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Abstract: Dual-phase composite magnetic materials have magnetic and permanent magnetic proper-
ties. They can realize the dual-phase conversion of soft magnetic and permanent magnetic composites
with a small amount of excitation energy. They have the advantages of good control and conversion
characteristics and save energy, and they have a wide range of application scenarios in regard to
power equipment. In this paper, the magnetization modeling of dual-phase composite magnetic
materials is carried out based on micromagnetic theory, and a specific mathematical expression is
given. Secondly, the preparation process of the dual-phase composite magnetic material is stud-
ied, the dual-phase composite magnetic material is prepared, and the demagnetization curve of
the dual-phase composite magnetic material is measured. Finally, the application of dual-phase
composite magnetic materials in power equipment is carried out. Using the soft magnetic and
permanent magnetic characteristics of dual-phase composite magnetic materials, their impact on DC
bias suppression in transformers is assessed. Magnetic circuit reluctance theory is used to develop
the structure and electromagnetic design of a transformer. A transformer prototype with DC bias
suppression ability based on dual-phase composite magnetic materials is manufactured, and simula-
tion and experimental research are carried out. The simulation and experimental results verify the
correctness of the proposed scheme. Although this scheme requires a more complex core structure,
the energy-saving effect is remarkable without changing the transformer’s neutral grounding. The
indicators meet the actual requirements of the project.

Keywords: dual-phase magnetic material; compensation; power transformer; DC bias; structural
design; electromagnetic design

1. Introduction

Dual-phase composite magnetic materials have magnetic and permanent magnetic
properties. They can realize the dual-phase conversion of soft magnetic and permanent
magnetic composites with a small amount of excitation energy. They have the advantages
of good control and conversion characteristics and save energy, and they have a wide range
of application scenarios in regard to power equipment [1–4].

The DC bias phenomenon in transformers, caused by HVDC and geomagnetic storms,
can seriously affect the security and stable operation of the power system [5]. Consequently,
researchers have paid attention to DC bias compensation technology [6–8]. In [9], a DC
current-blocking device for transformer neutrals is developed. In [10], an investigation
was conducted to reduce the flow of geomagnetically induced currents (GICs) via power
transformers. This was achieved by implementing an AC grounding channel using a
capacitor between the earth or ground and the neutral point of a power transformer, but
only when the GIC was identified. In [11], when designing a DC bias device for trans-
formers, it was found that thoroughly evaluating both the resistance and the withstand
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voltage was important. To ensure the safe operation of the transformer when the fault
zero-sequence current was high, choosing a lower resistance was recommended whenever
possible. In [12], an optimal study was conducted on the DC current-blocking technique
using the existing dual protection topology. The selection and design parameters for the
device were determined based on applicable concepts. In [9–12], the DC bias was sup-
pressed by calculating and installing series capacitors or resistors, but this method will
raise the neutral point potential of the transformer and may cause DC bias in other trans-
formers. Neutral point compensation technology can suppress the grounding current [13].
However, according to a large number of previous studies, this compensation method has
some limitations; for example, the real-time estimation of the injected current is imprecise,
leading to inadequate compensation and overcompensation [14,15]. Utilizing the auxiliary
windings of hybrid transformers can achieve full compensation of the core DC bias through
the establishment of a modulation compensation current [16]. However, the increased size
of the compensation coil may affect the normal operation of the transformer.

The existence of DC bias in power transformers seriously affects the power quality and
normal operation of the equipment [16–18]. Therefore, DC bias has increasingly become
the focus of research by scholars [19–25]. The main compensation technologies are used to
connect the resistance with the neutral point, connect the capacitance, reverse the electric
potential compensation, install the wound degaussing coil in the transformer core, and so
on. However, these methods have drawbacks that pose a great threat to the security of
power systems. Currently, devising effective measures to suppress the influence of DC bias
in transformer design remains a challenge.

This research analyzed and completed the calculations for the preparation of dual-
phase magnetic material, the structural and electromagnetic design of a new power trans-
former, and the control system, comprehensively starting from the design stage and the
dual-phase magnetic conversion mechanism. It provides an effective method, reference,
and technical means for manufacturing the new power transformer with a DC bias compen-
sation function. The simulation and experimental results show that the compensation effect
of the transformer on DC bias is evident. The results verify the correctness and feasibility
of the scheme.

2. Modeling of Dual-Phase Composite Magnetic Materials

Figure 1 displays a structural schematic diagram of the new power transformer. The
control system transfers the magnetic flux to the dual-phase magnetic material when DC
bias is detected. The supplemented magnetic flux is equal to the DC bias magnetic flux but
in the opposite direction. When the DC bias disappears, the control system demagnetizes
the dual-phase magnetic material. The transformer returns to its normal state.
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Figure 1. Structure schematic diagram of the new power transformer. 

3. The Establishment of the Dual-Phase Magnetic Hysteresis Mathematical Model and 
the Research of the Preparation of Material 
3.1. Micromagnetic Modeling of Dual-Phase Magnetic Materials  

Due to the lack of consideration of magnetic material properties under mechanical 
stress conditions in this article, magnetoelasticity is not considered. In the theory of mi-
cromagnetics, when the magnetoelastic property is neglected, the total Gibbs free energy 
of any magnet can be expressed as: 
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where exE   is the exchange interaction energy; anE   is magnetocrystalline anisotropy; 

dE  is demagnetization energy; and apE  is saimanneng. 

(1) Exchange energy 
The exchange interaction energy refers to the electrostatic interaction energy between 

two adjacent atoms. For substances with strong magnetism, the magnetic moments of ad-
jacent atoms are orderly arranged due to the existence of the exchange interaction energy. 
The pure quantum effect caused by the Coulomb force between atoms is the source of the 
exchange coupling of adjacent lattice points. Exchange interaction is a short-range force, 
so only the nearest-neighbor interaction is considered. According to Heisenberg’s ex-
change theory, the exchange energy between two nearest spin atoms is: 

= 2ex ij i jJ S S−
 
ε  (2)

where the i  atomic spin angular momentum is iS


, the j  atomic spin angular momen-
tum is jS

 , and i jJ  is the exchange integral constant. 
In addition, it is generally believed that the angle ijϕ  between the spin magnetic 

moments iS


 and jS
  of the adjacent ferromagnetic atoms is very small, so: 
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If the exchange interaction is zero when all spins are parallel, then the exchange in-
teraction energy when spins are not parallel is expressed as: 

2 2(1 cos )ex ij ijJS JS= − − =  ϕϕε  (5)

Figure 1. Structure schematic diagram of the new power transformer.
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3. The Establishment of the Dual-Phase Magnetic Hysteresis Mathematical Model and
the Research of the Preparation of Material
3.1. Micromagnetic Modeling of Dual-Phase Magnetic Materials

Due to the lack of consideration of magnetic material properties under mechanical
stress conditions in this article, magnetoelasticity is not considered. In the theory of
micromagnetics, when the magnetoelastic property is neglected, the total Gibbs free energy
of any magnet can be expressed as:

Etot = Eex + Ean + Ed + Eap (1)

where Eex is the exchange interaction energy; Ean is magnetocrystalline anisotropy; Ed is
demagnetization energy; and Eap is saimanneng.

(1) Exchange energy

The exchange interaction energy refers to the electrostatic interaction energy between
two adjacent atoms. For substances with strong magnetism, the magnetic moments of
adjacent atoms are orderly arranged due to the existence of the exchange interaction energy.
The pure quantum effect caused by the Coulomb force between atoms is the source of the
exchange coupling of adjacent lattice points. Exchange interaction is a short-range force, so
only the nearest-neighbor interaction is considered. According to Heisenberg’s exchange
theory, the exchange energy between two nearest spin atoms is:

εex = −2Jij
→
Si·
→
Sj (2)

where the i atomic spin angular momentum is
→
Si, the j atomic spin angular momentum is

→
Sj, and Jij is the exchange integral constant.

In addition, it is generally believed that the angle ϕij between the spin magnetic

moments
→
Si and

→
Sj of the adjacent ferromagnetic atoms is very small, so:

→
Si·
→
Sj = S2 cos ϕij ≈ S2(1− 1

2
ϕij

2) (3)

εex = −JS2∑ cosϕjj (4)

If the exchange interaction is zero when all spins are parallel, then the exchange
interaction energy when spins are not parallel is expressed as:

εex = −JS2∑ (1− cos ϕij) = JS∑ ϕ2
ij (5)

ϕij =
∣∣∣→mi −

→
mj

∣∣∣ (6)

where
→
mi and

→
mj is the

→
Sj unit magnetization vector associated with

→
Si,
→
m =

→
M/|Ms|.

→
rij is

used to express the position vector from atom i to atom j.
∣∣∣→mi −

→
mj

∣∣∣ is expanded to the first
term of Taylor series, then: ∣∣∣→mi −

→
mj

∣∣∣=∣∣∣(→rij·∇)
→
m
∣∣∣ (7)

Finally, the exchange density is:

εex = JS2∑
i

∑
ij
[
→
rij·∇

→
m]2 (8)

If the sum is replaced by an integral, the exchange energy density of cubic crystal is:

εex =
1
2

∫
C[(∇mx)

2 + (∇my)
2 + (∇mz)

2]dτ (9)
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where C = 2JS2

a C′, C′α is the lattice constant, and the values are 1, 2, and 4 for simple cubic,
body-centered cubic, and face-centered cubic, respectively. For the dense hexagonal crystal
system, the expression of the above enlightenment energy is also valid. The exchange

energy constant C is expressed as C = 4
√

2JS2

a C′α, where α refers to the distance between
the nearest atoms.

When A = C/2, the total exchange energy can be expressed as:

Eex =
∫

A[(∇mx)
2 + (∇mx)

2 + (∇mx)
2]dV (10)

(2) Zeeman energy

Zeeman energy refers to the energy generated by the magnet under the action of an

external field
→

Hap, expressed as:

Eαp =
∫
Ω

µ0
→
M·

→
HapdV (11)

(3) Magnetocrystalline anisotropy

Anisotropy energy generally includes magnetocrystalline anisotropy, surface anisotropy,
shape anisotropy, and anisotropy energy caused by magnetoelasticity. In general, in
micromagnetic calculations, only magnetocrystalline anisotropy is considered, and it is
introduced in this paper. Magnetic-crystal anisotropy is the energy that varies with the
direction of the magnetization vector. Magnetic crystal anisotropy is usually very small
compared with exchange energy, but the direction of the magnetic moment is determined
by anisotropy. The magnetic anisotropy properties exhibit a symmetry relationship with
the crystal structure of the material. Therefore, based on the crystal symmetry, magnetic
crystal anisotropy can be expressed in a phenomenological form.

For a cubic crystal system, the density of magnetocrystalline anisotropy can be ex-
pressed as follows [26]:

εan = K1(a2
1a2

2 + a2
3a2

2 + a2
1a2

3) + K2a2
1a2

2a2
3 + K3(a2

1a2
2 + a2

3a2
2 + a2

1a2
3)

2
+ · · · (12)

In the above formula, a1, a2, and a3 are the
→
M directional cosine of the saturation

magnetization vector and the rectangular coordinate system; K1, K2, and K3 represent the
anisotropy constants of the magnetic crystal of the cubic crystal system, which represent
the degree of the magnetic crystal anisotropy.

Order: a2 = my, a1 = mx,
→
m =

→
M/Ms, a3 = mz; therefore:

εan = K1(m2
xm2

y + m2
xm2

z + m2
zm2

y) + K2m2
xm2

ymz + · · · (13)

Generally, K2 is smaller than K1, so it can be ignored. For example, for Fe, K1 > 0.
The easily magnetized axis is (100); when K1 < 0, the direction of the easily magnetized

axis is (111), such as Ni (nickel). The density of the magnetocrystalline anisotropy of
uniaxial crystals can be expressed as:

εan = K1 sin2 θ + K2 sin4 θ + · · · (14)

where θ is the included angle between the magnetization vector
→
M and the axis of the

magnetizable axis C. K1 and K2, respectively, represent the corresponding anisotropy
constants of the magnetic crystal, and the above formula can also be expressed as:

εan = K1[1− (
→
e ·→m)

2
] + K2[1− (

→
e ·→m)

2
]
2

(15)
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where
→
e is the unit vector in the direction of the magnetizable axis. When K1 < 0, K1 > 0,

and the easy-magnetized axis is on the base plane. The concept of the anisotropic field is
often used to describe the anisotropic properties of magnetic crystals, which is defined as:

εan = −µ0
→

Han·
→
M (16)

For cubic crystals, the anisotropic field is expressed as:

→
Hαn(100) =

2K1

µ0Ms
(17)

For cubic
→

Hαn(111) = 4K1
3µ0 Ms

crystal, K1 when it is
→
M along the (111) direction, for

uniaxial crystal
→

Hαn = 2(K1+K2)
µ0 Ms

. In most cases, K2 is much smaller than K1, and
→

Hαn = 2K1
µ0 Ms

.
The total magnetocrystalline anisotropy is:

Ean =
∫
Ω

εandV (18)

(4) Demagnetization energy

Demagnetization energy originates from the interaction between classical magnetic
dipoles and contributes to the stable existence of magnetic domains. Demagnetization
energy is also known as static magnetic energy. In comparison, the calculation of demagne-
tization energy is relatively complicated and time-consuming. Solving the demagnetization
problem is crucial in micromagnetism. The demagnetizing field can be calculated by
magnetic scalar potential or magnetic vector potential. This paper simply introduces the
method of magnetic scalar potential. The demagnetization field can be expressed as:

→
Hd(

→
r ) =

1
4π

∫
Ω

→M(
→
r′ )[

3(
→
r −

→
r′ )(

→
r −

→
r′ )∣∣∣∣→r −→r′ ∣∣∣∣5
− 1∣∣∣∣→r −→r′ ∣∣∣∣3

dV′ (19)

Demagnetization energy is expressed as:

Ed = −1
2

∫
Ω

µ0
→
M·
→
HddV (20)

The demagnetization energy is determined by both ∇×
→
Hd = 0 and ∇×

→
B = 0, and:

→
B = µ0(

→
M +

→
Hd) (21)

Because the magnetic field of the vortex is 0, which means the
→
Hd irrotational property,

the magnetic scale potential is introduced:

→
Hd = −∇U (22)

Then, the magnetic scale potential U satisfies the following equation:

∇2Uin = ∇
→
M (23)

∇2Uout = 0 (24)
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According to the boundary conditions of
→
B and

→
Hd:

→
n · (

→
B2 −

→
B1) = 0 (25)

→
n × (

→
Hd2 −

→
Hd1) = 0 (26)

where
→
n is the normal unit vector from medium 1 to medium 2. The boundary conditions

of U are: {
Uin = Uout
∂Uin
∂n −

∂Uout
∂n =

→
M ·→n

(27)

where
→
n is the normal unit vector from the inside of the magnet to the outside of the magnet.

In addition, when r → ∞ , |rU| and
∣∣r2∇U

∣∣ are limited. According to the uniqueness
theorem, the U solution satisfying the above equations and boundary conditions is unique,

and the general solution of
→
Hd and U can be obtained as follows:

→
Hd(

→
r ) = − 1

4π

∫
Ω

(
→
r −

→
r′ )∇·

→
M(
→
r′ )∣∣∣∣→r −→r′ ∣∣∣∣3

dV′ +
1

4π

∫
∂Ω

(
→
r −

→
r′ )
→
n ·
→
M(
→
r′ )∣∣∣∣→r −→r′ ∣∣∣∣3

dS′ (28)

U(
→
r ) = − 1

4π

∫
Ω

∇·
→
M(
→
r′ )∣∣∣∣→r −→r′ ∣∣∣∣3

dV′ +
1

4π

∫
∂Ω

→
n ·
→
M(
→
r′ )∣∣∣∣→r −→r′ ∣∣∣∣3

dS′ (29)

Due to the surface magnetic charge σm = −→n ·
→
M(
→
r ) and magnetic charge volume

ρm = −→n ·
→
M(
→
r ), the demagnetization field and magnetic scalar potential are expressed

as follows:

→
Hd = − 1

4π

∫
Ω

(
→
r −

→
r′ )ρm(

→
r′ )∣∣∣∣→r −→r′ ∣∣∣∣3

dV′ +
1

4π

∫
∂Ω

(
→
r −

→
r′ )σm(

→
r′ )∣∣∣∣→r −→r′ ∣∣∣∣3

dS′ (30)

U(
→
r ) = − 1

4π

∫
Ω

ρm(
→
r′ )∣∣∣∣→r −→r′ ∣∣∣∣3

dV′ +
1

4π

∫
∂Ω

σm(
→
r′ )∣∣∣∣→r −→r′ ∣∣∣∣3

dS′ (31)

From (30)–(31), the demagnetization field is the combination of the demagnetization
field resulting from the surface magnetic charge and the body magnetic charge. Demagne-
tization energy can also be expressed as:

Ed =
1
2

µ0

∫
Ω

ρm

(→
r
)

U
(→

r
)

dV +
1
2

µ0

∫
∂Ω

σm

(→
r
)

U
(→

r
)

dS (32)

Equation (32) is the expression of demagnetization field and demagnetization energy,
but it is difficult to complete such a large amount of calculation on an ordinarily configured
computer. In view of this, researchers have adopted other acceleration methods to solve
this problem, mainly the Hierarchical Calculation method and the Fast Fourier Transform
method, which greatly improve the calculational speed.

3.2. Static and Dynamic Methods

(1) Static calculation method
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When the Gibbs free energy of the magnet is taken as a minimum, the equilibrium
distribution of the magnetization vector can be obtained. The static micromagnetics calcu-
lation is based on the equilibrium condition of taking the minimum value from Etot or the
condition that Etot’s variation is 0, and the Brown equation can be obtained:

→
m×

[
2A ∂

→
m

∂
→
n
+ Ks

(→
n ·→m

)→
n
]
= 0

→
m×

[
2A∇2→m + µ0Ms

(
Hop + Hd

)
− ∂

→
ωan

∂
→
m

]
= 0

(33)

When surface anisotropy is ignored, the boundary condition can be expressed as:

∂
→
m

∂
→
n

=
→
n · (∇→m) = 0 (34)

where the concept of effective field
→

He f f is cited. Field effectiveness
→

He f f is described as
the variation in free energy, which provides the actual moment acting on the magnetiza-
tion vector.

He f f = − 1
µ0 Ms

∂Etot

∂
→
m

= − 1
µ0 Ms

∂Eex

∂
→
m
− 1

µ0 Ms
∂Ean

∂
→
m
− 1

µ0 Ms

∂Eap

∂
→
m
− 1

µ0 Ms

∂Ed

∂
→
m

=
→

Hex +
→

Hap +
→
Hd +

→
Han

(35)

Brown’s equation is written as:

µ0Ms
→
m×

→
He f f = 0 (36)

When the energy is very small, the directions of
→

He f f and
→
m in the corresponding

magnet are the same everywhere. The static micromagnetics calculation directly mini-
mizes the energy according to the above principle, thus obtaining the distribution of the
magnetization vector in the equilibrium state.

(2) Dynamic calculation method

The expression of the total free energy of the magnet is written as (37):

Etot = Eex + Ed + Ean + EH (37)

When the system is under a changing external field, the dynamic equation of the
magnetic moment must be considered, which follows the Landau–Lifshitz–Gilbert (LLG)
dynamic equation:

dM
dt

= − ω

1 + a2 M× He f f −
aω

(1 + a2)Ms
M× (M× He f f ) (38)

where M is the magnetization vector, α is the damping coefficient, ω is the rotational

magnetic ratio, and the effective field
→

He f f is defined as the variation in free energy,
→

He f f = − 1
µ0

∂Etot

∂
→
M

, which provides the actual torque acting on the magnetization vector.

A small change in each magnetic moment in the system will cause a change in the
energy state of the whole system. In other words, the dynamic equation of each magnetic
moment is closely related, so the system will get the minimum energy, which is also the
criterion for whether the calculation can be terminated. The boundary condition of the
dynamic equation is the same as the static boundary condition, that is, when surface
anisotropy is ignored, and the boundary condition is:

∂
→
m

∂n
= 0 (39)
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The dynamic micromagnetic calculation solves the above Gilbert or Landau–Lifshitz
dynamic equation and then obtains the image of the magnetization vector moving with time.

3.3. Hysteresis Characteristics of Nanocomposite Magnetic Materials

This paper is based on the theory of micromagnetism, employing a three-dimensional
dynamic model, and the dynamic calculation method of micromagnetism is used to cal-
culate Nd2Fe14B/α-Fe/Nd2Fe14B on the OOMMF 2.0 (beta) software platform. The mag-
netization process of Nd2Fe14B exchange-coupled magnetic three-layer film is simulated,
and the hysteresis loops of nano-phase composite Nd2Fe14B three-layer film under differ-
ent soft magnetic layer thickness and the relationship curve between soft magnetic layer
thickness and coercivity are calculated. The three-layer film model is shown in Figure 2.
n1 represents the thickness of the rigid magnetic stratum, n2 represents the thickness of
the soft magnetic layer, and l1 and l2, respectively, represent the width and length of the
three-layer film model.
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Figure 2. Calculation model of nanometer dual-phase three-layer film.

In the model calculated in this paper l1 = l2 = 300 nm, along the Z-axis, the external
magnetic field is directed. The length and width of the split unit are 10 nm, and the height
is 1 nm. The calculation parameters of the nano-phase composite Nd2Fe14B three-layer film
are shown in Table 1.

Table 1. Parameters of nano-phase composite Nd2Fe14B three-layer film.

Item
Saturated

Magnetization
(kA/m)

Anisotropic
Constant
(MJ/m3)

Exchange Coupling
Constant (J/m)

Hard magnetic layer 1288 4.3 7.7 × 10−12

Soft magnetosphere 1720 0.046 2.5 × 10−11

In this paper, when the hard magnetic layer is 5 nm thick, the calculation of the soft
magnetic layer is in the range of 1 nm to 20 nm, and the hysteresis loops under different
soft magnetic layer thicknesses are obtained, as shown in Figure 3. The relationship curve
between the coercivity and the soft magnetic layer thickness is obtained, as shown in
Figure 4.

The relationship between the microscopic parameters and the macroscopic magnetic
properties of the nanocomposite magnetic materials was established by using the micro-
magnetic theory and the OOMMF software platform to calculate the hysteresis properties
of the nanocomposite magnetic materials. In this project, the microscopic parameters of
the nanocomposite magnetic materials closest to the magnetic properties can be obtained
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according to the requirements of the material properties, which can be used to determine
the preparation of the materials.
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3.4. Research of the Influence of Element Composition and Heat Treatment Craft on the Dual-Phase
Magnetic Material

Based on the above analysis, the remanence, coercivity, and hysteresis loop are defined.
In order to manufacture the dual-phase magnetic material, the influence of elements and
heat treatment craft to the dual-phase magnetic material are discussed below.

(1) Influence of Element Composition on the Dual-phase Magnetic Material

The chemical formula for the dual-phase magnetic material is Fe-12Co-24Cr. The
influence of the contents of the element on the dual-phase magnetic material is significant.
A higher content of Co alloy leads to better magnetic performance. However, its workability
is poor. If the content of the Co alloy is low, its workability is good, but the craft is complex
and difficult to control. The adjustment range of the magnetic parameter will be narrow.
The content fluctuation of the Cr will affect the coercivity of the material. Studies have
shown that if the fluctuation of Cr is 3%, the fluctuation of coercivity will be 40%.

(2) Influence of Heat Treatment Craft on the Dual-phase Magnetic Material

The heat treatment craft is closely related to the magnetic performance of the material.
Temperature control has a significant impact on both the strong magnetic phase and the
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weak magnetic phase. Based on a large number of experiments, the five-rank tempering
craft was adopted. The implementation process is listed as follows:

620 ◦C × 1 h + 610 ◦C × 1 h + 590 ◦C × 2 h + 570 ◦C × 3 h + 560 ◦C ×3 h.

(3) Preparation of the Dual-phase Magnetic Material

Based on the above analysis, the dual-phase magnetic material can be prepared.
Figure 5 shows the sample of the dual-phase magnetic material.
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4. Structure Design of the New Power Transformer

According to the latest research results on dual-phase magnetic material, a more
reasonable solution is to utilize the materials on both sides of the new power transformer
adjacent to the column in order to achieve DC bias compensation. The equivalent magnetic
circuit of the new power transformer was analyzed based on the reluctance theory under
the condition of the DC magnetic potential, and the AC magnetic potential was considered,
respectively. Figure 6 shows the structure of the new transformer.
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The equivalent magnetic circuit of the new power transformer is shown in Figure 7.
(IN)AC represents the AC potential, (IN)DC represents the DC potential, and (IN)Magnet
represents the compensation magnetic potential.
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Figure 7. Equivalent magnetic circuit model.

Figure 8 shows the equivalent magnetic circuit of the new power transformer under
the condition of considering the DC flux only. Equation (40) can be obtained based on
Kirchhoff’s voltage and current laws.

(IN)DC = φ1[Rc + (Rc + Rg1)//Rg2]
(IN)Magnet = φ2

[
Rg2+(Rc + Rg1)//Rc

]
φ1 + φ2 + φ3 = 0

(40)

where Rc is the reluctance of the silicon steel, and φ1 and φ3 are the DC flux. The DC flux
is not expected to flow to the adjacent column, so φ2 is set to zero. Rg1 and Rg2 can be
obtained. That is to say, the gap can be obtained.
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Figure 8. Equivalent magnetic circuit model considering DC flux only.

Figure 9 shows the equivalent magnetic circuit of the new power transformer under
the condition of considering the AC flux only. Equation (41) can be obtained based on
Kirchhoff’s voltage and current laws.

(IN)AC = φ4[Rc+(Rc + Rg1)//Rg2]
φ5Rg2 = φ6(Rc + Rg1)
φ4 + φ5 + φ6 = 0

(41)

where Rc is the reluctance of the silicon steel, and φ5 and φ6 are the AC flux. The AC flux is
not expected to flow the dual-phase magnetic material, so φ4 is set to zero. Rg1 and Rg2 can
be obtained. That is to say, the gap can be obtained. According to (40) and (41), the gap
length of the 220 V/110 V/2 kVA new transformer is shown in Table 2. Figure 10 shows
the prepared model.
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Table 2. Types sizes of the new transformer.
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Figure 10. Prototype of the new transformer.

5. Simulation and Experimental Study on the New Transformer with the DC Bias
Compensation Function

In Section 4, the design of the transformer was carried out. This section will carry out
simulation research on the transformer.

5.1. Simulation of the New Transformer with the DC Bias Compensation Function

Figure 11 shows the magnetic field distribution of the new transformer without
DC bias.

Figure 12 shows the magnetic field distribution of the new transformer when the DC
bias is 0.3 A. When the DC bias is 0.3 A, the magnetic density of the positive half cycle and
the negative half cycle is not equal. The magnetic density of the positive half-cycle is about
1.3 T, and the magnetic density of the negative half-cycle is about 0.85 T.
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Figure 11. Magnetic field distribution of the new transformer without DC bias: (a) positive half-cycle
and (b) negative half-cycle.
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Figure 12. Magnetic field distribution of the new transformer when the DC bias is 0.3 A: (a) positive
half-cycle and (b) negative half-cycle.

Figure 13 shows the magnetic field distribution of the new transformer after compen-
sation when the DC bias is 0.3 A. After compensation, the magnetic densities of the positive
half-cycle and the negative half-cycle are close to each other. The magnetic density of the
positive half-cycle is about 1.21 T, and the magnetic density of the negative half-cycle is
about 0.86 T.
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Figure 13. Magnetic field distribution of the new transformer after compensation when the DC bias
is 0.3 A: (a) positive half-cycle and (b) negative half-cycle.

Figure 14 shows the magnetic field distribution of the new transformer when the DC
bias is 0.6 A. When the DC bias is 0.6 A, the magnetic densities of the positive half-cycle
and the negative half-cycle are not equal. The magnetic density of the positive half-cycle is
about 1.38 T, and the magnetic density of the negative half-cycle is about 0.79 T.
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Figure 15 shows the magnetic field distribution of the new transformer after compen-
sation when the DC bias is 0.6 A. After compensation, the magnetic density of the positive
half-cycle is about 1.32 T, and about 0.83 T in the negative half-cycle.
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5.2. Experiment Simulation of the New Transformer with the DC Bias Compensation Function

The experimental site and experimental circuit diagram are shown in Figure 16.
Figure 17 is the excitation current waveform before and after the new transformer

compensation when the bias current is 0.3 A. Figure 18 shows the excitation current
waveform before and after the compensation of the new transformer when the bias current
is 0.6 A.

The analysis indicates that the new transformer demonstrates effective compensation
for bias current. When the DC bias phenomenon occurs, the positive peak of the excitation
current increases, the negative peak decreases, and the working point of the transformer
exciting current increases. When the bias current is compensated, the positive peak of the
excitation current decreases and the negative peak increases. This compensation mechanism
significantly contributes to addressing transformer faults caused by DC bias, aligning with
the system design requirements.



Energies 2024, 17, 1354 16 of 19

Energies 2024, 17, x FOR PEER REVIEW  18  of  21 
 

 

 

 

 
(a)   

 
(b)   

Figure 16. The experimental site and experimental circuit diagram: (a) experimental site and (b) 

experimental circuit diagram. 

Figure 17  is the excitation current waveform before and after the new transformer 

compensation when the bias current is 0.3 A. Figure 18 shows the excitation current wave-

form before and after the compensation of the new transformer when the bias current is 

0.6 A. 

Figure 16. The experimental site and experimental circuit diagram: (a) experimental site and (b) ex-
perimental circuit diagram.



Energies 2024, 17, 1354 17 of 19

Energies 2024, 17, x FOR PEER REVIEW 18 of 21 
 

 

 
(b)  

Figure 16. The experimental site and experimental circuit diagram: (a) experimental site and (b) 
experimental circuit diagram. 

Figure 17 is the excitation current waveform before and after the new transformer 
compensation when the bias current is 0.3 A. Figure 18 shows the excitation current wave-
form before and after the compensation of the new transformer when the bias current is 
0.6 A. 

 
Figure 17. The excitation current waveform before and after the new transformer compensation 
when the bias current is 0.3 A. 

 
Figure 18. The excitation current waveform before and after the new transformer compensation 
when the bias current is 0.6 A. 

Figure 17. The excitation current waveform before and after the new transformer compensation
when the bias current is 0.3 A.

Energies 2024, 17, x FOR PEER REVIEW 18 of 21 
 

 

 
(b)  

Figure 16. The experimental site and experimental circuit diagram: (a) experimental site and (b) 
experimental circuit diagram. 

Figure 17 is the excitation current waveform before and after the new transformer 
compensation when the bias current is 0.3 A. Figure 18 shows the excitation current wave-
form before and after the compensation of the new transformer when the bias current is 
0.6 A. 

 
Figure 17. The excitation current waveform before and after the new transformer compensation 
when the bias current is 0.3 A. 

 
Figure 18. The excitation current waveform before and after the new transformer compensation 
when the bias current is 0.6 A. 
Figure 18. The excitation current waveform before and after the new transformer compensation
when the bias current is 0.6 A.

6. Conclusions

Based on the dual-phase hysteresis mathematical model, preparation, structure, and
electromagnetic design of dual-phase magnetic materials, and simulation and experiments,
a new type of transformer was designed and analyzed in detail. The conclusions are
as follows:

(1) Based on the theory of micromagnetism, a hysteresis model of nano dual-phase com-
posite magnetic materials was established using the OOMMF software platform and
the micromagnetic simulation dynamic calculation method. The hysteresis loops of
nano dual-phase composite magnetic materials under different soft magnetic layer
thicknesses were calculated, and the relationship between soft magnetic layer thick-
ness and coercivity was obtained.

(2) The structure of the transformer was designed and used for simulation verification.
The simulation results show that when DC bias occurs, almost all of the compensating
magnetic flux of the compensating iron core passes through the main magnetic circuit
of the transformer, canceling out the DC magnetic flux in the main magnetic circuit
and achieving the goal of eliminating DC bias, and the working magnetic flux of the
transformer does not demagnetize the compensating iron core. When there is no DC
bias, the compensating iron core has no residual magnetism, and the magnetic circuit
of the compensating iron core does not affect the normal operation of the transformer.
This proves the feasibility of the voltage regulator structure.
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(3) A 2 kVA power transformer prototype was developed, and experiments were con-
ducted on the prototype. The experimental results show that under different DC
bias conditions, after compensating for DC bias, the excitation current waveform of
the transformer tends to be symmetrical. The positive peak value decreases and the
negative peak value increases. The positive half-cycle magnetic flux density decreases,
the iron core returns to an unsaturated state, and the negative half-cycle magnetic
flux density increases, proving the suppression effect of the power transformer on
DC bias.

The simulation and experimental results prove that the structure of the power trans-
former is reasonable, the DC bias suppression method is feasible, and it has a good suppres-
sion effect on DC bias. It realizes the automatic suppression of DC bias by the transformer
itself, contributing to further research and solution of DC bias problems.
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