest is trained on a random subset of the data with replacement (bootstrap
aggregating or bagging), and the final prediction is made by averaging the predictions of
each tree. This approach dramatically reduces overfitting and is one of the most potent and
versatile ML models available [156].

3.3.5. Extra Tree Regression

The ETRs, or Extremely Randomized Trees, are similar to the RF but introduce more
randomness. When building trees, it randomly selects the cut-points for splitting nodes,
which adds additional diversity to the model, often leading to improved model robustness
against overfitting [157].

3.3.6. AdaBoost

The AdaBoost is an ensemble technique that builds a robust classifier by combining
multiple weak classifiers, typically decision stumps (one-level trees) [158]. After each
iteration, it adjusts the weights of misclassified instances, making the algorithm focus more
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on complex cases in subsequent iterations. This sequential attention to the ‘hard’ parts of
the training set makes AdaBoost a robust classifier.

3.3.7. Boosted Regression Tree

In this approach, regression trees are sequentially added to the ensemble, and each
new tree fits the residual errors made by the previous ones. This boosting strategy focuses
on areas where the previous models performed poorly, leading to improved accuracy over
single models or non-boosted ensembles.

3.3.8. Gradient Boosting Machine

The GBM is a powerful ML technique for regression and classification problems, which
builds an ensemble model stage-wise. It constructs new models that predict the residuals or
errors of prior models and then combines them to make the final prediction. This approach
allows GBMs to learn iteratively from the mistakes of previous models [159].

3.3.9. XG Boost

The gradient-boosted decision trees are designed for speed and performance. They
provide a scalable and accurate solution to many supervised learning problems [160].

3.4. Genetic Algorithm

The GAs are evolutionary algorithms that mimic the process of natural selection,
embodying the principles of biological evolution, to solve complex optimization and search
problems. John Holland formally introduced the concept of GAs in the 1960s, and it has
since been developed and refined by numerous researchers [161]. A GA operates and
evolves through a cycle of stages that include selection, crossover (or recombination), and
mutation. A population of candidate solutions is generated, typically represented as binary
strings. The algorithm then evaluates these solutions based on a fitness function. The most
fit individuals are selected to breed a new generation through crossover and mutation,
introducing new genetic structures in the population [162].

One of the critical strengths of GAs is their ability to search giant, complex, and
multimodal spaces where traditional optimization methods might struggle. They are
particularly effective in problems where the search space is poorly understood, or the
objective function is complex and non-linear [163]. GAs, however, have certain drawbacks,
including the potential to converge to local optima and the difficulty in selecting the best
genetic representations and fitness functions for a given problem. The MGGP is used
as an extension of GA [164]. It is more reliable than the GA method, which can provide
a non-linear correlation using selected operators. Like GA, the MGGP model has three
leading operators (crossover, mutation, and selection). However, MGGP is a tree-based
model, whereas the GA utilizes the string to represent the solutions [165].

3.5. Adaptive Neuro Fuzzy Interface

The ANFIS is a hybrid intelligent system combining NNs and fuzzy logic principles
to create a framework that can capture the benefits of both in a single model. This ap-
proach was introduced by Jang in 1993 in a seminal paper that demonstrated how an NN
architecture could be used to tune the parameters of a fuzzy system [166]. The core idea
behind the ANFIS is to use the learning capabilities of NNs to determine the parameters of
a fuzzy inference system. A fuzzy inference system uses fuzzy set theory to map inputs
(features) to outputs (responses). In the ANFIS, the parameters of the fuzzy system are
adjusted using methods similar to those used in NN training, such as backpropagation and
least squares estimation. The ANFIS models are beneficial when the data or the relation-
ships between variables are complex and challenging to model with traditional techniques.
They have been successfully applied in control systems, pattern recognition, and predic-
tion, where they can effectively model non-linear functions and handle uncertainty and
imprecision [167].
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3.6. Regression

Regression is fundamental for predicting continuous outcomes from one or more
predictor variables. Its essence lies in establishing a relationship between independent
variables (features) and a dependent variable (outcome) and using this relationship to
predict new data points. Regression models range from simple linear forms to com-
plex non-linear ones, each suitable for different datasets and prediction requirements.
The various types of regression models used in the surveyed literature are briefly
discussed below.

3.6.1. Non-Linear Regression

This form of regression is used for a complex connection between the independent
and dependent variables, meaning it cannot be accurately described with a straight line.
The NLR technique is essential for modelling more complex phenomena where variables
interact non-linearly, such as exponential growth, logarithmic trends, or sinusoidal pat-
terns [168].

3.6.2. Multivariate Adaptive Regression Splines

The MARS, a non-parametric regression technique, can model complex,
high-dimensional datasets where relationships between variables are not easily expressible
in a simple mathematical form. It is flexible and can approximate a wide variety of func-
tional forms. The MARS methodology does this by dividing the data into segments and
fitting linear regressions within them, making it adept at capturing non-linear relationships
and interactions between variables [169].

3.6.3. Multivariate Polynomial Regression

This method is an extension of linear regression, where a relation of the independent
and dependent variables is an nth-degree polynomial. It is helpful in cases where the linear
model is too simple and inadequate. The polynomial nature allows for a more flexible
curve but poses the risk of overfitting, especially with higher-degree polynomials.

3.6.4. Gaussian Process Regression

The GPR is a powerful, probabilistic non-linear modelling technique. It is beneficial
in sparse data scenarios, and uncertainty estimation is crucial. The GPR technique makes
predictions by placing a Gaussian process before functions, offering a flexible means to
capture the underlying structure of the data. It is often used in geo-statistics, time series,
and spatial data analysis [170].

A brief overview of the important AI algorithms is discussed in Table 4.

Table 4. Overview of some of the important AI algorithms.

Algorithm Advantages Disadvantages Applicability

ANN

• Can model complex
non-linear relationships.

• Good for pattern recognition
and classification.

• Requires large datasets.
• Computationally intensive.
• Black box nature.

Works well with large amounts of
sample data for image and speech
recognition, time series prediction,
and natural language processing.

SVM

• Effective in
high-dimensional spaces.

• Memory efficient.
• Versatile kernel functions.

• Not suitable for
large datasets.

• Performs poorly with
overlapping classes.

Effective for text and hypertext
categorization, image classification,

and bioinformatics, especially with a
clear margin of separation.
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Table 4. Cont.

Algorithm Advantages Disadvantages Applicability

DT

• Easy to understand
and interpret.

• Can handle both numerical
and categorical data.

• Prone to overfitting.
• Can become unstable with

small variations in data.

Suitable for classification and
regression tasks, customer

segmentation, and feature selection
where data can be split into

clear decisions.

GA

• Good for searching
large spaces.

• Flexible and adaptable to
different problems.

• Can be slow to converge.
• Requires careful tuning

of parameters.

Ideal for optimization problems,
scheduling and planning, and

machine learning parameter tuning
where traditional approaches

are inefficient.

ANFIS

• Can model complex
non-linear functions.

• Good interpretability
compared to ANN.

• Computationally intensive.
• Requires expert knowledge

to design the fuzzy system.

Applicable in control systems, time
series prediction, and pattern and
sequence recognition where fuzzy

logic can enhance
model interpretability.

Regression

• Easy to understand and
implement.

• Efficient predictions.
• Good for trend forecasting.

• Sensitive to outliers.

Works well in predicting sales and
market trends, risk assessment in

finance, and evaluating trends in data
with linear relationships.

4. Application of AI for Predicting Thermophysical Properties of Nanofluids

A comprehensive review of the recent literature utilizing computational intelligence
for nanofluid thermophysical property modelling has been described in the present section.
Considering a diverse audience with varied technical backgrounds, this section has been
preceded by a comprehensive overview of the basic concepts of nanofluid thermophys-
ical properties (Section 2). Some essential AI algorithms used in the reviewed literature
have also been discussed (Section 3). With a focus on providing valuable insights for
researchers and practitioners in this rapidly evolving field, the following sections offer a
detailed examination of the trends, limitations, and research gaps, alongside suggestions for
future directions.

This section is divided into subsections based on a specific thermophysical property
(thermal conductivity, viscosity, and specific heat capacity) and the published literature
that applies AI methods for predicting that property. In addition, the results and summary
of these studies have been presented in a tabular format to offer a quick overview of the
key features.

4.1. Applications of AI for Predicting Thermal Conductivity of Nanofluids

Esfahani et al. [88] demonstrated that incorporating nanoparticles in MO significantly
enhanced the TC of the resulting nanofluids. The predictive models, particularly the ANFIS
model, showed high accuracy and reliability in estimating the TC of these nanofluids.
These models aimed to predict the TC and viscosity of nanofluids, considering volume
concentration and types of nanoparticles as the input factors. The paper demonstrated
that the TC of nanofluids increases with the concentration of nanoparticles and that silver
nanoparticles show a higher TC than titanium oxide and copper nanoparticles. The findings
have underlined the potential of using such nanofluids for improved heat transfer in various
applications, which include electronic cooling systems.

Although ANNs are potentially valuable tools that can approximate any function,
they must provide practical insights into how the inputs relate to the output. As such,
they are justifiably treated as ‘Black Box’ models. The researchers have used an innovative
approach of combining fuzzy logic with ANN (i.e., ANFIS) to address this problem. It
enables deriving a correlation between the inputs and outputs (TC and viscosity) from the
neural network (ANFIS) models. The researchers also noted that the correlation obtained
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from their AI-based models demonstrated a better agreement with experimental data when
compared to the empirical equations of previous research groups [85,171].

Rostamian et al. [89] presented a comprehensive study on the TC of a CuO–SWCNTs
hybrid nanofluid by combining experimental measurements with ANN modelling to
predict TC changes in temperature and concentration. The experiment covered a range of
temperatures (20–50 ◦C) and solid volume fractions (0.02% to 0.75%). The findings indicate
that the ANN model offers better precision and accuracy than the correlation proposed by
the authors on the same dataset.

The study by Ahmadi et al. [90] has significantly contributed to the nanofluid TC
prediction field. It successfully implemented and compared three different connectionist
methods. The dataset consisted of temperature in the range of (10–70 ◦C), nanoparticle size
in the 5–282 nm range, and volumetric concentration in the 0.25–6% range. The GA–LSSVM
algorithm, in particular, showed superior performance, highlighting the potential of com-
bining GAs with LSSVM for enhanced predictive accuracy. The GA and SVM have served
as novel nanofluid thermal-property-prediction approaches. In addition, the inclusion of
nanoparticle size as an input parameter in the models yields a more comprehensive model
that can be applied to a broader range of important factors influencing the nanofluid’s ther-
mal conductivity. However, the authors have reported a training R2 of 0.8999 and testing
R2 of 0.7832. This difference, in our opinion, may indicate the possibility of overfitting.

The paper by Alade et al. [91] presented a comprehensive study using the SVR to model
the TC enhancement of both metal and metallic oxide nanofluids. By considering various
factors like the type of base fluid, nanoparticle type, and volume fraction, the authors
have developed models that significantly outperform classical and empirical models. Their
findings have demonstrated the versatility of SVR in handling the non-linear and complex
nature of nanofluid behaviour. Specifically, the study has highlighted how the temperature
and volume fraction influence TC enhancement in different classes of nanofluids, revealing
critical insights for future nanofluid research and applications.

Esfe et al. [92] have provided a significant contribution to knowing the thermal prop-
erties of hybrid nanofluids through the experimental investigation of the TC of a ZnO–
DWCNT/EG hybrid nanofluid across various concentrations and temperatures, achieving
a maximum TC ratio of ≈24.9% at 50 ◦C and 1.9% solid volume fraction. The use of an
ANN for modelling these properties has showcased the potential of ML in enhancing
the prediction accuracy of nanofluid thermal characteristics. The AI-based approach has
demonstrated better results than the existing theoretical models [84,172,173] for all solid
volume fractions.

Ahmadi et al. [93] have presented an approach to predict the TC ratio of an Al2O3/EG
nanofluid using the LSSVM coupled with a GA, which was introduced by Ahmadi et al.
in 2018 [90] for an Al2O3/water nanofluid. In this work, the dataset used had a volu-
metric concentration in the range of 0.2–5%, a temperature in the range of 10–70 ◦C, and
a nanoparticle size in the range of 5–282 nm. Using the LSSVM–GA has provided an
effective means to optimize the model’s parameters. This has resulted in high accuracy,
as evidenced by the low value of MSE and high R2 values. The results of this study have
demonstrated a significant advancement in predictive modelling for nanofluid TC, offering
a comprehensive tool that accounts for crucial variables affecting the thermal behaviour
of nanofluids. As evidenced by the survey, the authors have reported much better results
than the previous work by Ahmadi et al. [90]. Furthermore, the training and the testing
R2 were 0.99, indicating minimal or no overfitting. However, the datasets used in both
works [90,93] had similar statistics. Overfitting the Al2O3 dataset [90] by the same algo-
rithm (GA–LSSVM) may indicate the presence of considerable noise in that dataset. This
characteristic highlights the importance of proper data collection and pre-processing.

Akhgar et al. [94] have significantly contributed to predicting the TC in hybrid nanoflu-
ids. By developing various ANNs with different architectures and training algorithms, the
study has effectively forecasted the TC of an MWCNT–TiO2/water–EG hybrid nanofluid.
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The results demonstrate that the optimized ANN models can predict TC more accurately
than traditional correlation methods.

Shahsavar et al. [95] contributed significantly to understanding how Fe3O4 nanoparti-
cle concentration and temperature affect the TC of liquid paraffin-based nanofluids. Using a
GMDH-type NN model to predict TC, the authors have showcased the practical application
of ML techniques in complex fluid dynamics and heat transfer studies. The high accuracy
of the model, as shown by the performance metrics, emphasizes the potential of such
computational approaches in predicting nanofluid properties when traditional models (like
the Hamilton and Crosser Model [85]) underperform at higher concentrations.

Rostami et al. [96] have performed a comprehensive study on predicting the TC of
MWCNT-liquid paraffin nanofluids using ANNs. They efficiently utilized ANN to model
the TC based on mass fraction and temperature. The study shows that the ANN model,
particularly with six neurons in the hidden layer, yields highly accurate predictions, as
evidenced by a high correlation coefficient and low value of MSE. The results indicate that
ANN could be a powerful tool in forecasting the thermal behaviour of nanofluids, thereby
reducing the need for extensive experimental work. However, due to the small amount
of data, the authors used only 28 data points (for training and testing) and no validation
dataset. The dataset was split into train and test datasets in a 7:3 ratio. When sufficient
data are unavailable, techniques such as K-fold cross-validation can be used. However, for
reliable prediction, the collection of adequate data is recommended.

The paper by Sharma et al. [97] has offered a comprehensive analysis of the TC
prediction of TiO2–water nanofluids using various ML algorithms. The authors used a
novel approach of nanoparticle shape as an input parameter for the models. The GBM
algorithm emerged as the most accurate, outperforming the other methods regarding MSE
and R2 values, thereby demonstrating its effectiveness in reducing errors and noise during
iterative predictions. The findings of this study not only enhance the understanding of
nanofluid thermal properties but also demonstrate the robust capabilities of ML algorithms
in modelling complex physical phenomena such as nanofluid TC.

The paper by Sahin et al. [98] has substantially contributed to nanofluid research,
particularly in predicting the TC and zeta potential of Fe3O4/water nanofluids using ML
techniques. The ANN models for these predictions offer high accuracy, as demonstrated
by low MSE and high R2 values. The results show that ANN models outperform the
mathematical correlation in terms of accuracy, highlighting the effectiveness of ML in the
thermophysical property prediction of complex systems. However, as the study shows,
more data points are needed as the authors have used just 27 data points for TC and 18 for
the zeta potential. The ML models require many data points to provide reliable results. As
such, efforts must be made to gather sufficient data.

The summary of the above-reviewed literature and their RMSE and R2 values are
presented in Table 5.

Table 5. Overview of recent work of modelling nanofluid TC using AI techniques.

Authors Method Nanofluid Input Variables MSE R2

Esfahani et al., 2017 [88] ANFIS Ag/MO volume concentration and
type of nanoparticles 3.79 × 10−4 0.989

Esfahani et al., 2017 [88] ANFIS Cu/MO ‘do’ 2.88 × 10−4 0.979

Esfahani et al., 2017 [88] ANFIS TiO2/MO ‘do’ 2.03 × 10−4 0.986

Rostamian et al., 2017 [89] ANN CuO-SWCNTs/EG water temperature and solid
volume fraction - -

Ahmadi et al., 2018 [90] SVM with GA Al2O3/Water
temperature, size of
nanoparticles, volume
concentration

5.5 × 10−4 0.783
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Table 5. Cont.

Authors Method Nanofluid Input Variables MSE R2

Alade et al., 2018 [91] SVM (Al and Cu) with water,
EG, and Transformer Oil

suspension temperature,
thermal conductivities of
the base fluid and
nanoparticles, particle
size, and
volume fraction

1.23 0.993

Alade et al., 2018 [91] SVM
(Al2O3 and CuO) with
water, EG, and
Transformer Oil

‘do’ 1.79 0.961

Esfe et al., 2018 [92] ANN ZnO–DWCNT in EG

nanoparticle
concentration,
temperature, nanoparticle
composition

5.35 × 10−5 0.99

Ahmadi et al., 2019
[93] SVM with GA Al2O3/EG

temperature,
concentration of
nanoparticles, and
particle size

4.59 × 10−5 0.99

Akhgar et al., 2019 [94] ANN MWCNT–TiO2/Water–
EG Hybrid Nanofluid

temperature and
volume fraction 1.02 × 10−5 -

Shahsavar et al., 2019
[95]

GMDH type
NN Fe3O4/paraffin volume concentration

and temperature 3.2 × 10−4 0.96

Rostami
et al., 2020 [96] ANN MWCNT–Paraffin mass fraction

and temperature 7.53 × 10−5 0.993

Sharma et al., 2022 [97] GBR TiO2/Water
temperature, volume
fraction, shape, and size of
nanoparticles

0.2 × 10−3 0.99

Sharma et al., 2022 [97] SVR TiO2/Water ‘do’ 0.2× 10−1 0.69

Sharma et al., 2022 [97] DTR TiO2/Water ‘do’ 1.1 × 10−3 0.98

Sahin et al., 2023 [98] ANN Fe3O4/Water temperature and
concentration 1.47 × 10−5 0.997

4.2. Applications of AI for Predicting Viscosity of Nanofluids

Esfahani et al. [88] presented an in-depth analysis of the viscosity and TC of nanoflu-
ids composed of silver, copper, and titanium oxide nanoparticles dispersed in mineral-
insulating oil. The researchers employed a high-pressure homogenization process without
additives or surfactants. The ANFIS and non-linear regression techniques were used to
develop new models based on experimental data. The study findings suggested that in-
creasing nanoparticle concentration in the base fluid enhances the TC and viscosity, which
can lead to challenges in practical applications like duct blocking and higher pressure drops
in systems. The authors also noted that the AI-based models were superior compared to
equations suggested by previous researchers in modelling their experimental data.

Alrashed et al. [106] presented a comprehensive study on the thermophysical prop-
erties of carbon-based nanofluids. The researchers focused on the viscosity, density, and
TC of Diamond–COOH and MWCNT–COOH nanoparticles dispersed in water without
surfactants or additives. Their study spanned temperatures from 20 ◦C to 50 ◦C and particle
volume fractions from 0 to 0.2%. The authors compared the soft computing techniques with
existing formulas and found that the soft computing methods result in lesser error than the
correlation-based models. They concluded the ANN to be the best predictor model in their
study, based on the MAPE value.

Esfe et al. [45] investigated the viscosity of a CuO–EG nanofluid at different concentra-
tions and temperatures. The study utilized a GA-based NN to develop a model to predict
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the nanofluid’s viscosity based on experimental data. The model was trained with 36 data
points and validated with 6 data points, covering a range of volume concentrations (0 to
1.5%) and temperatures (27.5 ◦C to 50 ◦C). The findings reveal that viscosity increased with
volume concentration and decreased with rising temperature, with temperature having a
more significant effect at lower concentrations. The best-performing ANN configuration
was identified as having two hidden layers with eight neurons each. The study concluded
that volume concentration is more influential on viscosity than temperature. This find-
ing thus illustrates how AI methods can serve to comprehend the underlying physics of
transport phenomena.

In their study, Esfe et al. [107] aimed to predict the rheological behaviour of an Al2O3–
MWCNT/5W50 hybrid nano-lubricant using an ANN model. Based on experimental data,
the study proposed an ANN model and a new correlation with three inputs for the ANN
model: temperature, volume fraction, and shear rate. The paper demonstrated that the
ANN model, which uses a maximum of thirty-five neurons in one hidden layer, could
predict the relative viscosity of the nano-lubricant more accurately than the empirical
correlation. The ANN models demonstrated a maximum margin of deviation of ≈0.07%,
while empirical correlations had a maximum margin of deviation of ≈7.3%.

Demirpolat and Das [108] investigated the viscosity of CuO nanofluids at various pH
values and temperatures using different AI methods, specifically the ADTree and MLP, with
the MLP performing better than the ADTree. The researchers found that the viscosity of
nanofluids increased with the pH value but decreased with rising temperature. This study
is significant in creating predictive models based on different computational intelligence
techniques to predict the viscosity of nanofluids at a different pH.

Shahsavar et al. [95] focused on assessing the impacts of Fe3O4 nanoparticle con-
centration and temperature on the viscosity and TC of a liquid paraffin-based nanofluid.
The study conducted experiments with Fe3O4 concentrations, ranging from 0.5 to 3% and
temperatures from 20 ◦C to 90 ◦C, using oleic acid as a surfactant. It can be noted that
the nanofluid exhibits shear-thinning behaviour (steady, non-Newtonian fluid behaviour
characterized by an apparent viscosity that decreases with increasing shear rates), and both
its viscosity and TC increased with nanoparticle concentration. However, the viscosity
decreased with increased temperature, while TC increased. An ANN, specifically a GMDH-
type NN, was employed to model these properties using the experimental data. The results
indicated that the model could estimate outputs with low error and high R2 values.

Ghaffarkhah et al. [109] investigated the dynamic viscosity of four distinct hybrid
nano-lubricants. The base fluid consisted of SAE 40 engine oil, while the nanoparti-
cles comprised 80-volume percentage oxide nanoparticles (SiO2, Al2O3, MgO, and ZnO)
and 20-volume percentage COOH-functionalized MWCNTs. Temperatures ranging from
25–50 ◦C and solid volume fractions of 0.05, 0.25, 0.50, 0.75, and 1% were used for the tests.
The paper uses DT, RF, SVM, and RBF-ANN to predict nanofluid viscosity, with DT and
SVM techniques showing superior accuracy. The ML models outperformed the empirical
models [103,174,175] used to predict the dynamic viscosity of nanofluids. The authors used
an innovative approach of using data from four different types of COOH-functionalized
MWCNTs-based nanoparticles, making their model more robust and generalizable than
studies that used only one type of nanoparticle. Unfortunately, each of the four types of
nanoparticles had only 30 data points. This issue of data size remains to be addressed.

Toghraie et al. [110] focused on developing an ANN model to predict the viscosity of
a silver/EG nanofluid. The study involved creating an experimental dataset by measuring
the viscosity of the nanofluid at different temperatures and nanoparticle concentrations.
This dataset was then used to train and test the ANN model. The researchers found that
the ANN model could predict the viscosity with high precision, outperforming traditional
correlation methods. However, only 42 data points were used, and a larger sample size
was required.

Ahmadi et al. [111] performed an in-depth study focusing on applying different ML
methods to predict the dynamic viscosity of a CuO/water nanofluid. The ML models used
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in the study include the MPR, the MARS, the ANN-MLP, the GMDH, and the M5-tree.
This study concluded that the ANN is the most reliable approach for modelling nanofluid
viscosity. The authors used data from various experimental studies to apply their model
to multiple inputs. The authors used temperature concentration and nanoparticle size as
inputs, as the importance of these variables has been pointed out by previous literature.
The study’s significance lies in its attempt to understand the relative importance of these
variables. The authors found concentration to be the most influential, while nanoparticle
size was the least influential.

Gholizadeh et al. [112] presented a novel application of the Random Forest method
to accurately estimate Newtonian nanofluids’ viscosity. The research is significant for
using RF in this context for the first time, aiming to enhance the accuracy and reliability in
predicting nanofluids’ thermophysical properties. In their study, the RF performs better
than ANN, SVR, and all the correlation-based models used in their research. In addition, the
authors conducted a comparative trend evaluation to validate the predictive accuracy and
robustness of their proposed AI-based models in comparison to the available correlation-
based models for estimation of the relative viscosity of various nanofluids, including
SiO2/DI–Water, Al2O3/EG–water (20:80), ZnO/water and CuO/EG–water. The authors
used a sufficiently large dataset comprising 2890 data points. However, the results are
only satisfactory for RF. This fact may be due to the data scaling method used. Scaling
the input is often essential for a good performance of ML models, but the scaling method
can considerably affect the performance. The authors scaled the input data between 0 and
1 based on the dataset’s minimum and maximum data values. This type of scaling, also
known as Min–Max Scaling, is sensitive to outlier data points. We recommend Standard
Scaling, which uses the mean and standard deviation of the dataset to scale the data. It is
less sensitive to outliers and can improve the performance of the ML models. Nevertheless,
the study concluded that the AI models (especially RF) yield better predictive accuracy
when compared to the existing empirical and theoretical correlations.

Kanti et al. [113] explored the viscosity properties of fly ash nanofluids and fly-ash–Cu
hybrid nanofluids. The research is significant for using advanced and novel computational
algorithms like the MGGP to predict and optimize the dynamic viscosity of these nanofluids
based on experimental data.

Dai et al. [114] explored the application of ML techniques, specifically the GPR with
different covariance functions, to predict the dynamic viscosity and torque of SiO2 nanopar-
ticles in EG base fluid. This study presented a comprehensive approach to utilizing ad-
vanced ML models to understand and predict the rheological properties of nanofluids and
reported low error and high R2 values. Based on available data, the authors used a dataset
with only 45 data points for dynamic viscosity and 208 data points for torque prediction.
However, the authors employed the K-fold cross-validation technique to overcome the
problems associated with small datasets. Nevertheless, the need for sufficient data cannot
be ignored for ML models to work reliably, and 45 data points are insufficient.

The summary of the above-reviewed literature and their RMSE and R2 values are
presented in Table 6.
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Table 6. Overview of recent work of modelling nanofluid viscosity using AI techniques.

Authors Method Nanofluid Input Variables MSE R2

Esfahani et al., 2017 [88] ANFIS Ag/MO volume concentration of nanoparticles and the type
of nanoparticles 2.21 × 10−5 0.977

Esfahani et al., 2017 [88] ANFIS Cu/MO ‘do’ 3.84 × 10−5 0.999

Esfahani et al., 2017 [88] ANFIS TiO2/MO ‘do’ 1.02 × 10−5 0.998

Alrashed et al., 2018 [106] NLR MWCNT–COOH/water temperature and volume fraction 7.36 × 10−5 -

Alrashed et al., 2018 [106] NLR Diamond–COOH/water ‘do’ 8.24 × 10−4 -

Alrashed et al., 2018 [106] ANN MWCNT–COOH/water ‘do’ 3.89 × 10−5 -

Alrashed et al., 2018 [106] ANN Diamond–COOH/water ‘do’ 8.5 × 10−4 -

Alrashed et al., 2018 [106] ANFIS MWCNT–COOH/water ‘do’ 1.84 × 10−8 -

Alrashed et al., 2018 [106] ANFIS Diamond–COOH/water ‘do’ 7.47 × 10−4 -

Esfe et al., 2018 [45] GA-ANN CuO/EG volume concentration and temperature - 0.999

Esfe et al., 2018 [107] ANN Al2O3–
MWCNT/5W50 temperature, volume fraction, and shear rate 0.7 × 10−6 0.999

Demirpolat and Das, 2019 [108] ADTree CuO/(water + ethanol + EG)
Reynolds number, pH, nanoparticle percentage,
nanofluid temperature, nanofluid density, and
average speed of nanofluids

5.6 × 10−2 -

Demirpolat and Das, 2019 [108] MLP ‘do’ ‘do’ 2.3 × 10−2 -

Shahsavar et al., 2019 [95] GMDH-NN Fe3O4/liquid paraffin nanoparticle concentration, temperature,
and shear rate 3.24 × 10−6 0.96

Ghaffarkhah et al., 2019 [109] DT

80 Vol% (SiO2, Al2O3, MgO, and
ZnO) + 20 Vol%
COOH-functionalized
MWCNTs/SAE 40 Engine oil

temperature and solid volume fraction - -

Ghaffarkhah et al., 2019 [109] RBF-ANN ‘do’ ‘do’ - -

Ghaffarkhah et al., 2019 [109] RF ‘do’ ‘do’ - -

Ghaffarkhah et al., 2019 [109] SVM ‘do’ ‘do’ - -

Toghraie et al., 2019 [110] ANN Ag/EG temperature and volume fraction of nanoparticles 6.96 × 10−5 -
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Table 6. Cont.

Authors Method Nanofluid Input Variables MSE R2

Ahmadi et al., 2020 [111] ANN CuO/water size, temperature, and concentration of
the nanoparticles 5.6 × 10−4 0.999

Ahmadi et al., 2020 [111] GMDH CuO/water ‘do’ 6.5 × 10−4 0.999

Ahmadi et al., 2020 [111] MARS CuO/water ‘do’ 1.4 × 10−3 0.999

Ahmadi et al., 2020 [111] M5-Tree CuO/water ‘do’ 1.22 × 10−2 0.995

Ahmadi et al., 2020 [111] MPR CuO/water ‘do’ 1.63 × 10−2 0.994

Gholizadeh et al., 2020 [112] RF Various nanofluids 1
temperature, solid volume fraction, viscosity of the
base fluid, nanoparticle size, and density
of nanoparticles

1.92 × 10−2 0.978

Gholizadeh et al., 2020 [112] MLP Various nanofluids 1 ‘do’ 1.42 × 10−1 0.837

Gholizadeh et al., 2020 [112] SVR Various nanofluids 1 ‘do’ 9.2 × 10−2 0.885

Kanti et al., 2021 [113] MGGP (Fly ash)/water concentration range and temperature
range of nanofluids 3.61 × 10−6 0.999

Kanti et al., 2021 [113] MGGP (Fly-ash–Cu)/water ‘do’ 3.97 × 10−5 0.995

Kanti et al., 2021 [113] ANN (Fly ash)/water ‘do’ 3.17 × 10−6 0.999

Kanti et al., 2021 [113] ANN (Fly-ash–Cu)/water ‘do’ 1.16 × 10−5 0.999

Dai et al., 2023 [114] GPR SiO2/EG volume fraction, shear rate, and temperature 5.76 × 10−2 0.996
1 Al2O3/(water, DI water, EG, EG/water, TO, polyalphaolefins), SiO2/(EG, DI water, ethanol, EG/water (30:70), water), TiO2/(water, EG, DI water, EG/water), CuO/(water, EG,
EG/water), ZnO/(water, EG), MgO/EG, Fe3O4/(water, toluene), Mg(OH)2/EG, Co3O4/EG, SiC/DI water, diamond/(water, EG/water), CNTs/(water, EG), MWCNT–COOH/water,
Ce2/EG.
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4.3. Applications of AI for Predicting Specific Heat Capacity of Nanofluids

Alade et al. [122] focused on developing a highly accurate model for predicting the
SHC of alumina/ethylene glycol nanofluids. This work is significant for proposing a novel
technique for more precise and reliable calculation of the efficiency of solar collectors. The
authors of this article proposed a BSVR model, which was trained using 84 experimental
datasets and validated with 17 test sets. The model demonstrated remarkable accuracy,
outperforming existing theoretical models [119,120]. This paper’s use of the Bayesian
optimization algorithm to find the optimal hyperparameters was noteworthy as it simplifies
discovering the optimal model architecture. However, the number of data points (101)
should be increased for a more reliable prediction.

Hassan and Banerjee [123] presented a novel application of ML techniques to esti-
mate the SHC of molten nitrate salt-based nanofluids (with titania, alumina, and silica
nanoparticles). Trained and tested on a dataset incorporating factors like temperature and
nanoparticle mass fraction, the MLP–ANN model has shown a high prediction accuracy.
The ANN model yields a maximum error of approximately ≈2% and has outperformed
classical analytical models [119,120], which showed an error of up to ≈24%. The study
is significant because the authors trained and compared a huge number (1920) of ANN
architectures by varying the number of neurons (between 5 and 100), 12 different activation
functions, and different weight optimization algorithms. The training of such networks is
time-consuming, and the authors experimented with several small datasets to determine
the optimal number of data points to obtain a good prediction. They concluded it to be
around 300.

Alade et al. [124] focused on developing ML models for predicting the SHC of
CuO/water nanofluids. Their study employed SVR and ANN models and experimen-
tal data, including the SHC of CuO nanoparticles, their volume fractions (0.4% to 2%),
and fluid temperature (293–338 K). The study revealed that the SVR model slightly out-
performed the ANN model in accuracy. However, both models demonstrated superior
prediction performance for the SHC of CuO/water nanofluids compared to existing
theoretical models [119,120], thereby highlighting the effectiveness of ML approaches
in this domain.

Daneshfar et al. [125] explored the determination of the specific heat capacity of
nanofluids using various ML models. The study employed MLP–ANN, SGB tree, RBF–
NN, and the ANFIS models. These models were assessed based on input parameters like
nanoparticle concentration, critical temperature, operational temperature, acentric factor,
and molecular weight of pure ionic liquids. The SGB model outperformed the others in
accuracy and generalizability, demonstrating its applicability to unseen conditions and
offering a cost-effective alternative to experimental methods. The authors used 429 training
data points and 142 testing data points. They used Min–Max Scaling, but in our opinion,
that is sufficient because the authors already analyzed the dataset to determine outliers and
found most data points to be localized in a ‘reliable zone’ [125].

Adun et al. [126] investigated the SHC of water-based Fe3O4–Al2O3–ZnO ternary
hybrid nanofluids in three different mixture ratios of Fe3O4–Al2O3–ZnO: 1:1:1, 1:2:1, and
1:1:2 at various volume fractions (0.5%, 0.75%, 1%, and 1.25%). The experiments were
conducted in a temperature range of 25–65 ◦C. The findings revealed a linear effect of
temperature on the SHC of the ternary hybrid nanofluid and a decrease in SHC with
increasing volume concentration. The maximum increment in SHC was observed at 1.25%
volume concentration and 25 ◦C temperature, with the 1:1:1 mixture ratio showing the
‘peaking effect’ and the 1:2:1 ratio showing the lowest SHC values. The ML models (ANN
and GA–SVR) and corresponding correlations were developed based on the SHC data. The
SVR model outperformed the correlation-based model. In addition, the SVR showed a
maximum deviation of ≈0.2% from the experimental results, while the correlation-based
model showed a maximum deviation of ≈12.467%.

Jamei et al. [127] examined the determination of SHC of molten (nitrate) salt-based
nanofluids. The study developed two modern ensemble ML models, the ETR and the
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AdaBoost Regression, along with RF and BRT models. The dataset included variables
such as solid mass fraction, temperature, SHC of base fluid, mean diameter, and density of
nanoparticles as the input parameters. The authors found that the ML models demonstrated
higher predictive accuracy; in particular, the ETR model outperformed the other models
in the study. This work used a sufficiently large dataset comprising 2384 data points. The
authors also employed feature selection techniques, which often become necessary when
working with large and complicated datasets.

Zhang and Xu [128] explored the application of GPR to model the SHC of nanofluids.
Their research indicated that the SHC of nanofluids could either increase or decrease with
nanoparticle concentration, showing contradictory trends in different studies. This work
developed a model with data on nanofluids containing CuO and Al2O3 nanoparticles in
water and EG, which, when applied to various compositions and temperatures, offered fast
and low-cost estimations of SHC.

Said et al. [129] focused on evaluating the SHC of nanofluids using three ML models:
the GPR, the XGBoost, and the SVM. The study utilized metal oxide multiwall carbon
nanotubes–water nanofluids and considered various factors influencing the SHC, such
as volume concentrations, temperature range, base fluid’s SHC, nanofluid density, base
fluid density, and average nanoparticle diameter. The findings showed that all three
models predict the SHC of hybrid nanofluids with high precision, which made them viable
alternatives to traditional experimental methods. Among the three, the XGBoost model
exhibited superior prediction performance.

The summary of the above-reviewed literature and their RMSE and R2 values are
depicted in Table 7 (see below).

Table 7. Overview of recent work of modelling nanofluid SHC using AI techniques.

Authors Method Nanofluid Input Variables MSE R2

Alade et al., 2019 [122] BSVR Al2O3/EG
volume fraction, temperature,
SHC of nanoparticles and
SHC of EG

2.2 × 10−5 0.999

Hassan and Banerjee,
2019 [123] ANN (Al2O3, SiO2, TiO2)/Molten

Salt (KNO3 + NaNO3)
temperature and
mass fraction 6.593× 10−2 0.999

Alade et al., 2020 [124] BSVR CuO/water SHC of nanoparticles, fluid
temperature, volume fraction 5.29 × 10−6 0.999

Alade et al., 2020 [124] ANN CuO/water ‘do’ 6.25 × 10−6 0.999

Daneshfar
et al., 2020 [125] MLP–ANN Al2O3/IL

nanoparticle concentration,
critical temperature,
operational temperature,
acentric factor, and molecular
weight of pure ionic liquids

1.32 × 10−2 0.943

Daneshfar
et al., 2020 [125] ANFIS Al2O3/IL ‘do’ 3.2 × 10−2 0.875

Daneshfar
et al., 2020 [125] RBF–ANN Al2O3/IL ‘do’ 2.01 × 10−2 0.92

Daneshfar
et al., 2020 [125] SGB tree Al2O3/IL ‘do’ 2.49 × 10−3 0.987

Adun et al., 2021 [126] ANN Fe3O4–Al2O3–ZnO/water
temperature, volume
concentration,
and mixture ratio

480.4338 0.942

Adun et al., 2021 [126] GA-SVR ‘do’ ‘do’ 89.69037 0.997

Jamei et al., 2021 [127] ETR Molten salt (nitrate)-based
nanofluids

solid mass fraction,
temperature, SHC of base
fluid, mean diameter, and
density of nanoparticles

2.42 × 10−2 0.993
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Table 7. Cont.

Authors Method Nanofluid Input Variables MSE R2

Jamei et al., 2021 [127] ABR ‘do’ ‘do’ 3.44 × 10−2 0.990

Jamei et al., 2021 [127] RF ‘do’ ‘do’ 5.41 × 10−2 0.984

Jamei et al., 2021 [127] BRT ‘do’ ‘do’ 6.29 × 10−2 0.981

Zhang and
Xu, 2021 [128] GPR (Al2O3,CuO)/(water EG)

temperature, SHCs of
nanoparticles and base
liquids, and nanoparticle
volume concentrations

3.61 × 10−6 0.999

Said et al., 2022 [129] GPR (metal oxide +
MWCNT)/water

volume concentration,
temperature range, SHC
of base fluid, nanofluid
density, base fluid density,
and average
nanoparticle diameter

54.06 0.995

Said et al., 2022 [129] XGBoost (metal oxide +
MWCNT)/water ‘do’ 98.13 0.995

Said et al., 2022 [129] SVM (metal oxide +
MWCNT)/water ‘do’ 97.97 0.990

Figure 4 presents the number of publications on thermophysical property research
of nanofluids with AI techniques (such as ML and GA), as acquired from the Scopus
database. As outlined above, the survey indicates that the number of research publications
on nanofluid TC and viscosity (concerned with applying AI techniques) far exceeds the
number of articles devoted to AI applications on SHC.
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5. Conclusions and Future Scope

The present review focuses on a comprehensive overview of the recent literature
on the application of AI techniques in nanofluids, particularly the prediction of ther-
mophysical properties of nanofluids: the TC, the viscosity, and the SHC. An extensive
literature analysis shows that the computational intelligence applications in this domain
have steadily increased over the past decade, with researchers using varied techniques on
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various nanofluids. Given the nanofluids’ vast potential to replace traditional heat transfer
fluids and coolants in machinery, this offers exciting novel avenues.

i. One of the noteworthy findings of our review is the consistent superiority of AI-based
models over traditional theoretical and correlation-based approaches in predicting
the thermophysical properties of nanofluids. These theoretical models often exhibit
uncertainties and fail to predict experimental results precisely, limiting their practical
applications [91,176,177]. As outlined in the previous sections, the utilization of
machine learning algorithms has yielded a more accurate estimation of the properties
of NFs due to their ability to effectively map non-linear relationships between input
and output variables [126]. Not only do these models offer higher accuracy, but they
also present a more accessible and cost-effective alternative to experimental methods.

ii. Furthermore, our review underscores the vast potential of nanofluids to revolutionize
heat transfer fluids and coolants in various applications. However, nanofluid ther-
mophysical properties exhibit non-linear relationships and are challenging to model
using traditional theoretical models, while conducting experimental measurements is
time-consuming, labour-intensive, and costly. In this scenario, AI techniques like ML
become useful. ML extracts patterns and knowledge from given data without first
principles, introducing a new paradigm: ‘use data to discover, rather than validate,
new hypotheses and models’ [178]. Integrating big data and machine learning is
transforming various industries, including multiphysics research, leveraging high-
quality data from improved experimental and simulation studies and archival data.
By harnessing AI techniques to predict the complex relation governing nanofluid
thermophysical properties, researchers are paving the way for innovative thermal
and energy systems solutions for industrial applications like solar collectors, heat
exchangers, and PV/T systems [176].

iii. However, data availability is a specific challenge related to applying AI methods
in nanofluid thermophysical property prediction. For instance, the ML models are
specific to the dataset they are trained on. For example, an ML model trained on
the prediction of SHC of CuO/EG nanofluid in a plate heat exchanger would only
be able to predict the SHC of CuO/ethylene glycol nanofluids and not of other
nanofluids. It would also work only for plate heat exchangers rather than other
configurations. This limits the applicability of ML models. If one desires a model
that can predict the SHC of different nanofluids, the nanofluid/nanoparticle type
should also be used as an additional input to the model. Among the papers reviewed,
only the work by Esfani et al. [88] used nanoparticle type as an input parameter.
This aspect highlights the substantial scope of research in this domain. However,
incorporating nanoparticle type and other parameters in the input may increase the
complexity of the dataset. As the complexity of the dataset increases, it becomes
necessary to include more and more data points to obtain a good fit and avoid
over-fitting, which is often not feasible due to the limitations of data availability
and constraints of computational resources, which are necessary to run complex AI
models. In such situations, dimensionality reduction techniques such as the Principal
Component Analysis and the Linear Discriminant Analysis may be employed to
reduce the dimensionality of the dataset. In addition, it must be borne in mind that
the prediction models may not fully consider external factors such as impurities,
contaminants, or changes in operational conditions. Moreover, the sensitivity of
specific algorithms to hyperparameter settings may also impact the robustness and
reliability of predictions.

iv. Data availability is another issue that could hinder the progress of nanofluid research
using AI. AI techniques such as ML require large amounts of data, and the absence of
such data can seriously affect the models. Most of the reviewed work in this study has
used relatively small datasets. Applying complex algorithms like the ANN on small
datasets can result in overfitting, significantly reducing the predictions’ reliability. For
this reason, a large amount of quality data is necessary. Experimental methods and
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computer-based simulations can generate these datasets. However, such exercises are
liable to be expensive and time-consuming for individual research groups. However,
once sufficient data are generated and made available globally in the public domain
by researchers, these can be used to develop robust and powerful AI models to charter
futuristic applications in efficient thermal management.

v. It is worth noting that while thermal conductivity and viscosity have been exten-
sively studied, the SHC of nanofluids still needs to be explored. Figure 4 presents
the number of publications on nanofluid thermophysical property research with AI
techniques such as ML and GA acquired from the Scopus database (as of 25 February
2024). Research on nanofluid TC with AI techniques has resulted in 243 publications;
on viscosity, it has yielded 210 publications. However, just 30 published articles are
devoted to applying AI techniques to the SHC of nanofluids. This trend may be
attributed to the fact that, while TC and viscosity are primary thermophysical prop-
erties of any heat transfer medium, SHC considerations are relatively unimportant
in applications where phase changes can be neglected. However, several researchers
have pointed out the importance of SHC in enhancing the heat transfer properties of
nanofluids [129,179]. Based on the preceding statistics, paying more attention to the
SHC of nanofluids becomes imperative. This presents an exciting avenue for future
research endeavours.

vi. Applying AI, ML, and GA techniques in nanofluid research is still a relatively nascent
field with steady academic and research interest growth. Several researchers [45,90,93]
have demonstrated innovative approaches by combining metaheuristic techniques
like GA with traditional ML models such as ANN and SVM, creating more robust
models. This field of study is expected to grow even more in the coming years, with
more and more researchers contributing to this field.
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Abbreviations

AdaBoost adaptive boosting
ADTree alternating decision tree
AI artificial intelligence
ANFIS adaptive neuro-fuzzy interface system
ANN artificial neural network
BRT boosted regression tree
BSVR Bayesian support vector regression
CNT Carbon nanotube
DI diamond
DSC differential scanning calorimeter
DTR decision tree regression
EG ethylene glycol
ETR extra tree regression
GA genetic algorithm
GBM gradient boosting machine
GMDH group method of data handling
GPR Gaussian process regression
IL ionic liquid
LSSVM least square support vector machine
MAE mean absolute error
MARS multivariate adaptive regression splines
MDSC modulated differential scanning calorimeter
MGGP multi-gene genetic programming
ML machine learning
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MLP multi-layer perceptron
MO mineral oil
MPR multivariable polynomial regression
MWCNT multi-walled carbon nanotube
NLR non-linear regression
NN neural network
PV/T photovoltaic/thermal
RBF-NN radial basis function neural network
RBF radial basis function
RF random forest
RMS root mean square
RMSE root mean square error
RSM response surface methodology
SGB stochastic gradient boosting
SHC specific heat capacity
SVM support vector machine
SVR support vector regression
TC thermal conductivity
XGBoost extreme gradient boosting
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