Development of Correlations Based on CFD Study for Microchannel Condensation Flow of Environmentally Friendly Hydrocarbon Refrigerants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Simulation Conditions
2.1.1. Assumptions for Numerical Simulations
2.1.2. Computational Domain and Mesh Generation
2.1.3. Governing Equations
2.1.4. Further Aspect of Numerical Approach
2.1.5. Verification of the Computational Model
2.2. Deriving Heat Transfer Coefficient and Pressure Drop Correlations
3. Results and Discussion
4. Conclusions
- Based on the results of the CFD simulations, new correlations are suggested for the heat transfer coefficient (expressed as Nu) and the pressure drop (expressed as f) in the context of R600a and R290 condensation within microchannels. It is concluded that the newly developed heat transfer and pressure drop correlations demonstrate the best agreement with the simulations when compared to alternative correlations from the literature.
- In terms of heat transfer coefficient, the proposed new correlation achieves the lowest deviation, with an Ave-MAE of 11.16%, followed by the correlation of Dobson and Chato [12] (MAE = 19.04%). Similarly, the new pressure drop correlation exhibits the closest overall agreement with the simulation results compared to alternative correlations available in the literature, with an Ave-MAE of 20.81%. This is followed by the correlation of Lockhart and Martinelli [21], with 39.41% Ave-MAE.
- It can be concluded that, in contrast to existing correlations, the proposed correlations have a higher potential for accurately predicting pressure drop and heat transfer coefficients for R600a and R290 condensation within microchannels. These new correlations, which are easily applicable, may contribute to the design of microchannel condensers operating with R600a and/or R290. They can be used to design tools to enhance refrigeration, heat pumps, HVAC, electronic cooling devices, etc.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Bond number = | |
Critical Bond number = | |
Chisholm factor | |
Diameter, m | |
Hydraulic diameter, m | |
Vapor core diameter, m | |
European Union | |
Friction factor | |
Froude number = | |
Soliman Froude number | |
Two-phase mixture Froude number = | |
Volume force due to surface tension, N m−3 | |
Gravity acceleration, kg-s−2 | |
Mass flux, kg m−2 s−1 | |
GWP | Global warming potential |
Enthalpy, J kg−1 | |
Latent heat, J kg−1 | |
HC | HydroCarbon |
HFC | HydroFluoroCarbon |
Heat transfer coefficient, W m−2 K−1 | |
Thermal conductivity of the liquid phase, W m−1 K−1 | |
Tube length, m | |
MCHE | Microchannel heat exchanger |
Nusselt number = | |
Pressure, Pa | |
Prandtl number | |
All liquid Reynolds numbers = | |
Liquid Reynolds number = | |
All liquid Reynolds numbers = | |
Two-phase mixture Reynolds number = | |
Vapour Reynolds number = | |
All vapour Reynolds numbers = | |
Mass source term, kg m−3 s−1 | |
Energy source term, J m−3 s−1 | |
Temperature, °C | |
Velocity, m s−1 | |
Volume of fluid | |
Weber number = | |
Two-phase mixture Weber number = | |
Vapour quality | |
Lockhart–Martinelli parameter = | |
Greek symbols | |
Volume fraction | |
Void fraction | |
Tunable positive numerical coefficient, s−1 | |
Interface curvature | |
Dynamic viscosity, Pa s | |
Two-phase mixture viscosity = | |
Density, kg m−3 | |
Two-phase mixture density = | |
Surface tension, N m−1 | |
Fluid properties | |
Thermal conductivity, W m−1 K−1 | |
Two-phase multiplier | |
Subscripts | |
Critical | |
Effective | |
Equivalent | |
Liquid | |
All-liquid | |
Saturation | |
Vapour | |
All-vapour |
References
- Xue, M.; Kojima, N.; Zhou, L.; Machimura, T.; Tokai, A. Trade-off Analysis between Global Impact Potential and Local Risk: A Case Study of Refrigerants. J. Clean. Prod. 2019, 217, 627–632. [Google Scholar] [CrossRef]
- Xue, M.; Kojima, N.; Machimura, T.; Tokai, A. Flow, Stock, and Impact Assessment of Refrigerants in the Japanese Household Air Conditioner Sector. Sci. Total Environ. 2017, 586, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- EU F-Gas Regulation 517/2014. Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No 842/2006. Off. J. Eur. Union 2014, 2014, L150/195-230. [Google Scholar]
- Basaran, A.; Benim, A.C.; Yurddas, A. Numerical Simulation of the Condensation Flow of the Isobutane (R600a) inside Microchannel. Heat Transf. Eng. 2021, 43, 337–361. [Google Scholar] [CrossRef]
- Başaran, A.; Yurddaş, A. Thermal Modeling and Designing of Microchannel Condenser for Refrigeration Applications Operating with Isobutane (R600a). Appl. Therm. Eng. 2021, 198, 117446. [Google Scholar] [CrossRef]
- Başaran, A. Experimental Investigation of R600a as a Low GWP Substitute to R134a in the Closed-Loop Two-Phase Thermosyphon of the Mini Thermoelectric Refrigerator. Appl. Therm. Eng. 2022, 211, 118501. [Google Scholar] [CrossRef]
- Kandlikar, S.G. A Roadmap for Implementing Minichannels in Refrigeration and Air-Conditioning Systems—Current Status and Future Directions. Heat Transf. Eng. 2007, 28, 973–985. [Google Scholar] [CrossRef]
- Roth, K.; Westphalen, D.; Dieckmann, J.; Hamilton, S.; Goetzler, W. Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume III: Energy Savings Potential; Tıax, LLC.: Cambridge, MA, USA, 2002; Volume 3. [Google Scholar]
- Ghiassiaan, S.M. Two-Phase Flow, Boiling, and Condensation in Conventional and Minature Systems; Cambridge University Press: Cambridge, UK, 2008; ISBN 9780511619410. [Google Scholar]
- Kandlikar, S.G.; Colin, S.; Peles, Y.; Garimella, S.; Pease, R.F.; Brandner, J.J.; Tuckerman, D.B. Heat Transfer in Microchannels—2012 Status and Research Needs. J. Heat Transf. 2013, 135, 091001. [Google Scholar] [CrossRef]
- Basaran, A.; Benim, A.C.; Yurddas, A. Prediction of Heat and Fluid Flow in Microchannel Condensation. E3S Web Conf. 2019, 128, 01015. [Google Scholar] [CrossRef]
- Dobson, M.K.; Chato, J.C. Condensation in Smooth Horizontal Tubes. J. Heat Transf. 1998, 120, 193–213. [Google Scholar] [CrossRef]
- Moser, K.W.; Webb, R.L.; Na, B. A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes. J. Heat Transf. 1998, 120, 410–417. [Google Scholar] [CrossRef]
- Koyama, S.; Kuwahara, K.; Nakashita, K.; Yamamoto, K. An Experimental Study on Condensation of Refrigerant R134a in Multi-Port Extruded Tube. Int. J. Refrig. 2003, 26, 425–432. [Google Scholar] [CrossRef]
- Cavallini, A.; Doretti, L.; Matkovic, M.; Rossetto, L. Update on Condensation Heat Transfer and Pressure Drop inside Minichannels. Heat Transf. Eng. 2006, 27, 74–87. [Google Scholar] [CrossRef]
- Son, C.-H.; Lee, H.-S. Condensation Heat Transfer Characteristics of R-22, R-134a and R-410A in Small Diameter Tubes. Heat Mass Transf. 2009, 45, 1153–1166. [Google Scholar] [CrossRef]
- Huang, X.; Ding, G.; Hu, H.; Zhu, Y.; Peng, H.; Gao, Y.; Deng, B. Influence of Oil on Flow Condensation Heat Transfer of R410A inside 4.18 Mm and 1.6 Mm Inner Diameter Horizontal Smooth Tubes. Int. J. Refrig. 2010, 33, 158–169. [Google Scholar] [CrossRef]
- Park, J.E.; Vakili-Farahani, F.; Consolini, L.; Thome, J.R. Experimental Study on Condensation Heat Transfer in Vertical Minichannels for New Refrigerant R1234ze(E) versus R134a and R236fa. Exp. Therm. Fluid. Sci. 2011, 35, 442–454. [Google Scholar] [CrossRef]
- Bohdal, T.; Charun, H.; Sikora, M. Comparative Investigations of the Condensation of R134a and R404A Refrigerants in Pipe Minichannels. Int. J. Heat Mass. Transf. 2011, 54, 1963–1974. [Google Scholar] [CrossRef]
- Shah, M.M. Comprehensive Correlations for Heat Transfer during Condensation in Conventional and Mini/Micro Channels in All Orientations. Int. J. Refrig. 2016, 67, 22–41. [Google Scholar] [CrossRef]
- Lockhart, R.; Martinelli, R. Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes. Chem. Eng. Prog. 1949, 45, 29–48. [Google Scholar]
- Friedel, L. Improved Friction Pressure Drop Correlation for Horizontal and Vertical Two-Phase Pipe Flow. In Proceedings of the European Two-Phase Group Meeting, Ispra, Italy, 5–8 June 1979. [Google Scholar]
- Mishima, K.; Hibiki, T. Some Characteristics of Air-Water Two-Phase Flow in Small Diameter Vertical Tubes. Int. J. Multiph. Flow 1996, 22, 703–712. [Google Scholar] [CrossRef]
- Garimella, S.; Agarwal, A.; Killion, J.D. Condensation Pressure Drop in Circular Microchannels. Heat Transf. Eng. 2005, 26, 28–35. [Google Scholar] [CrossRef]
- Cavallini, A.; Censi, G.; Del Col, D.; Doretti, L.; Longo, G.A.; Rossetto, L. Condensation of Halogenated Refrigerants inside Smooth Tubes. HVAC R Res. 2002, 8, 429–451. [Google Scholar] [CrossRef]
- Son, C.; Oh, H. Condensation Pressure Drop of R22, R134a and R410A in a Single Circular Microtube. Heat Mass Transf. 2012, 48, 1437–1450. [Google Scholar] [CrossRef]
- Sakamatapan, K.; Wongwises, S. Pressure Drop during Condensation of R134a Flowing inside a Multiport Minichannel. Int. J. Heat Mass Transf. 2014, 75, 31–39. [Google Scholar] [CrossRef]
- López-belchí, A.; Illán-gómez, F.; Vera-garcía, F.; García-cascales, J.R. Experimental Condensing Two-Phase Frictional Pressure Drop inside Mini-Channels. Comparisons and New Model Development. Int. J. Heat Mass Transf. 2014, 75, 581–591. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Ni, Y.; Wang, C.; Tan, Y.; Tan, D. Critical Penetrating Vibration Evolution Behaviors of the Gas-Liquid Coupled Vortex Flow. Energy 2024, 292, 130236. [Google Scholar] [CrossRef]
- Li, L.; Xu, W.; Tan, Y.; Yang, Y.; Yang, J.; Tan, D. Fluid-Induced Vibration Evolution Mechanism of Multiphase Free Sink Vortex and the Multi-Source Vibration Sensing Method. Mech. Syst. Signal Process 2023, 189, 110058. [Google Scholar] [CrossRef]
- Chen, S.; Yang, Z.; Duan, Y.; Chen, Y.; Wu, D. Simulation of Condensation Flow in a Rectangular Microchannel. Chem. Eng. Process. Process Intensif. 2014, 76, 60–69. [Google Scholar] [CrossRef]
- Ganapathy, H.; Shooshtari, A.; Choo, K.; Dessiatoun, S.; Alshehhi, M.; Ohadi, M. Volume of Fluid-Based Numerical Modeling of Condensation Heat Transfer and Fluid Flow Characteristics in Microchannels. Int. J. Heat Mass Transf. 2013, 65, 62–72. [Google Scholar] [CrossRef]
- Bortolin, S.; Da Riva, E.; Del Col, D. Condensation in a Square Minichannel: Application of the VOF Method. Heat Transf. Eng. 2014, 35, 193–203. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Minkowycz, W.J. Numerical Simulation of Condensation for R410A at Varying Saturation Temperatures in Mini/Micro Tubes. Numer. Heat. Transf. A Appl. 2016, 69, 464–478. [Google Scholar] [CrossRef]
- Toninelli, P.; Bortolin, S.; Azzolin, M.; Del Col, D. Visualization and Numerical Simulations of Condensing Flow in Small Diameter Channels. Heat Transf. Eng. 2019, 40, 802–817. [Google Scholar] [CrossRef]
- Wu, C.; Li, J. Numerical Simulation of Flow Patterns and the Effect on Heat Flux during R32 Condensation in Microtube. Int. J. Heat Mass Transf. 2018, 121, 265–274. [Google Scholar] [CrossRef]
- Da Riva, E.; Del Col, D. Effect of Gravity during Condensation of R134a in a Circular Minichannel: VOF Simulation of Annular Condensation. Microgravity Sci. Technol. 2011, 23, 87–97. [Google Scholar] [CrossRef]
- Da Riva, E.; Del Col, D. Numerical Simulation of Laminar Liquid Film Condensation in a Horizontal Circular Minichannel. J. Heat Transf. 2012, 134, 051019. [Google Scholar] [CrossRef]
- ASHRAE. American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE) Handbook-Fundamentals; ASHRAE Inc.: Atlanta, GA, USA, 2009. [Google Scholar]
- Coleman, J.W.; Garimella, S. Two-Phase Flow Regimes in Round, Square and Rectangular Tubes during Condensation of Refrigerant R 134a. Int. J. Refrig. 2003, 26, 117–128. [Google Scholar] [CrossRef]
- Li, J.M.; Wang, B.X. Size Effect on Two-Phase Regime for Condensation in Micro/Mini Tubes. Heat Transf. Asian Res. 2003, 32, 65–71. [Google Scholar] [CrossRef]
- Nema, G.; Garimella, S.; Fronk, B.M. Flow Regime Transitions during Condensation in Microchannels. Int. J. Refrig. 2014, 40, 227–240. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Brackbill, J.U.; Kothe, D.B.; Zemach, C. A Continuum Method for Modeling Surface Tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- ANSYS® FLUENT, Release 2023-R1; Academic Version; Ansys: Canonsburg, PA, USA, 2023.
- Durbin, P.A.; Reif, B.A.P. Statistical Theory and Modeling for Turbulent Flows; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 1119957524. [Google Scholar]
- Benim, A.C. Finite Element Analysis of Confined Turbulent Swirling Flows. Int. J. Numer. Method. Fluids 1990, 11, 697–717. [Google Scholar] [CrossRef]
- Xia, J.L.; Smith, B.L.; Benim, A.C.; Schmidli, J.; Yadigaroglu, G. Effect of Inlet and Outlet Boundary Conditions on Swirling Flows. Comput. Fluids 1997, 26, 811–823. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Benim, A.C.; Pathak, M.; Chamoli, S.; Gupta, A. Thermohydraulic Characteristics of Inline and Staggered Angular Cut Baffle Inserts in the Turbulent Flow Regime. J. Therm. Anal. Calorim. 2020, 140, 1519–1536. [Google Scholar] [CrossRef]
- Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Shin, J.S.; Kim, M.H. An Experimental Study of Flow Condensation Heat Transfer Inside Circular and Rectangular Mini-Channels. Heat Transf. Eng. 2005, 26, 633–640. [Google Scholar] [CrossRef]
- Akers, W.W.; Deans, H.A.; Crosser, O.K. Condensation Heat Transfer within Horizontal Tubes. Chem. Eng. Prog. Symp. Ser. 1959, 55, 171–176. [Google Scholar]
Researcher | Correlations | Range and Applicability |
---|---|---|
Dobson and Chato [12] | Dh = 4.6, 7.04, and 31.4 mm Near-azeotropic blends of R32/R125 R134a, R12, R22, G = 25–800 kg/m2s Tsat = 35–60 °C | |
Moser et al., 1998 [13] | , | R22, R134a, R410A, R12, R125, R11 Dh = 3.14–20 mm |
Koyama et al., 2003 [14] | R134a Multiport rectangular Dh = 0.8 and 1.11 mm G = 100–700 kg/m2s Tsat = 60 °C | |
Cavallini et al., 2006 [15] | R134a, R236ea, R410A Dh = 0.4–3 mm | |
Son and Lee, 2009 [16] | R22, R134a, and R410A Single smooth Dh = 1.77, 3.36 and 5.35 mm G = 200–400 kg/m2s Tsat = 40 °C | |
Huang et al., 2010 [17] | R410A and R410A-oil Dh = 1.6 and 4.18 mm G = 200–600 kg/m2s Tsat = 40 °C Xinlet = 0.3–0.9 | |
Park et al., 2011 [18] | R134a, R236fa, R1234ze Multichannel, rectangular, vertical Dh = 1.45 mm G = 50–260 kg/m2s Tsat = 25–70 °C | |
Bohdal et al., 2011 [19] | R134a and R404A Circular Dh = 0.31–3.30 mm G = 100–1300 kg/m2s Tsat = 20–40 °C | |
Shah, 2016 [20] | Correlation #1 Correlation #2 | 33 types of refrigerant, all geometrical combinations Dh = 0.10–49.0 mm G = 1.1–1400 kg/m2s |
Researcher | Correlations | Range and Applicability |
---|---|---|
Lockhart and Martinelli, 1949 [21] | Benzene, kerosene, water and various oils Dh = 1.488–25.83 mm | |
Friedel, 1979 [22] | Adiabatic Dh > 1 mm | |
Mishima and Hibiki, 1996 [23] | Water–air mixture Single circular–vertical Dh = 1–4 mm | |
Garimella et al., 2005 [24] | R134a Circular Dh = 0.5–4.91 mm G = 150–750 kg/m2s | |
Cavallini et al., 2002 [25] | , | R-22, R-134a, R-125, R-32, R-236ea, R-407C, and R-410A Circular Dh = 8 mm G = 100–750 kg/m2s Tsat = 30–50 °C |
Bohdal et al., 2011 [19] | R134a, R404A, R407C Single circular Dh = 0.31–3.3 mm G = 0–1300 kg/m2s Tsat = 20–50 °C | |
Son and Oh, 2012 [26] | , | R22, R134a, and R410A Single circular Dh = 1.77 mm G = 450–1050 kg/m2s Tsat = 40 °C |
Sakamatapan and Wongwises, 2014 [27] | R134a, Multiport Dh = 1.1 and 1.2 mm G = 345–658 kg/m2s Tsat = 35–45 °C | |
Lopez-Belchi et al., 2014 [28] | R1234yf, R134a, and R32 Round Dh = 1.16 mm G = 350–940 kg/m2s Tsat = 20–55 °C |
R600a | R290 | |||
---|---|---|---|---|
Vapour | Liquid | Vapour | Liquid | |
Density (kg/m3) | 13.7 | 531.2 | 30.165 | 467.46 |
Viscosity (Pa-s) | 0.00000791 | 0.000129 | 0.0000088918 | 0.000082844 |
Specific heat (kJ/kg-K) | 1.921 | 2.5349 | 2.2632 | 2.9127 |
Thermal conduct. (W/m-K) | 0.018524 | 0.084051 | 0.021432 | 0.0866923 |
Prandtl number (-) | 0.82056 | 3.9024 | 0.93896 | 2.776 |
Saturation pressure (kPa) | 531.21 | 1369.4 | ||
Surface tension (N/m) | 0.0084105 | 0.0052128 |
G (kg/m2s) | Inlet x | MAE of Simulation | MAE of Condensation Correlations (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dobson and Chato [12]. | Moser et al. [13] | Koyama et al. [14] | Cavallini et al. [15] | Son and Lee [16] | Huang et al. [17] | Park et al. [18] | Bohdal et al. [19] | Shah [20] | |||
200 | 0.305 | 10.14 | 16.8 | 22.1 | 68.9 | 34.0 | 17.4 | 37.1 | 78.4 | 193.8 | 2.5 |
0.515 | 20.82 | 14.8 | 28.2 | 65.6 | 33.5 | 25.9 | 32.9 | 78.5 | 160.5 | 1.8 | |
0.734 | 22.06 | 19.9 | 36.1 | 62.3 | 37.5 | 16.4 | 36.8 | 78.7 | 120.0 | 10.6 | |
0.815 | 24.80 | 25.7 | 41.3 | 62.4 | 41.9 | 5.4 | 41.6 | 79.3 | 97.7 | 17.1 | |
400 | 0.270 | 0.78 | 2.9 | 8.4 | 62.3 | 18.0 | 42.5 | 12.4 | 74.9 | 156.8 | 5.2 |
0.476 | 11.34 | 12.8 | 21.3 | 61.9 | 23.1 | 45.0 | 10.1 | 76.8 | 111.4 | 12.3 | |
0.750 | 17.23 | 16.3 | 23.9 | 52.8 | 21.1 | 46.4 | 9.1 | 74.8 | 89.4 | 14.2 | |
0.850 | 25.66 | 36.9 | 36.6 | 56.3 | 33.6 | 18.4 | 11.3 | 77.2 | 53.1 | 30.0 | |
600 | 0.326 | 8.13 | 4.5 | 5.8 | 58.9 | 10.1 | 61.9 | 60.2 | 73.8 | 117.6 | 3.8 |
0.528 | 6.24 | 4.3 | 22.2 | 59.8 | 20.3 | 51.0 | 43.2 | 76.8 | 70.8 | 9.7 | |
0.708 | 8.54 | 17.3 | 33.4 | 59.7 | 29.5 | 32.1 | 22.1 | 78.7 | 38.4 | 22.6 | |
0.850 | 16.19 | 26.5 | 35.9 | 55.3 | 31.4 | 22.5 | 11.8 | 77.4 | 27.1 | 27.7 | |
Ave-MAE | 14.3 | 16.5 | 26.3 | 26.3 | 27.8 | 32.1 | 27.4 | 77.1 | 103.1 | 13.1 | |
, (N: total number of cases = 12) |
Refrigerant/ Diameter | MAE of Condensation HTC Correlations (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
New HTC Correlation | Dobson and Chato [12] | Moser et al. [13] | Koyama et al. [14] | Cavallini et al. [15] | Son and Lee [16] | Huang et al. [17] | Park et al., 2011 [18] | Bohdal et al., 2011 [19] | Shah, 2016 [20] | |
R290/D = 0.2 mm | 18.21 | 23.50 | 38.34 | 66.69 | 41.91 | 19.08 | 87.67 | 84.85 | 135.43 | 33.05 |
R290/D = 0.4 mm | 9.51 | 18.15 | 35.92 | 64.58 | 37.94 | 18.90 | 55.55 | 83.66 | 74.15 | 28.69 |
R290/D = 0.6 mm | 8.92 | 21.15 | 38.71 | 65.77 | 39.96 | 20.89 | 39.32 | 83.98 | 35.60 | 31.18 |
R600a/D = 0.2 mm | 13.61 | 19.01 | 36.74 | 60.88 | 32.62 | 20.04 | 181.19 | 76.07 | 114.48 | 26.51 |
R600a/D = 0.4 mm | 6.57 | 15.27 | 34.86 | 59.20 | 29.24 | 29.24 | 125.73 | 75.26 | 54.09 | 23.14 |
R600a/D = 0.6 mm | 10.17 | 17.14 | 36.11 | 59.98 | 30.21 | 19.97 | 93.25 | 75.72 | 23.02 | 24.35 |
Ave-MAE | 11.16 | 19.04 | 36.78 | 62.85 | 35.31 | 21.35 | 97.12 | 79.92 | 72.80 | 27.82 |
, (N: total number of cases = 72) |
Refrigerant/Diameter | MAE of Condensation Friction Factor Correlations (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
New HTC Correlation | Lockhart and Martinelli [21] | Friedel [22] | Mishima and Hibiki [23] | Cavallini et al. [25] | Garimella et al. [24] | Bohdal et al. [19] | Son and Oh [26] | Sakamatapan and Wongmisses [27] | Lopez-Belchi et al. [28] | |
R290/D = 0.2 mm | 25.81 | 28.99 | 47.40 | 72.56 | 41.88 | 50.88 | 190.34 | 79.27 | 133.32 | 74.59 |
R290/D = 0.4 mm | 10.19 | 34.70 | 58.23 | 72.91 | 49.53 | 46.47 | 49.85 | 40.37 | 87.39 | 77.36 |
R290/D = 0.6 mm | 22.98 | 46.36 | 63.61 | 74.07 | 57.54 | 52.32 | 13.09 | 51.42 | 62.20 | 79.56 |
R600a/D = 0.2 mm | 38.29 | 32.99 | 33.51 | 72.57 | 63.26 | 49.98 | 209.83 | 78.11 | 29.31 | 68.33 |
R600a/D = 0.4 mm | 9.88 | 40.47 | 54.15 | 73.83 | 30.14 | 52.43 | 59.49 | 45.33 | 18.69 | 71.51 |
R600a/D = 0.6 mm | 17.70 | 52.97 | 62.37 | 74.64 | 42.78 | 53.82 | 38.66 | 56.58 | 30.43 | 73.69 |
Ave-MAE | 20.81 | 39.41 | 53.21 | 73.43 | 47.52 | 50.99 | 93.54 | 58.51 | 60.22 | 74.17 |
, (N: total number of cases = 72) |
Formula | Application Range |
---|---|
Nusselt number for heat transfer coefficient: Friction factor for pressure drop: | R290 and R600a G = 200–600 kg/m2s Tsat = 40 °C x = 0.3–0.9 Dh = 0.2–0.6 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Başaran, A.; Benim, A.C. Development of Correlations Based on CFD Study for Microchannel Condensation Flow of Environmentally Friendly Hydrocarbon Refrigerants. Energies 2024, 17, 1531. https://doi.org/10.3390/en17071531
Başaran A, Benim AC. Development of Correlations Based on CFD Study for Microchannel Condensation Flow of Environmentally Friendly Hydrocarbon Refrigerants. Energies. 2024; 17(7):1531. https://doi.org/10.3390/en17071531
Chicago/Turabian StyleBaşaran, Anıl, and Ali Cemal Benim. 2024. "Development of Correlations Based on CFD Study for Microchannel Condensation Flow of Environmentally Friendly Hydrocarbon Refrigerants" Energies 17, no. 7: 1531. https://doi.org/10.3390/en17071531
APA StyleBaşaran, A., & Benim, A. C. (2024). Development of Correlations Based on CFD Study for Microchannel Condensation Flow of Environmentally Friendly Hydrocarbon Refrigerants. Energies, 17(7), 1531. https://doi.org/10.3390/en17071531