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Abstract: Microbial fuel cells and their related microfluidic systems have emerged as promising
greener energy alternatives for the exploitation of avenues related to combined power and wastewater
treatment operations. Moreover, the potential for their application in biosensing technology is large.
However, while the fundamental principles of science that govern the design and operation of
microbial fuel cells (MFCs) and microfluidic microbial fuel cells (MMFCs) are similar to those
found in colloid science, the literature shows that current research lacks sufficient reference to the
electrostatic and electrokinetic aspects, focusing mostly on aspects related to the architecture, design,
anodes, microbial growth and metabolism, and electron transfer mechanisms. In this regard, research
is yet to consider MFCs and MMFCs in the context of electrostatic and electrokinetic aspects. In
this extensive review, we show, for the first time, the interrelationship of MFCs and MMFCs with
electric double layer theory. Consequently, we show how the analytical solution to the mean field
Poisson–Boltzmann theory relates to these systems. Moreover, we show the interrelationship between
MFC and MMFCs’ performance and the electric double layer and the associated electrostatic and
electrokinetic phenomena. This extensive review will likely motivate research in this direction.

Keywords: microbial fuel cell; electric double layer; membraneless; electron transfer; anolyte; catholyte

1. Introduction

Miniaturization technology has paved the way for the integration of sensors that can
monitor and translate observed conditions, such as light levels, acceleration, pressure,
or temperature, into a signal at the micro level. The signal can then be transmitted and
processed through a system or stored as data [1]. Motivated by this technology, MFCs can
be classified by their device size as macro, meso, and micro [2]. In this regard, a microfluidic
microbial fuel cell (MFC) is defined as a miniaturized MFC with a total cell volume in the
range of 1–200 µL [3]. For such systems, a membraneless microfluidic microbial fuel cell,
evolving from a microfluidic microbial fuel cell (MMFC), utilizes colaminar flow to separate
anolyte and catholyte streams based on a chosen electrode system. The colaminar flow [4]
of the two streams inside the microfluidic channel is the impetus for the enhanced diffu-
sion and transfer of protons from the anode to the cathode. In the microfluidic literature,
several studies have been conducted to advance knowledge of its design, construction, and
performance. For instance, Ye et al. (2013) [4] have demonstrated that the membraneless
MMFC (MMMFC) performance initially increases and then decreases with an increasing
influent chemical oxygen demand concentration and anolyte flow rate, while reporting a
peak power density of ±618 mWm−2. The highest-performing membraneless microfluidic
microbial fuel cell (MFC) to date has been presented by Amirdehi et al. (2020) [5]. The
system consists of a strictly anaerobic environment and robust graphite electrodes with op-
timized placement that prevents cross-contamination between electrode compartments [5].
Uria et al. (2017) [6] found that direct electron transfer MFCs showed the best performance,
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while concluding that biofilms are the major contributors to current production in such
systems. The work of Rizvandi and Yesilyurt (2019) [7] considers aspects of hydrodynamics
based on the classical Navier–Stokes equation, mass transfer formulations based on Fick’s
law [8], and the kinetics of oxidation at the anode.

The literature shows that there are at least 20 different membranes or separators
that have been proposed and evaluated for MFCs, based on concepts ranging from salt
bridges to advanced synthetic polymer-based membranes [9]. In this regard, Ramirez-Nava
et al. (2021) [10] have carried out a critical review of the state-of-the-art membranes and
separators used in MFCs, covering such areas as membrane functions in MFCs, the most
used membranes, membranes’ cost and efficiency, and membraneless MFCs. For MMMFCs,
which use an anolyte and catholyte in the microfluidic channel to enhance the performance,
the existence of the electric double layer is important, where pH-dependent surface charging
is applicable. In this regard, the electric double layer is a region existing at the interface
between an aqueous medium and a solid surface that is assumed to consist of two oppositely
charged layers, such as a layer of negative ions adsorbed on colloidal particles that attracts
a layer of positive ions in the surrounding electrolytic solution. Moreover, organic matter
on which electroactive bacteria rely on for metabolism in such systems can be found in
wastewater fuel carriers. Therefore, the hydrodynamics of these channels will be controlled
by the electric double layer. To the best of our knowledge, no extensive review has so far
been devoted to the relationship between the electric double layer and the hydrodynamics
of MFCs. Herein, we have reviewed extensively the theoretical foundations of the electric
double layer, and we have shown their interrelationships with MFCs. Saline wastewaters
are generated by various industries, including the chemical, pharmaceutical, agricultural,
and aquacultural industries [11–14]. Therefore, for the application of saline wastewater fuel
carriers in MFC systems, the use of the Debye–Huckle approximation [11] of the mean field
Poisson–Boltzmann equation is possible. Our theoretical review is based on the analytical
solution of the linearized approximation of the Poisson–Boltzmann equation [15–18]. To
account for the electroviscous effect in the hydrodynamics associated with the electric
double layer, the analytical solution to the classical Navier–Stokes equation with the electric
body force is also considered. Moreover, considering the role of fibrous microfluidic
systems in microfluidic devices, we have extended the analytical solution to the case
wherein the anolyte and catholyte channels of an MMMFC are fibrous. We have also
discussed the relationship between the theoretical foundation and MMMFC performance
related to the total flow rate, the pH of wastewater fuel carriers, and the electrostatics based
on surface charge density and potential models. Consequently, the significance of our
extensive review work lies in the intimate relationship between MFCs and the fundamental
theory underlying the electric double layer theory as found in the colloidal sciences [19–21].
Moreover, with this intimate relationship, it can be hypothesized that, considering the
environmental chemistry of organically loaded aqueous solutions, such as wastewater
that is characterized by a specific pH and salinity, the hydrodynamics of MMFCs will be
governed by the electric double layer as found in unrelated microfluid systems. Our review
sheds light on this interrelationship.

2. Review Background
2.1. Microbial Fuel Cells
2.1.1. Architecture

A microbial fuel cell (MFC) is a type of biochemical system wherein electroactive
bacteria, acting as a biocatalyst, convert the chemical energy stored in organic matter into
electrical energy [22,23]. The bioelectrochemical processes involve the microbial oxidation
of organic matter (electron donor) in an anodic chamber and electron acceptance in a
cathodic chamber [24]. In this process, the anode stream can contain various types of waste
(like food waste, soil and sediments, household waste, agricultural waste streams, and
municipal wastewater streams) that can be used as a substrate [25,26]. Figure 1 shows a
typical schematic of a microbial fuel cell, while Figure 2 shows the feasibility of a microbial
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fuel cell using mammalian urine as an energy stream for the bioelectrochemical process.
In Figure 1, the protons released from microbial metabolic processes are transferred to the
electron acceptor via a proton exchange membrane, while electrons are conducted through
the anodic conductor to the cathode through an external circuit.
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Akin to conventional chemical fuel cells, the anode and cathode electrodes are fun-
damental components of MFCs. For their successful integration into the system, biocom-
patibility, electron conductivity, porosity, low-cost design, recyclability, and scalability are
the fundamental requirements. Moreover, a high specific surface area, corrosion resistance,
and high mechanical strength are additional requirements [29].

The literature shows that the suitability of several electrode materials has been tested to
date [29–32]. In line with the objective of achieving cost-effectiveness and sustainability in
microbial fuel cell design and energy production, nickel, stainless steel, brass, and graphite
have been used to explore energy production in double-chamber microbial fuel cells
(Hamed et al., 2020) [32]. The mentioned study reported the differences in performance
for each electrode material, with nickel and graphite giving the highest efficiency. In
these systems, yeast and glucose were used as the microbes and substrate, respectively.
Moreover, carbon cloth, carbon paper, carbon felt, and purpose-built advanced materials,
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such as dimensional carbon-based and metal–carbon composite materials, have also been
reported [29].

2.1.2. Membraneless Microfluidic Microbial Fuel Cells (MMMFCs)

In medicine, the miniaturization of medical devices offers several benefits to the pa-
tient, as miniaturized devices facilitate less invasive procedural techniques and, therefore,
reduced trauma during medical procedures involving surgery and other minor proce-
dures. For instance, miniaturization provides the opportunity for the design and testing
of swallowable cameras [16]. In material science engineering, miniaturized sensors play
a significant role in the domain of nanotechnology, where size-controlled nanomaterials
have become suitable for sensing, providing excellent properties, such as superior electro-
chemical, photonic, and magnetic qualities [33]. Methyl salicylate (MeSal) is an organic
compound known to be produced in crops under stressful growing conditions, which can
be indicative of early plant diseases [34–36]. Its presence has been conventionally detected
based on methods that require bulky and costly equipment, notably gas chromatography
or mass spectrometry [37]. Currently, the most promising concepts used in MeSal deter-
mination include sensors based on electrochemical and conductometric principles [38].
Therefore, miniaturized devices are potential candidates for sensors, and the application
of microfluidic devices is attractive due to their possible link to electrochemistry. Conse-
quently, given the urgent need for miniaturization in microelectronic technology for use in
areas related to sensors, medical implants, and other lab-on-chip devices, MMFCs have
emerged as attractive solutions [39,40].

Membranes, used as separators in MFCs, are the primary requirement for optimal
electrochemical and microbiological performance in such systems [9]. However, membrane
drying, fuel crossover, fuel cell flooding, and anode catalyst poisoning are some of the
problems associated with membrane-aided MFCs, which have been identified using electro-
chemical impedance spectroscopy (EIS) [41]. In addition, in fuel cells, there are two types
of power loss: one is dominated by the electrical resistance between the electrodes, which
is called leak resistance, and the other is dominated by mass diffusion between the anode
and cathode, called crossover, which occurs via membranes. To optimize the performance,
a microfluidic microbial fuel cell was designed to maximize the surface-to-volume ratios
and minimize the internal resistance, leading to improved use via greener energy options.
Therefore, microfluidic microbial fuel cells have emerged as attractive options [39,42–44].
Such devices are characterized by the laminar flow of fuel and oxidant streams, which
eradicates the use of membranes for proton diffusion. These membraneless microfluidic
devices have found uses in wastewater treatment [45] and electricity generation [46], and
the modeling of a membraneless single-chamber microbial fuel cell with molasses as an
energy source has been described by Sirinutsomboon [47]. Wang and Su (2013) [48] have
also reported a membraneless microfluidic microbial fuel cell for the rapid detection of
the electrochemical activity of microorganisms. They demonstrated experimentally that a
membraneless MMFC was capable of identifying the electric potential resulting from the
imbalanced compositions between two streams and from the electrochemical activity of
microbial biofilms. Figure 3 shows a Y-shaped version of this.

2.1.3. Microbial Cell Metabolism Reactions

In MFCs, organic substrates, such as acetate and glucose, are oxidized to produce elec-
trons, which travel through an external circuit to generate power. The bioelectrochemical
process produces an electromotive force (EMF) that can be theoretically represented as [50]

Eem f = Ecathode − Eanade − η (1)

In Equation (1), Eem f is the emf, Ecathode is the half-cell potential of the cathode, Eanade
is the half-cell potential of the anode, and η is the loss term involving dominant losses,
activation losses, and mass transfer losses.
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Anode reaction

C6H12O6 + 6H2 → 6CO2 + 24H+ + 24e− (2)

Cathode reaction
6O2 + 24H+ + 24e− → 12H2O (3)

The Nernst equation for a half-cell reaction gives

Ehal f cell = E0 −
RT
nF

lnQ (4)
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In Equation (4), E0 is the standard half-cell potential, R is the universal gas constant, T
is the absolute temperature, Q is the equilibrium constant, and ln is the natural logarithm.
Consequently, the thermodynamic feasibility of the bioelectrochemical generation of power
can be calculated as [52]

∆G = −nFEem f (5)

In Equation (5), ∆G is the change in free energy following the bioelectrochemical
reaction, n is the number or electrons transferred, and F is Faraday’s constant. Eem f is
defined in Equation (1).

Consequently, bioelectrochemical power generation will be feasible subject to Equation (5).

2.1.4. Electron Transfer Reaction

A bioelectrochemical system is highly integral and coordinated, where microbes and
electrodes work in concert to generate an electric current. In biotechnology-based synthesis,
extracellular electron transfer in microorganisms has been extensively exploited, where
microbes can catalyze both anodic and cathodic biochemical reactions [53]. In microbial fuel
cell technology, electron transfer from the anode to the cathode is critical to the realization
of biologically mediated electrical power generation, and several mechanisms of such
electron transfer have been reported, involving two major genera of bacteria known for
their abilities, namely Geobacter and Shewanella [54–56]. The extracellular transport of
electrons to electrodes takes place in three different ways as follows.

Extracellular electron transfer (EET) is a mechanism through which microorganisms
obtain energy for growth and maintenance from their surroundings/substrate and trans-
fer the resulting metabolically generated electrons to the anode to generate electrical
power [57]. The transfer mechanism can either be direct, via conductive pili or nanowires,
or mediated transfer that involves either naturally secreted redox mediators like flavins
and pyocyanins or artificially added mediators like methylene blue and neutral red [58,59].
Most importantly, the electron transfer efficiency is controlled by the redox potential and
microbial oxidative metabolism responsible for electron generation [60–62]. Direct electron
transfer is associated with the Shewanella and Geobacter species, where electrons are
directly transferred to the electrode surface; the transfer is possible because of the outer
membrane cytochrome (C-type), which enhances the electron transfer from NADH [63].
This mechanism involves a few genera of bacteria, such as Shewanella and Pseudomonas.
These electrogenic bacteria secrete some chemical species, such as flavins, called shuttle
molecules, to enhance the electron transfer from the outer membrane of the bacteria to the
electrodes [64,65]. In electron transfer via nanowires, Geobacter genera and, very recently,
Shewanella have demonstrated their abilities to use their conductive appendages in an
electron transfer mechanism outside the cell [66–68]. These microbial structures involve
cellular outgrowth, known as nanowires, with reported conductivity that is much higher
than that of synthetic metallic nanostructures [69,70].

2.1.5. Kinetics

Assuming that the cathode has a layer of polytetrafluoroethylene (PTFE), which is
permeable to oxygen but not water, Fick’s law of diffusion governs oxygen diffusion as [71]

∂

∂t
[O2]PTFE = DO2,PTFE

∂

∂y2 [O2]PTFE (6)

In Equation (5), [O2]PTFE is the concentration of oxygen in the PTFE layer [mmol dm−3],
DO2,PTFE is the diffusion coefficient of oxygen in the layer [µm2 min−1], and y is the
diffusion distance in PTFE [µm].
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The rate at which oxygen is reduced at the anode is assumed to follow the Monod and
Butler–Volmer equation as [71,72]

rO2 = kO2
[O2]cat/liq

KO2 + [O2]cat/liq
exp
[
(1 − αcat)γe−/O2

F
RT

(
Ecat − E0

cat

)]
(7)

In Equation (7), rO2 is the rate of oxygen reduction per area [mmol dm−2], kO2 is the
rate of oxygen reduction per area [mmol dm−2 min−1], [O2]cat/liq is the concentration of
oxygen at the cathode–liquid interface [mmol dm−3], αcat is the electron transfer coefficient
of the anode [-], γe−/O2 is the electron transfer equivalence of oxygen [mmol electron mmol-
oxygen−1], F is Faraday’s constant [Cmol−1], R is the universal gas constant [Jmol−1K−1], T
is the absolute temperature [K], Ecat is the cathode voltage [V], and E0

cat is the standard
cathode voltage [V].

The reduction is assumed to occur at the cathode–liquid interface.
Using the Nernst equation, the cathode voltage is calculated as [73]

Ecat = E0
cat −

RT
γe−/O2F

ln

(
1

[O2]cat/liq

[
H+
]4

cat/liq

)
(8)

In Equation (8), [H+]
4
cat/liq is the concentration of hydrogen ions at the cathode–

liquid interface.

2.2. Fibrous Microfluidic Systems
Current State of Research

Microfluidic technologies are based on processing and manipulating small amounts
of fluids in channels with dimensions of tens to hundreds of micrometers [74]. In the
design of microfluidic systems, poly(dimethylsiloxane) (PDMS) has been widely used.
However, considering that it is highly hydrophobic, limitations and difficulties arise in
flow startup among parallel microchannels, which can lead to permanent idleness and
partially filled channels. In such systems, capillary pressure arising from bubbles, sim-
ilar to the Jamin effect and spanning the cross-section of the microchannel, is the major
force for flow blockage. The threshold flow rate necessary for uniform flow initiation in
parallel microchannels can be determined by balancing the maximum capillary pressure
and the hydrodynamic pressure drop [75,76]. At the micro and nano scales, fluids behave
differently due to the different major forces present, and the material selection, design, and
process have the potential to work together to impact the microfluidic behavior. Conse-
quently, flow control in microchannels has been achieved by systematically integrating
systems in the design, material selection, and operational conditions [77]. To mitigate
the hydrodynamic problem, filling microchannels with porous fibrous matrices has been
found to increase the hydrodynamic pressure drop and thus allow uniform flow startup,
using appropriately low threshold flow rates. Moreover, Wen and Yang’s (2010) research
work has provided an effective method of ensuring uniform flow initiation, using fibrous
matrices in microchannels [76].

Freshwater resources directly available to humans account for only 2.7% of the global
water resources, with the remainder accounting for salty or brackish water bodies. The
problem is aggravated by the fact that freshwater resources are extremely uneven, causing
serious shortages in many countries and regions [78–80]. The unitization of solar energy
for the evaporation of seawater or sewage to improve the water quality has been proven
to be an environmentally friendly and sustainable water treatment technology. However,
there are still many challenges for efficient solar vapor generation, which include a lack of
free floating, low water transfer rates, low energy efficiency, serious salt precipitation, and
a short service life (Mei et al., 2020) [81]. In this regard, Mei et al. (2020) [81] employed pho-
tothermal conversion nanofibrous aerogels with vertically aligned microchannels, which,
due to the orderly framework structure and good hydrophilicity, showed excellent un-
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derwater compressive fatigue durability and a higher water transfer rate. Moreover, the
surface temperature of the system could be raised from 28 to 94 ◦C in air, after being solar
irradiated for 30 s.

Microfluidic mixing techniques are versatile and facile alternatives to improve the
reproducible production of pharmaceutics on one hand and to mimic a complex cellular
microenvironment on the other in biological systems [36]. In such systems, mixing can
be active and passive based on the operational mechanism, where external forces can be
utilized to perform the active mixing of fluids in the microdomain. Moreover, the mixing
of fluids in such microfluidic systems can be difficult because of the lamina-dominated
flow regime, causing diffusive mixing to predominate [82]. Microfluidic platforms have
been explored to manipulate cells and particles in biological systems for the distribution of
chemical and biological species. In DNA research [83], numerous biochemical assays in
multiplex systems and microarrays require the reagents/samples to be carried in contact
with the functionalized surface for proper wells. In addition, based on this platform,
chemical species can be separated physically from a multispecies mixture to analyze each
component of the mixer, and the individual species can be purified (Vicente et al., 2020) [84].
In the research work of Choi et al. (2023) [85], a new type of microfluidic bioreactor
with fibrous micromixers for ingredient mixing and a long macrochannel for the in vitro
transcription reaction was successfully fabricated for the continuous production of mRNA.
The diameter of the fibrous microchannels in the micromixers was tuned by using an
electrospun microfibrous disc with different microfiber diameters. The research work
demonstrated that the continuous reaction in the microfluidic bioreactor with efficient
mixing performance could serve as a powerful platform for various microfluidic reactions,
with mixing efficiency of 95% (see Figure 5).
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The advent of microstructure fibers with µ-channels brings the possibility of in-fiber-
integrated microfluidic devices, and microstructure fibers with µ-channels provide the
possibility of creating new online monitoring systems. In this regard, Zhang et al. (2022) [86]
have developed a novel compact in-fiber detection platform, which has been combined with
a µ-channel in a new type of microstructure fiber, a side-hole fiber, for in-fiber detection.
The optical component of the proposed in-fiber detection device is composed of a simple
cross-axial open-cavity Fabry–Perot interferometer. The proposed device demonstrates the
benefits of a simple structure, easy fabrication without additional sensitive materials, and
potential application in breath sensing or lab-in-fiber technology.
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In the field of fluorescence sensing, fibrous microchannel systems have been found
to be beneficial. Thus, Irawan et al. (2006) [87] have reported a compact and practical
fluorescence sensor based on an in-fiber microchannel. Their device consisted of a blue
LED, a multimode silica fiber, and a mini-PMT, these being used as a source of excitation, a
light guide, and a fluorescence detector, respectively. The experimental results showed that
the sensor had high sensitivity, with the capability to detect 0.005 µg L−1 of fluorescein in
the required solution, while the experimental results were reproducible. Their experimental
results also demonstrated that the silica fiber sensor had better sensitivity than a polymethyl
methacrylate (PMMA) fiber sensor.

From the extensive review of Section 2.1, there is no literature that specifically links the
electric double layer theory to microbial/microfluidic microbial fuel cells. The following
sections will fill this knowledge gap.

2.3. Evolution of the Electric Double Layer in Microfluidic Channels—Site Dissociation Model

We consider a microfluidic channel with pH-dependent surface-ionizable groups [88,89]
and a definite point of zero charge pH. Under these conditions, the site dissociation reactions
can be represented as [90]

≡ MOH ↔≡ MO− + H+ (9)

≡ MOH + H+ ↔≡ SOH+
2 (10)

In Equations (9) and (10), ≡ MOH is a surface-ionizable species, MO− is a deproto-
nated surface-ionizable species, ≡ SOH+

2 is a protonated surface-ionizable species, and H+

is a surface hydrogen ion.
Equations (9) and (10) describe surface-ionizable dissociation above and below the

point of zero charge pH, respectively.
Following the dissociation reactions described by Equations (9) and (10), counter-ions

in the electrolyte solution adsorb on the ionized surfaces, with co-ions being attracted to
the counter-ion layer. Under these conditions, an electric double layer evolves, having
a diffuse layer (see Figure 6). For such a system, to calculate the surface potential and
surface charge density, the mean field theory of Poisson–Boltzmann approximation [91–93]
provides a theoretical approach to determining the potential distribution within the electric
double layer.
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For a microfluidic channel with an electric-double-layer-dependent surface charge
density, the electroviscous effect is prominent, and the solution of the classical Navier–
Stokes equation with an electric body force provides the theoretical foundation for the
calculation of the effective flow rate under different operational and design conditions of
microfluidic systems, which is needed to understand the performance of MMMFCs. This
aspect will be considered in the appropriate section.

2.4. Electric Double Layer of Microbial Systems

The existence of a bioelectrochemical power system depends on the presence of micro-
bial biofilms on anodes (Read et al., 2010) [95]. Figure 7 shows scanning electron microscope
images of P. aeruginosa biofilms at 72 h (3000×) and 144 h (3000×) in a continuous mode.
Structurally, the biofilms consist of extracellular polysaccharide and microbial cells, where
the latter account for 50–90% of the total organic carbon, forming the primary matrix
material [96].
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Figure 7. Scanning electron microscope images of P. aeruginosa biofilms at (A) 72 h (3000×) and
(B) 144 h (3000×) in continuous mode (Read et al., 2010) [95].

Dextran is a microbial exocellular polysaccharide consisting of crucial α-1,6 intercon-
nected D-gluco-pyranose groups with a small number of α-1,2-, α-1,3-, or α-1,4-linked side
chains (Figure 8).
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In addition to polysaccharides, the surface functional group chemistry of intact Gram-
positive and Gram-negative bacterial cells has been investigated as a function of the
solution pH, growth phase, and growth media based on attenuated total reflectance Fourier
transform infrared (ATR-FTIR) spectroscopy, where the functional groups of the cell wall
hydroxyl, carboxyl, phosphoryl, and amide groups have been identified [98]. Each of these
functional groups exhibits pH-dependent ionization [99,100].

Consequently, bacterial cell surfaces carry a net negative charge under most physio-
logical conditions, with a few notable exceptions [101,102], implying the existence of an
electric double layer on microbial cells. Accordingly, Table 1 summarizes the information
on the ionization of ionizable functional groups, as well as their molecular relationships.

Table 1. Ionizable surface groups in various molecular species that may be present on bacterial cell
surfaces, minus the base 10 logarithm of the dissociation constants in [103].

Surface Reaction Functional Group Number Density

COOH⇔–COO−+H+ Polysaccharide 2.8
Protein, peptidoglycan Between 4.0 and 5.0

–NH3
+⇔–NH2+H+ Protein, peptidoglycan Between 9.0 and 9.8

–HPO4⇔–PO4
−+H+ Teichoic acids 2.1

–H2PO4⇔–HPO4
−+H+ Phospholipids 2.1

–HPO4
−⇔–PO4

2−+H+ Phospholipids 7.2

The surface of a bacterial cell with carboxyl and amine base groups with number
densities per unit area N1 and N2, respectively, and Ka1 and Ka2, respectively, have a fixed
surface charge density [104]. For a typical electric double layer characteristic of a microbial
system, Figure 9 shows a schematic of the distribution of ions and the associated potential
near a charged microbial surface, based on the Stern–Grahame model [105].
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Based the model of Figure 9, the amount of specifically adsorbed charge per unit area
in solution per unit area can be expressed using the Langmuir isotherm as [105,106]

σads = zeCNadsexp(−∆adsG/kBT) + Cexp(−∆adsG/kBT) (11)

where
∆adsG = zeψ + ∆specG (12)
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In Equations (11) and (12), zeψ denotes the electrostatic interaction energy and ∆specG
is the Gibbs energy of a specific interaction; Nads is the number of adsorption sites per unit
area; and C and z represent the bulk electrolyte concentration and the valence of specifically
adsorbing ions, respectively.

Consequently, the application of the mean field approximation of the Poisson–Boltzmann
equation in the analytical solution of the potential distribution in the electric double layer of
a microbial system is permissible [107], and its possible effect on microbial cell performance
deserves attention.

2.5. Interrelationship of the Electric Double Layer and Microfluidic Systems
2.5.1. Electrostatics and Hydrodynamics

Different flow channels can be assumed for microfluidic systems, such as circular
systems [108] and rectangular systems [109,110]. In this paper, we assume a cylindrical
microfluidic system, on the surface of which an electric double layer evolves from the ab-
sorption/dissociative reactions of the surface-ionizable functional groups of rock minerals
in contact with an electrolytic solution [11,111]. The potential distribution of such a system
obeys the Poisson–Boltzmann equation (PBE) [112–114]. In the cylindrical domain, it reads
as follows [115]:

1
r

d
dr

(
r

dψ

dr

)
= K2sinh(ψ) (13)

In Equation (13), r is the radial distance [m], ψ is the potential [V], and K is the
reciprocal of the Debye length scale [m−1] given as (Silva et al., 2022) [116]

λD =

√
NAe2

ϵ0ϵrkBT

√
n

∑
i

ciz2
i (14)

in which λD is the Debye length [nm], ci is the bulk electrolyte concentration of an ionic
species [molm−3], z is the ion valence [-], e is the electronic charge [C], ϵ0 is the permittivity
of free space [Fm−1], ϵr is the relative permittivity [-], kB is the Boltzmann constant [JK−1],
NA is Avogadro’s number [mol−1], and T is the absolute temperature.

From Equation (13), it is possible to solve for the potential distribution as a function
of the distance from the solid–electrolyte solution interface and, therefore, for that on the
surface. Generally, the higher the surface potential/surface charge density, the higher the
zeta potential, which translates to lower salinity [117,118]. Moreover, when the electrostatic
free energy, calculated as the product of the electronic charge, surface potential, and valence
number, compared to the Boltzmann thermal energy is very small, Equation (13) can be
used to conform to the Debye–Hackle approximation as [119]

1
r

d
dr

(
r

dψ

dr

)
= λ2(ψ) (15)

Equation (15) is the linearized form of the PBE [106,116].
The boundary conditions for the analytical solution are the following:

ψ = ψs at r = R (16)

dψ

dr
= 0 at r = 0 (17)

Assuming a cylindrical channel, the solution to Equation (15), based on the appropriate
boundary condition, is given as [120,121]

ψ(r) = ψs
I0(Kr)
I0(KR)

(18)
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in which, ψs is the surface potential [V], I0 is the zero-order modified Bessel function, R is
the radius of the cylinder, and K = λ−1

D is the reciprocal of the Debye length scale [m−1].
Equation (18) is the theoretical foundation for subsequent development regarding the

surface charge density–potential relationship for the electrokinetic system, and attention
will be given to this in the appropriate section.

2.5.2. Electrokinetics of the Flow Regime

The phenomena of the streaming potential and streaming current occur due to the
charge displacement in the EDL caused by an external driving force displacing the liquid
phase tangentially against the solid at the solid–liquid interface [121]. Consequently,
the counter-ions in the diffusive part of the EDL are carried downstream in response to
a pressure gradient. The resulting streaming current results from the pressure-driven
flow direction of the electrolyte solution. The process generates a streaming potential φ,
corresponding to the streaming current. The flow-induced streaming potential causes
the counter-ions in the mobile part of the EDL to move in the direction opposite to the
streaming current, causing the opposite-directional flow of ions to generate a conduction
current in the Stern layer. The net effect is a reduced flow rate in the direction of the
pressure drop, referred to as the electroviscous effect [122,123]. The accumulation of ions
sets up an electric field Ez with the streaming potential difference φ. This field causes
the conduction current to flow back in the opposite direction. At a steady state, the net
current should be zero [124,125]. The following Figure 10 summarizes the schematics of
the hydrodynamic regime in the presence of the electric double layer.
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Following the effect of the streaming-current-induced potential difference in the flow
regime, the classical Navier–Stokes equation for flow in a cylindrical geometry reads [126]

1
r

d
dr

(
r

du
dr

)
=

1
η

(
dP
dL

)
− ρeEL (19)

where

EL = −dφs
dL

(20)
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In Equation (19), ϕs is the streaming potential [V] and L is the distance in the flow direction.

ρe = ϵ∇2ψ = −ϵK2ψs
I0(Kr)
I0(KR)

(21)

The substitution of Equations (20) and (21) into Equation (19) gives the modified
Navier–Stokes equation for the electrokinetic effect as

1
r

d
dr

(
r

du
dr

)
=

1
η

(
dP
dL

)
+

ϵK2ψs

η

I0(Kr)
I0(KR)

(
dφs

dL

)
(22)

The boundary conditions are the following:

uL(r) = 0 at r = R (23)

duL(r)
dr

= 0 at r = 0 (24)

The solution gives

uL(r) =
R2 − r2

4η

(
∆P
L

)
− ϵψs

η

[
1 − I0(Kr)

I0(KR)

](
∆φs

L

)
(25)

The streaming potential is given as [126]

∆ϕs =
πR2

c ϵφs(η)
−1
[
1 − 2

KR
I1(KR)
I0(KR)

]
∆P

L
∼
R
− πR2

c ϵ2K2ψ2
s

η

[
1 − 2

KR
I1(KR)
I0(KR) −

I2
1 (KR)

I2
0 (KR)

] (26)

EL = −dφs

dL
= −∆P

L

πR2
c ϵφs(η)

−1
[
1 − 2

KR
I1(KR)
I0(KR)

]
L
∼
R
− πR2

c ϵ2K2ψ2
s

η

[
1 − 2

KR
I1(KR)
I0(KR) −

I2
1 (KR)

I2
0 (KR)

] (27)

Substitution into the velocity profile of Equation (25) gives

uL(r) =
R2 − r2

4η

(
∆P
L

)
− ϵψs

η

[
1 − I0(Kr)

I0(KR)

]∆P
L

πR2
c ϵφs(η)

−1
[
1 − 2

KR
I1(KRc)
I0(KRc)

]
L
∼
R
− πR2

c ϵ2K2ψ2
s

η

[
1 − 2

KR
I1(KRc)
I0(KRc)

− I2
1 (KRc)

I2
0 (KRc)

]
 (28)

Equation (28) can be written as

uL(r) =
R2 − r2

4η

(
∆P
L

)
−
[

1 − I0(Kr)
I0(KR)

]
A (29)

in which

A =
ϵψs

η

∆P
L

πR2
c ϵφs(η)

−1
[
1 − 2

KR
I1(KRc)
I0(KRc)

]
L
∼
R
− πR2

c ϵ2K2ψ2
s

η

[
1 − 2

KR
I1(KRc)
I0(KRc)

− I2
1 (KRc)

I2
0 (KRc)

]
 (30)

The total flow rate through the microfluidic channel is given as [127]

q =
∫ +rmc

−rm f

2πruL(r)dr (31)
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The substitution of the radial velocity dependence from Equation (29) into Equation (31)
gives the total flow rate as

q =
∫ +rmc

−rm f

2πruL(r)dr=
∫ +rmc

−rm f

2πr
[

R2 − r2

4η

(
∆P
L

)
−
[

1 − I0(Kr)
I0(KR)

]
A
]

dr (32)

The interrelationship of this equation with microfluidic microbial fuel cell performance
will be discussed in the appropriate section.

2.6. Influence of Electrokinetics on Viscosity
2.6.1. Primary Electroviscous Effect

The electric double layer has been known to affect the viscosity, and its combined effect
in the presence of the zeta potential and pH on the apparent viscosity of non-Brownian
suspensions has been reported [128]. Consequently, the effect consists of the primary
electroviscous effect (PEE) stemming from the distortion of the electric double layer under
a shear field [129,130] and the secondary electroviscous effect (SEE) resulting from the
overlap of the electric double layer [131]. The most recent analysis of the PEE, covering a
wide range of κa and zeta potential values, was developed by Watterson and White, and
the derivation was presented as [132]

P(ζ, Ka) ∼=
3 ∈ kBT
10πµ0e2

{
∑N

i=1 n
α

i z2
i λi

∑N
i nα

i z2
i

}
L(Ka)

(
eζ

kBT

)2
(33)

In Equation (33), P(ζ, Ka) is the primary electroviscous effect as a function of the zeta
potential (ζ) and the dimensionless electrokinetic radius (Ka), ∈ is the permittivity of the
electrolyte solution [Fm−1], kB is the Boltzmann constant [JK−1], T is the thermodynamic
temperature [K], and nα

i is the bulk concentration of an ionic species i [m−3].
λi is the conductance of the ith ionic species [mSm2mol−1] defined as

λi =
NAe2

∣∣zi
∣∣

Λ0
i

(34)

where Λ0
i is the limiting conductance of the ith ionic species [mSm2mol−1], NA is Avo-

gadro’s number [mol−1], e is the electronic charge [C], and |zi| is the absolute value of ionic
valence [-].

L(Ka) =
10π

3
Z(Ka)(1 + Ka) (35)

Z(Ka) is a function of the dimensionless electrokinetic radius (Ka) as

Z(Ka) ∼= (200πKa)−1 +
11Ka

3200π
(36)

For high-salinity systems with thin electric double layers,

Z(Ka) ∼=
3

2π
(Ka)−4 (37)

In Equations (35) to (37), a is the radius of a colloidal spherical particle [133] with its
associated electric double layer and electrokinetic effect. For microfluidic systems, these
equations can be written by substituting the radius of the channel for a. The implication
is that, with the existence of the EDL in microfluidic systems, viscosity modifications
in accordance with the primary and secondary electroviscous effect are imminent. The
following section is devoted the theoretical aspects in the literature.
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2.6.2. Apparent Viscosity

The implication of Section 2.6.1 is that both the PEE and SEE phenomena will cause
a viscosity increase in microfluidic systems, as found in emulsion systems [134,135]. The
apparent viscosity µa is the combined result of the electroviscous effect and boundary slip
on fluidic flow. To characterize the influence of the electroviscous effect on fluidic flow, the
apparent viscosity µa is quantified for a slit flow as follows [136].

µa = −dp
dx

h3

3
1∫ h

0 udy
(38)

In Equation (36), µa is the apparent viscosity [Pa·s], dp
dx is the pressure gradient

[Pa·sm−1], h is the width of the slit [m], u is the analytical solution for the velocity profile,
and y is the distance measured relative to the channel wall [m].

Equation (38) can be written for a cylindrical microchannel using the velocity profile
in Equation (29) as

µa = −dp
dx

R3
C

3
1∫ RC

0 u(r)dr
=

dp
dx

R3
C

3
1∫ RC

0

(
∆P
L

)
−
[
1 − I0(Kr)

I0(KR)

]
Adr

(39)

In such systems, analytical derivations exist for the surface potential and surface
charge density. The following section will be devoted to their theoretical review.

2.6.3. Potential and Surface Charge Density Relationships

The surface charge density for the cylindrical surface is given as [137]

dψ

dr
=

4πσ

ϵrϵ0
at r = R whichgives : (40)

The generalized approach to differentiating the modified Bessel function of any order
is given as [138]

d
dr

In(x)
In(KR)

=
0

Kr
In(x) + In+1(x) = In+1(x) (41)

Therefore, from Equation (40),

dψ

dr
=

ψs

I0

(
KRe f f

) I

1

(Kr) (42)

Combining Equations (41) and (42) gives the surface charge density–potential relation-
ship as

σ =
ϵrϵ0

4π
ψs

I0(KR)
I1(KR) (43)

where the surface potential ψs is given as

ψs =
4πσ

ϵrϵ0K
I1(KR)
I0(KR)

(44)

The surface potential can be written in terms of the Nernst equation as [139–141]

ψs =
3.301kBT

e

(
pHpzc − pH

)
(45)

in which pHpzc is the point of zero charge pH, kB is the Boltzmann constant [JK−1], T
is the absolute temperature, e is the electronic charge [C], and pH is the negative base
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10 logarithm of the hydrogen ion concentration of the electrolyte solution in contact with
the solid surface.

Consequently, the pH-dependent surface charge density can be written as

σ =
ϵrϵ0

4π
1

I0(KR)
I1(KR)

3.301kBT
e

(
pHpzc − pH

)
(46)

Combining Equations (45) and (46), the pH-dependent surface potential reads

ψs =
4π

ϵrϵ0K
I1(KR)
I0(KR)

ϵrϵ0

4π
1

I0(KR)
I1(KR)

3.301kBT
e

(
pHpzc − pH

)
(47)

In Equation (43), ϵr is the relative permittivity of the electrolyte solution [-], and ϵ0 is
the permittivity in vacuo [Fm−1].

2.6.4. Fibrous Microfluidic Systems

In line with the potential of fibrous microfluidic systems (see Section 2.2), we consider
a fibrous microfluidic system with fibers containing pH-dependent ionizable groups. See
Figure 11.
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Assuming a cylindrical system with a given porosity, the analytical solution for the
linearized Poisson–Boltzmann equation based on the mean field approximation is given
as [68]

ψ = ζ
K1(KR)I0(Kr) + I1(KR)K0(Kr)

K1(KR)I0

(
Kr f

)
+ I1(KR)K0

(
Kr f

) (48)

In Equation (42), r f is the radius of the fiber [m] and R is the radius of a circular cell in
the fibrous bundle [m].

Equation (46) is derived based on the following boundary conditions [142]:

ψ at r = r f = ζ (49)

∂ψ

∂r
at r = R = 0 (50)
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The velocity profile is given as [142]

u =
1

χ2µ

dp
dx

 K1(χR)I0(χr) + K1(χR)K0(χr)

K1(χR)I0

(
χr f

)
+ I1(χR)K0

(
χr f

) − 1

 (51)

where

χ =
ρe√
µλ

=
ϵK2ζ√

µλ
(52)

ρe is the net charge density given as

ρe = −ϵK2ψ (53)

In Equation (52), λ is the electrical conductivity of the electrolyte solution.
Based on Equation (51), the flow rate through a circular unit cell of the fiber bundle

can be derived from elementary calculus as [142]

q =
∫ R

r f

2πrudr =
2π

χ2µ

dp
dx

 K1(χR)I0(χr) + K1(χR)K0(χr)

K1(χR)I0

(
χr f

)
+ I1(χR)K0

(
χr f

) −
R2 − r2

f

2

 (54)

Therefore, for a bundle of a microfluidic system with N circular such cells, the total
flow rate is can be given, based on Equation (54), as

qT = Ntotal
2π

χ2µ

dp
dx

 K1(χR)I0(χr) + K1(χR)K0(χr)

K1(χR)I0

(
χr f

)
+ I1(χR)K0

(
χr f

) −
R2 − r2

f

2

 (55)

In Equation (55), qT is the total flow rate of a microfluidic fibrous channel consisting of
Ntotal total cellular cells in the bundle.

2.7. Implications for Performance of Microfluidic Microbial Fuel Cells

The performance of MMMFCs is governed by various parameters found in the mathe-
matical models presented earlier, and the following sections will be devoted to discussing
the interrelationship of the EDL and these parameters associated with the performance.

2.7.1. Electric Double Layer Effect

Electrostatic interactions are one of the key characteristics of bacterial cell walls [143].
Consequently, like metal oxides and clay nanoparticles particles, it is possible to obtain
a speciation model for the surface sites of bacterial cell wall surfaces responsible for an
electrical double layer. In this regard, the surfaces of Gram-positive bacteria, for example,
contain peptidoglycan, whose molecules are rich in three types of reactive ionizable surface
groups, identified as carboxylic acid (>COOH), amine (>NH+), and phosphate (>PO−),
where >denotes a functional group attached to the cell wall [103]. These pH-dependent ion-
izable surface groups can undergo protonation and deprotonation with definite ionization
constants as [103]

< COOH0 →> COO− + H+ (56)

< NH+
3 →> NH0

2 + H+ (57)

< PO−
4 →> PO4H0 (58)

Therefore, considering Equations (56) to (58), the ionized surface species COO−, NH+
3 ,

and PO−
4 will attract positive ions, negative ions, and positive ions, respectively, when in

contact with aqueous solutions in an MFC environment (see Figure 12).
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This electrostatic interaction process will lead to the attraction of counter-ions, which
will automatically lead to the formation of the diffuse layer that is characteristic of the EDL.
The following section will discuss its effect on MFC performance.
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2.7.2. Relationship with MFC Performance

Electrostatic phenomena, such as double layer repulsion between overlapping electric
double layers, the stability of colloidal systems enhanced by electrostatic repulsion, and the
adsorption of oppositely charged ions/species onto charged substrates, are fundamental to
the electric double layer theory [144]. Moreover, the closely related wettability phenomenon
is governed by electrostatic and van der Waals intermolecular forces that are well modeled
by the Frumkin–Derjaguin equation [145]. In addition, apart from the temperature, salinity
is a fundamental state variable of the electric double layer system by virtue of its effect on
the dielectric permittivity, which appears in models of the surface potential and surface
density [146]. These three fundamental characteristics of the electric double layer provide
an impetus for its linkage to some literature-based observations of MFC performance, which
is the focus of our extensive review work. It is known that increased salinity enhances MFC
performance regarding the power output due to increased conductivity, which decreases
the internal resistance of the system, thereby enhancing proton transfer [147]. However,
regarding salinity, two research works have reported optimum salinities that show a
substantial difference. In this regard, while Lefebvre et al. (2012) [147] report optimum
salinity of 20 gL−1, Tremouli et al. (2017) [148] report an optimum value of 4.1 gL−1. Such
a striking difference in the optimum salinty values suggests that the type of bacteria used
as a biocatalyst is the cause of such observations. Consequently, the salinity effect deserves
to be treated with caution regarding a general conclusion about salinity in the context of
the present review. Moreover, the inoculum types clearly affect the internal resistance (Rin)
and power production of MFCs, where a pure culture inoculum (such as G. sulfurreducens)
shows the lowest internal resistance with the highest Coulombic efficiency and energy
conversion efficiency, while mixed culture inocula from soil with high concentrations of
nonelectrogenic biocatalysts show the highest resistance [149]. Moreover, Shirkoh et al.
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(2022) [150] have demonstrated experimentally that Shewanella oneidensis requires less
activation energy to extract electrons from substrate oxidation than E. coli, implying that
the metabolic pathways of S. oneidensis may be smoother than those of E. coli and there is a
reduced loss of nanowires compared to mobile electron shuttles.

In recent times, carbon-based anodic materials have been used in MFCs [151]. In
wastewater recycling technology using MFCs, the anode is one of the most important
parts. Recently, different types of anode materials have been developed to enhance the
removal rate of pollutants, in addition to increasing the efficiency of energy production. In
such systems, carbon-based materials have been employed as the most preferred anode
material [152] due to the corrosion potential of traditional metal-based anodes [153]. Various
analytical techniques involving electrochemical characterizations and infrared spectroscopy
reveal that the surfaces of carbon-based materials have C=O, OH, and O-C=O functional
groups [154]. In contact with a substrate/fuel-loaded wastewater/aqueous media, a
surface charge develops on such anodes due to the ionization of the functional groups.
Under the pH conditions typical of such systems, negative charges develop. Bacterial
polysaccharides are known to be distinct due to their higher purity, hydrophilic nature,
and finer three-dimensional fibrous structure, primarily providing protection, support,
and energy for microbes [155]. For instance, the existence of a microbial biofilm at the
interface between a hydrophobic organic substrate and aqueous medium that enables it
to metabolize the substrate for energy and growth is a perfect model in this regard [156].
Meanwhile, bacterial cell surfaces possess a net negative electrostatic charge due to the
presence of ionized phosphoryl and carboxylate substituents on the outer cell envelope
macromolecules exposed to the extracellular environment. Therefore, considering the
surfaces of microbes and that of the anode, the development of the EDL is prominent, as
has been reported in the literature [157]. Therefore, in the context of the present review,
which links MFCs to the EDL, there is an important electrostatic effect on MFC performance
due to the electrostatic repulsion between the biofilm and the surface of the anode, reducing
the biofilm attachment efficiency and electron transfer, which constitutes the MFS power.
Interestingly, this inference is supported in the literature, where the negative surface charge
of biochar has been shown to prevent a biofilm from adhering to anodic materials [158].
The impolication is that, in the context of the present paper, the effect of the EDL is to reduce
the MFC power due to the negative regulating effect of the electrostatic repulsion [159] for
carbon-based anodes.

2.7.3. pH Effect

The existence of the electric double layer on microfluidic channels and on microbial
surfaces is due to the pH-dependent protonation and deprotonation reactions of surface
functional groups. Consequently, it is not uncommon for the surface charge densities of
substrates or bacterial cell surfaces to be pH-regulated [160–163]. From Section 2.6.3 the
pH-dependent surface charge is given as

σ =
ϵrϵ0

4π
1

I0(KR)
I1(KR)

3.301kBT
e

(
pHpzc − pH

)
(59)

The implication for Equation (40) is that as the pH increases, the surface charge density
becomes increasingly negative. Therefore, from Equation (44), it stands to reason that
there exists an optimum pH for MFC/MMFC operation. Consequently, Banerjee et al.
(2023) [164] have reported that the best performance of the MFC occurs when the pH of the
aqueous solution at the anode is 8, in the presence of a chemical oxygen demand (COD) of
632 mg/L, with the maximum power density and microbial electrochemical efficiency being
138 mW/m2 and 71%, respectively. In the literature, the surface charge density has been
linked to the number density of ionizable surface groups, where direct proportionality is
applicable [165]. Consequently, the higher the number density of ionizable surface groups
in microbial fuel cell/microfluidic systems, the higher the surface charge density.
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2.7.4. Effect of Surface Chemistry

The surface chemistry of a substrate reflects its crystal property, which has an influence
on its isoelectric/point of zero charge pH [166]. Above the point of zero charge pH
(pHpzc)/isolectric point, a substrate develops a net negative charge [167]. Moreover, from
Equation (40), the higher the point of zero charge pH (pHpzc) , the lower the surface
charge density at a given solution pH. In MFCs, the removal of organic substances by
MFCs is accomplished through a biological process called biodegradation, and the most
important factors that affect the performance of MFCs are the electroactive microbial
communities [168]. Based on Equation (40), the implication for performance is that the
higher the point of zero charge pH of electrogenic bacteria, the lower the surface charge
density at a given pH, and the more efficient the performance. On the other hand, the
research work of Bakonyi et al. (2018) [168] shows that different electrogenic microbes have
different substrate degradation and electron transfer capabilities. Their findings, therefore,
support Equation (40), apparently due the fact that different electrogenic bacteria can have
different point of zero charge pH values.

2.8. Implications of Hydrodynamics and Electrokinetics on MMFC Performance
2.8.1. Impact of Flow Rate on MMFCs

In reaction engineering related to chemical engineering unit operations, the effect of the
volume flow rate on the reactor performance and pressure drop has been reported [169–171].
Considering a microfluidic microbial fuel cell (see Figure 12), the volume of the anolyte
containing the fuel for microbial respiration will depend on several factors. These are
identified in Equation (54), which is the analytical solution to Equation (30), using the
Maple software version 15. From the given pressure gradient, the radius of the microfluidic
channel, the dimensionless electrokinetic radius, and the dynamic viscosity, the solution
leads to the following flow rate equation:

q = 22πr ∗ 2πrmcη∆P
(

1
4

r2
mc −

1
12

r3
mc

)
L−1 − 2πr2 ∗ 2πrmc I1(rmcK)

I1(rmcK)
(60)

The theoretical graph of the modified Bessel function of the first kind of order 1 shows
a monotonic increase with these arguments. Considering the denominator of Equation (54),
increasing the dimensionless electrokinetic radius will increase the flow rate. Theoretically,
there are two options by which to achieve this scenario. From Figure 13, one is to increase
the channel radius, assuming a cylindrical anolyte flow conduit, and the other is to increase
the thickness of the Debye length scale [172], which corresponds to having low salinity.
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2.8.2. Impact of Flow Rate on MMFCs

Three decades ago, the drive towards the miniaturization of analytical devices led
to the invention of microfluidic science, specifically for analyte separation; since then,
extensive research has led to the facile development of novel tools in this area [174,175].
Microfluidic technology has been immensely powerful in manipulating flow devices,
but restrictions exist, which limit to the accomplishment of simple structures, such as
nonrectangular cross-sectional geometries, among others. Consequently, a microfluidic
fabrication method based on a fiber format that enables the construction of microchannels
with highly tunable cross-sectional geometries using a broad range of materials has been
researched, paving the way for the realization of degrees of freedom in the design and
function of microfluidic systems [176]. In this regard, Figure 14 shows the possibility of
integrating a cylindrical microfluidic channel into a membraneless microfluidic microbial
fuel cell. The implication is that, for a membraneless microfluidic system with fibrous
anolyte and catholyte channels (see Figure 13), the parameter χ (see Equation (46), which is
a function of the zeta potential ( ζ), the square of the inverse Debye length scale (K2), the
viscosity ( µ), the dielectric permittivity of the solution ( ϵ), and the Debye length scale (λ)
will regulate the flow rate in the anolyte chamber. In addition to the parameters listed, the
geometrical aspect is an important factor.
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Assuming a constant value of the χ parameter and pressure drop, the smaller the fiber
radius, the larger the value of the second term in the parentheses of Equation (49), leading
to a lower flow rate and vice versa.

In the context of the electric double layer theory, the Debye length scale or the recipro-
cal of the Debye length scale and zeta potential are interrelated, assuming a microfluidic
microbial fuel cell for wastewater treatment, where the salinity is generally above neu-
tral [177]. Moreover, for a microfluidic microbial fuel cell with a material that has a point of
zero charge pH below a neutral pH, the surface will develop a net negative charge [178].
The higher the salinity, the lower the zeta potential. Consequently, with regard to the flow
rate equation for a fibrous microfluidic system (see Equation (49)), higher salinity translates
to a lower flow rate.

The materials used for microfluidic channels have specific electrokinetic properties,
such as the point of zero charge pH and the number density of surface-ionizable groups.
For instance, amorphous silica has a lower surface charge density of surface-ionizable
groups [179] compared to crystalline silica. The number density of silanol controls the zeta
potential and surface charge density at a given pH [174], in addition to having an effect
on the proton conductivity of polymer-surface-functionalized silica nanoparticles [180].
Normally, higher the number density of surface-ionizable groups, the higher the zeta
potential at a given pH. Therefore, in the context of the electric double layer’s relationship
with MMFCs, Equation (28) shows that the velocity distribution is negatively impacted
by the surface potential. The implication is that, for a microfluidic device material with
a higher surface charge density, the electric double layer is more pronounced at a given
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velocity, where the surface potential is higher. This theoretical interpretation can guide
the optimal design of MMFCs by emphasizing the choice of materials with fewer surface-
ionizable groups to provide an optimal surface potential. Such a design could ensure the
optimal flow velocity of organically loaded aqueous fluids to the anode (see Figure 3) for
microbial metabolism to generate electrons for optimal power. Another way to optimally
operate a microbial fuel cell that uses a fuel stream with a higher pH values is to reduce the
pH value to values closer to the point of zero charge pH. At this point, the surface charge
density and potential will be closer to zero.

2.8.3. Integrating MFs and MFCs

In the energy industry, experience shows that the integration of different energy
components can lead to synergistic effects. For instance, the potential to realize a synergy
by integrating electric batteries with well-known fluctuating renewable energy resources
has been reported [181], Microbial fuel cells and microfluidic microbial fuel cells are
conceptually two similar energy systems from the point of view of the related fundamental
principles, but they are structurally different. Considering the critical role that energy
plays in our society, and the need for greener energy alternatives to meet the global
greenhouse gas emission reduction quotas, energy systems must be efficient in both design
and fuel consumption [182,183], and the integration of MFC and MFMC systems can lead
to such efficiency. Such integration could permit the sustainment of high levels of nutrient
utilization, the minimization of nutrient consumption, and the reduction of the response
times in electricity generation, considering the fast mass transport through pressure-driven
flow in the case of MFCs and the rapid diffusion of nutrients within the anode in the
case of MFMCs. In the research work of Jiang et al. [184], such integration provided an
energy system with a volume power density of 745 µW/cm3 and a surface power density
of 89.4 µW/cm2, based on Shewanella oneidensis, an electrogenic bacterium. Moreover,
an improvement in MMFC energy systems through integration with electrophoretically
deposited carbon nanotube flow-over electrodes has been discussed in the literature [185],
which could further support the proposed integration of these two microbial fuel cell
systems for enhanced efficiency.

2.8.4. Summary and Conclusions

In the field of combined power generation and wastewater engineering, microbial
fuel cell technology [186] has emerged as an eco-friendly approach to generating electricity
while purifying wastewater simultaneously, achieving, for instance, up to 50% chemical
oxygen demand removal and power densities ranging from 420 to 460 mW/m2 [187]. Con-
sequently, the technology is one route to embracing the future of the anticipated bio-enabled
economy [188], while representing a state-of the-art and revolutionary technology for effi-
cient energy recovery [189]. On the other hand, microfluidic technology has emerged as a
versatile tool for the manipulation of fluid flows [190], while, at the same time, providing a
formidable platform for the design of sensors for a broad spectrum of industrial uses, with
the healthcare sector being no exception [191]. In recent times, extensive research in the area
of integrated microfluidic and microbial fuel cell technology has been conducted. However,
such research, to our knowledge, has focused more on aspects other than the theoretical
foundations related to the electric double layer theory. For instance, research on microbial
consortia and biofilm growth has been conducted [192]. Extensive research has also been
performed regarding membrane design [193,194], as well as research on electron transfer
mechanisms [153,154]. Moreover, the fundamental principles of the design and operation of
microbial fuel cells rely on established theoretical foundations applicable to closely related
disciplines, such as colloidal systems, where the electric double layer theory is central to
the analysis of colloidal stability. Consequently, the close examination of microbial fuel
cells/microfluidic microbial fuel cells in the context of such theoretical foundations is long
overdue, and our review paper fills this knowledge gap. In this regard, the significance of
our extensive review work can be summarized and concluded as follows.
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1. The current review paper is extensive and, above all, it fills the knowledge gap relating
to the lack of literature that focuses on the theoretical aspects of microfluidic microbial
fuel cells reflecting the fundamental theory of the electrical double layer.

2. The electric double layer theory, as found in colloidal science relating to stability, is
also directly applicable to microfluidic systems related to microbial fuel cells.

3. The potential distribution and the associated electrokinetic flow in streaming potential
systems are also applicable to microfluidic fuel cell systems.

4. The effect of the streaming potential difference under a pressure gradient flow in
electrokinetic systems, relating to the transverse velocity profile, and the electroviscous
phenomenon in microfluidic channels are directly applicable to microfluidic microbial
fuel cell systems.

5. The current review paper clearly establishes a link between the analytical solution of
the mean field Poisson–Boltzmann equation and the concept of microfluidic microbial
fuel cells, and it will inspire research in this direction.

6. The effect of the electric double layer of bacteria is reduced biofilm attachment due to
electrostatic repulsion between the negatively charged bacterial cell wall surface and
that of carbon-based anodes.
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