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Abstract: PV power generation is developing fast in both centralized and distributed forms under
the background of constructing a new power system with high penetration of renewable sources.
However, the control performance and stability of the PV system is seriously affected by the interac-
tion between PV internal control loops and the external power grid. The impact of the PV system on
the reliability, stability, and power quality of power systems has restricted them to further participate
in power supplies with a large capacity. Traditional control methods have become ineffective at
dealing with these problems as the PV system becomes increasingly complex and nonlinear. Intel-
ligent control as a more advanced technology has been integrated into the PV system to improve
system control performance and stability. However, intelligent control for the PV system is still in
the early stages due to the extensive calculation and intricate implementation of intelligent algo-
rithms. Further investigations should be carried out to effectively combine intelligent control with
the PV system to constitute an intelligent PV power system with multiple functions, high stability,
and high-performance. This paper provides a systematic classification and detailed introduction of
various intelligent optimization methods in a PV inverter system based on the traditional structure
and typical control. The future trends and research topics are given to provide a reference for the
intelligent optimization control in the PV system.

Keywords: inverter control; intelligent optimization; PV system; review

1. Introduction

Photovoltaic power generation as one kind of important renewable energy has begun
transitioning from an alternative power source to the main energy source in recent years [1].
During this process, centralized and distributed PV systems have become the two main
energy streams [2]. The new power systems consist of a high percentage of renewable
energy and a large percentage of power electronics, causing many new issues related to
system control [3].

An important technique to address the issue of stability and reliability of PV systems is
optimizing converters’ control. Power converters’ control is intricate and affects the overall
stability of the system because of the interactions between different control loops inside the
converter, parallel converters, and the power grid [4,5]. For a grid-connected PV system,
inverters are the crucial part required to convert dc power from solar arrays to ac power
transported into the power grid. The control performance and stability of inverters severely
affect the PV system, and lots of works have explored how to analyze and improve PV
inverters’ control stability [6].

In general, PV inverters’ control can be typically divided into constant power control,
constant voltage and frequency control, droop control, etc. [7]. Of these, constant power
control is primarily utilized in grid-connected inverters to control the active and reactive
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power generated by the PV system [8]. Frequency and voltage control is usually adopted
in grid-forming inverters for the PV system to support system voltage and frequency [9].
Droop control generally refers to inverters’ active-frequency and reactive-voltage droop
control. If the droop curves are properly designed, the inverters can adaptively adjust
their output active and reactive power to finally work on an optimal parallel condition.
In addition, PV inverters with droop control can be controlled as virtual synchronous
generators when the inertial coefficient is constructed inside [10]. In these control modes,
the specific classic controllers mainly include a proportional-integral (PI) controller, a
proportional resonance (PR) controller, a repetitive (RP) controller, etc. [11]. In a PV
system, the PI controller is mostly used for the dc voltage control and the ac current and
voltage control on the d-q reference frame. The PR controller is usually utilized in tracking
ac signals such as an inverter current in a α-β reference frame [12]. The RP controller
is also used to track ac signals, but with higher harmonic rejection ability and lower
stability, as it introduces resonators at harmonic frequency points compared with the PR
controller [13,14].

Although conventional control techniques are straightforward and reliable, it is always
hard for them to deal with the complicated coupling and interaction problems in PV inverter
systems [15]. Control system optimization based on artificial intelligence is an effective
way to improve the performance of PV inverters, allowing them to handle complicated
control issues such as nonlinear dynamic interaction and multiple time-scale coupling [16].
Fuzzy control, as one of the most popular intelligent methods, has been widely utilized
in the control of PV inverter systems, such as fuzzy PID control [17], repetitive-fuzzy
control [18], fuzzy PR and PI control [19], and fuzzy PCI (proportional complex integral)
with PR control [20]. The biggest advantage of fuzzy control is that it can realize self-tuning
of parameters to allow real-time adjustment of the controller according to system operation
status [21]. Fuzzy PCI and fuzzy PR have been employed in conjunction with standard PI
and PR control, respectively, to improve the dynamic response and robustness of the system
while eradicating the steady-state error. Other AI methods such as expert systems (ES),
artificial neural networks (ANN or NNW), genetic algorithms (GA), and adaptive neuro-
fuzzy algorithms (ANFIS) have also been applied to PV inverter system optimization [22].
However, these intelligent algorithms are usually computation-burdened and difficult to
implement in real time, especially for fast control tasks.

With the rapid development of processors, intelligent technology has become part
of all aspects of our lives, in addition to PV systems [23]. Intelligent PV plants will be an
important part of the next generation of intelligent power grids with the application of
big data, cloud computing, etc. [24]. Although various intelligent technologies have been
used in a PV inverter system, the intelligence of the whole system is still at a rather low
level. The intelligent methods are mainly utilized together with the traditional controllers
to improve the system control speed and reliability. More work has to be carried out for
further high-level utilization of intelligent control in PV systems and for the construction of
highly stable, reliable, and multifunctional PV systems.

This paper reviews the intelligent optimal control of a PV inverter system to provide
a reference for existing technologies and future development directions. Firstly, a brief
overview of a grid-connected PV system and the conventional control strategies are given
in Sections 2 and 3, respectively. Section 4 concludes the state-of-the-art and development
trends of intelligent optimization control in PV systems. Section 5 prospects future research
directions based on this review. 6 concludes this paper.

2. Grid-connected PV Inverter System

A simplified PV system is presented in Figure 1. The system consists of a PV array,
loads, transformers, dc/dc converters, and dc/ac inverters. The grid-connected PV system
can convert the dc power output from the PV array into ac power for delivery to the power
grid [25].
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Figure 1. Diagram of grid-connected PV system.

Inverters play an important role in grid-connected PV systems. The dc side voltage of
the inverter is generally provided by a pre-stage boost converter with a constant output
voltage Vdc. Based on the dc voltage, the inverter converts dc power into ac and connects
with the public grid via an LCL filter [26], as shown in Figure 2.
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3. Typical Control of Grid-Connected PV Inverters

The control performance of PV inverters determines the system’s stability and reliabil-
ity. Conventional control is the foundation for intelligent optimization of grid-connected
PV systems. Therefore, a brief overview of these typical controls should be given to lay
the theoretical foundation of further contents. This section reviews the PQ control, con-
stant voltage and frequency control, and traditional droop control in a grid-connected PV
inverter system.

3.1. P-Q Control

The main purpose of PQ control is to make the PV system output constant active
and reactive power [27], as shown in Figure 3. The PV output active and reactive power
stays constant when the frequency and voltage vary within a limited range [28,29]. The
active power output by the inverter is stabilized at the reference value Pref when system
frequency fluctuates in the range f min < f < f max. Similarly, the reactive power output by
the inverter is maintained at the reference value Qref when the system bus voltage varies in
Vmin < V < Vmax.

According to the coordinate transformation, the PQ control can be implemented in the
αβ reference frame and dq reference frame, as illustrated in Figures 4 and 5, respectively. As
shown in Figure 4, the grid-side current iabc and voltage ugabc at PCC (common connection
point) are used to calculate the output active power P and reactive power Q. The output
power is then compared to the power reference Pref and Qref to produce the active and
reactive current reference [30]. In the PV system, the outer PQ control is usually modified
as dc voltage control, as shown in Figure 5. The current reference in the q axis determines
the PV output reactive power [31]. The current reference in the d axis is generated via dc
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voltage control to adjust the PV output active power in order to maintain the dc link power
balance and stabilize dc voltage [32].
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The PQ control aims to control the PV output power, thus improving the system
output capacity [33]. In the PQ control mode, energy storage devices are necessary to
maintain the power balance on the dc bus to guarantee dc voltage stability [34].
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3.2. Constant Voltage and Frequency (V/F) Control

The PQ control allows for active and reactive power regulation of the PV system, but it
does not ensure system output voltage and frequency. V/F control can be used to maintain
the voltage and frequency of the PV system in off-grid or weak-grid circumstances [35].

The block diagram for the three-phase grid-connected inverter’s V/F control is shown
in Figure 6. In V/F control, the inverter output voltage is directly controlled [36]. The
internal current loop is typically set up within the voltage control to increase the dynamic
performance for quick regulation of the system’s output voltage and frequency [37].
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Inverter V/F control is used for PV islanding operation and weak grid situations to
support system voltage and frequency. When employing a master–slave control strategy,
the V/F control needs to support the voltage and frequency of the entire network [38].
Generally, inverters can be converted from grid-connected mode to islanding mode when
the public grid is rather weak or when the power quality is insufficient to fulfill the demands
of the load [39]. The smooth transition from PQ control to V/F control is the core of this
conversion [40], but achieving effective real-time detection of the grid state and timely
control of the inverters is challenging [41]. In addition, the stability issues that occur during
the switching process need to be further explored. Advanced technologies such as feature
extraction, big data, and intelligent decision-making should be utilized for system better
control [42].

3.3. Droop Control

Droop control is implemented in PV inverters by simulating the droop characteristics
of the synchronous generator in a conventional power system [43,44]. Figure 7 shows the
droop curves, by which the system can regulate and distribute the active power via P/f
droop and the reactive power via Q/V droop. Taking the P/f droop as an example, as the
load increases, the operating point shifts from point A to point B from the droop curves.
Figure 7a shows that system frequency declines and more power is output for loads [45].
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The grid-connected inverter system with droop control is shown in Figure 8 [46]. The
amplitude and frequency of inverter output voltage are derived using the droop curves
illustrated in Figure 8. The closed-loop voltage and current control are used to improve
the system’s dynamic performance [47]. In general, droop control works as the first stage
of system power and frequency regulation. It cannot realize zero error control because of
the constant droop curve [48]. Therefore, implementing secondary control by redesigning
the droop curve to change its equilibrium points is necessary [49]. For instance, in the P/f
droop curve, the system frequency reduces when output power rises. Only if the output
power is the rated reference power can the frequency be stabilized at the reference point.
Therefore, the power reference should be controlled to adapt for the rated frequency point
by secondary control.

By designing different slopes of droop curves for parallel inverters, the active power
demanded by load can be distributed according to the capacity of different generation
units [50,51]. However, the line impedance between parallel inverters affects the distribu-
tion of active and reactive power [52]. The system’s frequency and voltage are influenced by
both active power and reactive power, which seriously affect the performance of traditional
droop control [53]. Optimizing droop control with intelligent algorithms for system better
control performance is an important research topic.
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4. Intelligent Optimization Control of PV System

Intelligent control such as fuzzy logic control (FLC), expert system control (ES), arti-
ficial neural networks (ANN), and adaptive neuro-fuzzy inference system (ANFIS) offer
significant advantages for dealing with highly nonlinear objects and uncertain mathemati-
cal models [54]. These methods can be utilized in the PV system to improve the system
stability and reliability. In particular, as the PV plant grows large and the power grid
becomes complex, it becomes difficult to accurately model and control the nonlinear and
multi-coupled PV inverter system [55]. By combining conventional control with intelligent
methods, the dynamic and static characteristics of the PV system can be improved without
the complex derivation of system-accurate mathematical models.

4.1. Fuzzy Optimization Control

Among various intelligent control methods, fuzzy logic control (FLC) is relatively
mature and is very suitable for objects whose dynamic characteristics are not easy to
obtain [56]. FLC is less sensitive to parameters and load variations and outperforms
conventional controllers in terms of response time, stability time, and robustness [57]. FLC
generally does not require insight into the detailed structure and parameters of the system,
nor does it require a mathematical model to describe the system precisely [58]. The control
logic can be constructed using a fuzzy language and a suitable membership function, and
when well designed, FLC often outperforms other more complex controllers.

The application of FLC cooperated with PI control in a PV inverter system is given
in Figure 9, where r(t) is the reference value (the current reference in the d-q frame or the
dc voltage reference) and y(t) is the actual value. The error between the reference and the
actual value is e(t), with its change rate expressed as de/dt. FLC mainly consists of three
parts, i.e., fuzzification, fuzzy interference, and defuzzification. The results output by FLC
are ∆Kp and ∆Ki, which are used to adjust PI controller parameters Kp and Ki.

The detailed implementation of FLC optimization in PV inverter systems can be
roughly divided into 3 steps [59]. Step 1: Design a conventional linear digital controller.
Step 2: Convert this controller into a fuzzy logic implementation. Step 3: Implement the
fuzzy logic using the heuristic knowledge of the system and trial-and-error methods to
improve the controller’s performance.
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FLC can also combine with PR controller to generate fuzzy PR for control optimization
of ac components such as current and voltage in a α-β frame [60]. Fuzzy PI and PR
enhance the inverter’s ability to resist unexpected disturbance and realize self-adaptation
compared with conventional PI and PR controllers. It has been demonstrated that FLC has
a superior performance to traditional controllers when it comes to lowering system voltage
and current overshoot and improving system dynamic performance [61]. However, the
membership function and fuzzy rules have a significant impact on system control accuracy
and are in need of further investigation [62]. Furthermore, complicated grid conditions
such as large grid impedance and reactive power compensation have not been taken into
account. In fact, as the scale of the PV system increases, the performance of FLC is severely
affected by complex grid conditions. In particular, when there are no static operating points,
if and how FLC can improve system stability needs to be further studied.

FLC can be employed directly within the current and voltage control without being
combined with traditional controllers, but directly substituting PI and PR controllers [63,64]
introduced FLC into the synchronous control part to improve the synchronization stability
of inverters. The implementation is shown in Figure 10. A hybrid scheme is formed by
combining fuzzy control with conventional PI control in phase-locked loop. The difference
is that this FLC is not designed to regulate PI parameters but works as an independent
controller to control the system directly. The delayed signal cancellation (DSC) is a pre-filter
that extracts the positive sequence components of the grid voltage [65]. Dip detection
enables the single-input fuzzy logic controller (SFLC) in time by monitoring grid voltage
dips. The hybrid logic controller (HLC2) enables logic switching between DSC and SFLC.
This control scheme can prevent the synchronization instability under voltage dips and sig-
nificantly increases the inverter synchronization speed. However, the internal mechanism
of how fuzzy control increases synchronization stability and the efficiency for complex
systems has to be further analyzed and proved.

In summary, FLC can improve the dynamic and static performance and is therefore
widely used in many control loops of the PV inverter system. In particular, for some
nonlinear and complex coupling situations, fuzzy control can avoid the difficulties of
system modeling and facilitate control optimization. However, the performance of fuzzy
control is strongly influenced by the fuzzy logic and the membership function, and the
design process requires a high level of experience; therefore, the design guidelines should
be further investigated for PV inverter systems, especially with regard to the complex
grid-connected situation.



Energies 2024, 17, 1571 9 of 18Energies 2024, 17, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 10. Diagram of hybrid-scheme controller. 

4.2. Expert System Optimization Control 
Expert system usually refers to a class of computerized intelligent program systems 

with expertise and experience [66]. The current development of expert system design is 
relatively mature, however, its application in PV inverter system is still in its infancy [67]. 
The fundamental structure of an expert system is illustrated in Figure 11. 

 
Figure 11. Block diagram of basic expert system control. 

Expert systems try to control the system using the knowledge of domain experts [68]. 
Knowledge engineers translate domain specialists’ knowledge into expert systems [69]. 
Knowledge can be divided into two categories: the knowledge base (i.e., the information 
that supports expert knowledge) and data base (i.e., information that is supported by data, 
facts, and statements) [67]. The knowledge base consists of a set of generative rules [70]. 
The inference engine attempts to validate the rules using either forward-linking or back-
ward-linking methods. 

Expert PID control is a typical application of expert systems in PV inverters optimi-
zation control. Similar to fuzzy PI, expert PID control in PV inverters takes advantage of 
experts’ experience to modify PID parameters [71]. Because of the introduction of expert 
experience, inverter systems with expert PID generally have better stability and more dy-
namic performance [72]. However, as the controller parameters are adjusted according to 

Hybrid logic 
controller 

HLC2

DSC-PLL

DSC

abc

kin kout
＋
 ＋

ud
uq

uq
+ SFLC

ωo

θPLL

SFLC Scheme 
Enable

SYNCH

DIP
Detection

uq
+

ud
+

θPLL

uabc

dq

Dip 
Detector

1
s

Inference 
EngineUser

Knowledge

User 
Interface

Explanation
Sub-system

Workspace

Knowledge 
Base

Database

Knowledge
Acquisition

Domain 
Expert

Figure 10. Diagram of hybrid-scheme controller.

4.2. Expert System Optimization Control

Expert system usually refers to a class of computerized intelligent program systems
with expertise and experience [66]. The current development of expert system design is
relatively mature, however, its application in PV inverter system is still in its infancy [67].
The fundamental structure of an expert system is illustrated in Figure 11.

Energies 2024, 17, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 10. Diagram of hybrid-scheme controller. 

4.2. Expert System Optimization Control 
Expert system usually refers to a class of computerized intelligent program systems 

with expertise and experience [66]. The current development of expert system design is 
relatively mature, however, its application in PV inverter system is still in its infancy [67]. 
The fundamental structure of an expert system is illustrated in Figure 11. 

 
Figure 11. Block diagram of basic expert system control. 

Expert systems try to control the system using the knowledge of domain experts [68]. 
Knowledge engineers translate domain specialists’ knowledge into expert systems [69]. 
Knowledge can be divided into two categories: the knowledge base (i.e., the information 
that supports expert knowledge) and data base (i.e., information that is supported by data, 
facts, and statements) [67]. The knowledge base consists of a set of generative rules [70]. 
The inference engine attempts to validate the rules using either forward-linking or back-
ward-linking methods. 

Expert PID control is a typical application of expert systems in PV inverters optimi-
zation control. Similar to fuzzy PI, expert PID control in PV inverters takes advantage of 
experts’ experience to modify PID parameters [71]. Because of the introduction of expert 
experience, inverter systems with expert PID generally have better stability and more dy-
namic performance [72]. However, as the controller parameters are adjusted according to 

Hybrid logic 
controller 

HLC2

DSC-PLL

DSC

abc

kin kout
＋
 ＋

ud
uq

uq
+ SFLC

ωo

θPLL

SFLC Scheme 
Enable

SYNCH

DIP
Detection

uq
+

ud
+

θPLL

uabc

dq

Dip 
Detector

1
s

Inference 
EngineUser

Knowledge

User 
Interface

Explanation
Sub-system

Workspace

Knowledge 
Base

Database

Knowledge
Acquisition

Domain 
Expert

Figure 11. Block diagram of basic expert system control.

Expert systems try to control the system using the knowledge of domain experts [68].
Knowledge engineers translate domain specialists’ knowledge into expert systems [69].
Knowledge can be divided into two categories: the knowledge base (i.e., the information
that supports expert knowledge) and data base (i.e., information that is supported by
data, facts, and statements) [67]. The knowledge base consists of a set of generative
rules [70]. The inference engine attempts to validate the rules using either forward-linking
or backward-linking methods.

Expert PID control is a typical application of expert systems in PV inverters optimiza-
tion control. Similar to fuzzy PI, expert PID control in PV inverters takes advantage of
experts’ experience to modify PID parameters [71]. Because of the introduction of expert
experience, inverter systems with expert PID generally have better stability and more
dynamic performance [72]. However, as the controller parameters are adjusted according
to expert experience, the knowledge and inference process plays an important role in
system design.
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4.3. ANN Optimization Control

Compared to fuzzy control and expert control, ANN control can approximate any
nonlinear continuous function with arbitrary accuracy and is highly adaptable to complex
conditions with self-learning capability for multi-objective control [73–76]. In addition,
ANN distributes and stores information in the neurons within the neural network, which
is highly robust and fault tolerant [77]. The characteristics of ANN, such as its self-learning,
self-organizing and self-adaptive capabilities, can help to handle uncertain or unknown
systems [78].

Figure 12 shows the control of the PV inverters with ANN, in which the internal
current control loop is realized by a neural network. The current reference is generated
by an external power loop, and the ANN controller adjusts the actual feedback current to
follow the reference current.
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Figure 12. The neural-network-based PQ control of PV inverters.

The ANN has four layers in terms of network structure: one input layer, two hidden
layers, and one output layer [79]. The input layer contains four inputs, two of which
include the error vector edq(k), and the other two include the integration of the error sdq(k),
which are respectively defined as:{

edq(k) = iL_dq(k)− i∗L_dq(k)
sdq(k) =

∫ k
0 edq(k)dt

(1)

The output layer is v∗inv_dq(k). The ratio of the inverter output voltage vinv_dq to the
ANN output voltage v∗inv_dq is the pulse width modulation (PWM) gain, noted as kPWM,
then vinv_dq is:

vinv_dq(k) = kPWM·A(edq(k), sdq(k), ω) (2)

where A(edq(k), sdq(k), ω) denotes the mathematical model of the neural network and w is
the neural network weight vector.

The utilization of ANNs in a PV inverter system can solve the difficulties of designing
controller parameters for the complex coupled nonlinear system [80,81]. On the other
hand, training an ANN demands a large amount of data and is time consuming [82]. The
challenge of designing a neural network is determining how to maximize the parameters
that need to be sought in the network, assuming that the number of layers and the number
of neurons in each layer have been established [83]. It has been suggested that the gradient
descent optimization (GDO) approach can be used to train the MLP (multilayer perceptron)
controller (MLPC) [84]. On this foundation, ANN can be utilized much more profitably
and can be more resilient than sliding mode controllers [85].

Fuzzy logic and neural networks are two common intelligent control techniques that
have their own drawbacks in practice. Fuzzy neural networks combining the benefits
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of fuzzy control and neural network are one of the hottest areas of intelligent control
research [86].

4.4. Adaptive Neuro-Fuzzy Algorithm Optimization

Using fuzzy control principles and combining the advantages of both FLC and ANN,
the neuro-fuzzy controller has many advantages, such as the learning capabilities of neural
networks, parallel knowledge/data processing capabilities, and human fuzzy logic reason-
ing capabilities [87–90]. The ANFIS (adaptive neural network fuzzy inference system) is a
fuzzy inference system based on the Takagi–Sugeno model [91]. The fundamental fuzzy
control processes (i.e., fuzzification, fuzzy inference, and defuzzification) are implemented
by neural networks [92]. The learning mechanism of neural networks can extract rules from
input and output sample data to create an adaptive neuro-fuzzy controller [93]. The system
can develop toward self-adaptation, self-organization, and self-learning by self-adjusting
the fuzzy inference control rules using offline training and online learning algorithms.

4.4.1. Adaptive Neuro-Fuzzy Optimization for PV Inverter with PQ Control

By combining ANFIS with traditional PID controller the adaptive fuzzy neural PID
control can be implemented in a PV inverter system to address the issues of system instabil-
ity and long response times [94,95]. The ANFIS-based PID control in the PV inverter system
is given in Figure 13. The membership function and rule base of the fuzzy controller is
determined by ANFIS using ANN, and the PID control parameters are modified online [96].
The external loop controls the voltages of the dc bus and the point of common coupling
(PCC) to generate the current reference on the d-q axis, which are denoted, respectively, as
I∗d, I∗q. By managing the grid-connected current, the internal control loop regulates the
system power. There are four ANFISPIDs (ANFIS-based PID controls) in the inner and
outer control loops whose outputs are the PID parameters and inputs are the error and
error change rate of control objects such as the dc voltage, PCC voltage, and active and
reactive currents: 

Error1 = Vdc − V∗
dc

Error2 = VPCC − V∗
PCC

Error3 = I∗d − Id
Error4 = I∗q − Iq
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ANFIS controls the PV system without an accurate system model. Combined with
conventional PID, ANFIS allows for faster online parameters modification and greater
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generalization capability [97]. However, the ANFIS-derived membership function is not
compatible with multiple control problems in complex conditions, such as control conflicts
within the grid-connected inverter, large line distribution impedance, phase sequence
asymmetry, and transient instability, etc.

A new adaptive neuro-fuzzy control method has been proposed in [98]. The main
objective is to simultaneously achieve smooth bi-directional currents control and nonlinear
unbalanced load compensation. However, in practice, any time a new unit is added, the system
must re-learn each unit’s state information, which severely restricts its practical application.

4.4.2. Adaptive Neuro-Fuzzy Optimization for a PV Inverter with Droop Control

As previously indicated, ANFIS generates input/output mapping using membership
functions (MFs) and appropriate input/output (I/O) mappings based on fuzzy if–then rules.
The settings of MF can be altered through learning. During this process, the fuzzy rules are
modified by appropriate neural network training without any knowledge of membership
functions and rules [99]. The configuration of the membership function depends on their
parameters, which are automatically selected by ANFIS, and the appropriate I/O data
are used to build the FIS. Compared with conventional droop control, the FIS has two
inputs: active power (P) and reactive power (Q), and the output is either the frequency
(f) or the voltage (V). A typical structure for PV inverters based on ANFIS is shown in
Figure 14, Among them, the symbol “&” represents the sum of the input signal, and the
symbol “N” represents the ratio of the triggering intensity of the i-th node to the sum of all
rule triggering intensities.
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Figure 14. Droop control of inverter based on ANFIS.

This is a model-free droop control which can eliminate the dependence of conventional
droop control on line parameters. It has been proved that the system with ANFIS has a more
ideal dynamic performance and higher reliability with regard to sharp changes in active
and reactive power [100]. From the control point of view, the essence of ANFIS is a type
of nonlinear system control. Theoretically, ANFIS can be implemented under nonlinear
working conditions and any nonlinear mapping with arbitrary accuracy. However, due
to the huge amount of computation of the neural network, the contradiction between the
calculation time and the control accuracy of ANFIS under various operating conditions
needs to be resolved.

Summarizing the above discussion, Table 1 shows the advantages and disadvantages
of the different control methods. Most traditional control methods are simple in design but
struggle to cope with complex nonlinear coupling systems. Intelligent control methods
have great robustness and adaptability to different systems. However, intelligent control
methods rely heavily on training data and practical experience.
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Table 1. Comparison of different control methods.

Methods Advantages Disadvantages

Traditional

PI

3 Simple and classical
3 Convenient to configure
3 Common in industrial applications
3 Good real-time control performance
3 No static error in tracking DC signals

3 Need for accurate model
3 Poor robustness and adaptability
3 Struggles to handle complex control

situations

PR
3 Simple and classical
3 Convenient to design parameters
3 No static error in tracking AC signals

3 Need for accurate model
3 Poor robustness and adaptability
3 Sensitive to grid parameters

RP

3 Can mitigate dead-time harmonics
3 No static error in tracking periodic

signals
3 Good with distorted nonlinear loads
3 Can mitigate periodic distortions

3 Poor dynamic performance
3 Time delay

Intelligent

FLC

3 Free requirement of system model
3 Good robustness and adaptability
3 Simple implementation
3 Good real-time control performance

3 Poor static control performance
3 Need for engineering experience
3 Lack of mathematical model and

analysis

ES 3 Good robustness and adaptability
3 Mature design approaches

3 Need for expert experience
3 Reliant on knowledge and inference

process

ANN

3 Good robustness and adaptability
3 Good resilience and accuracy
3 Suitable for complex coupled nonlinear

systems
3 Self-learning capability for multiple

objectives

3 Difficult to train
3 Reliant on data set
3 Lack of mathematical model and

analysis

ANFIS

3 Good robustness and adaptability
3 Good resilience and accuracy
3 Good real-time control performance
3 Self-learning capability for multiple

objectives

3 Difficult to train
3 Reliant on data set
3 Need for engineering experience
3 Lack of mathematical model and

analysis

5. Research Prospects

As a result of the development of cloud computing, big data, and other advanced
technologies, artificial intelligence is now widely used in all walks of life. Low-carbon and
intelligence are the mainstream characteristics of modern power systems. Power electronics
combined with intelligent control help PV systems to be observable, controllable, and
adjustable. However, the degree of intelligence of PV systems is still at a low level. The
potential of intelligent control to improve PV system power quality and stability has yet to
be explored. Based on our review, this paper presents the following research prospects.

The function of PV inverters can be further improved by intelligent optimization.
Grid-connected PV inverters can be controlled in grid-following and grid-forming mode.
Traditionally, PV inverters work in grid-following mode to output the maximum amount
of power by controlling the output current. However, grid-forming inverters can support
system voltage and frequency and play an important role in weak power grids. Inverters
with two operation modes are attracting more attention. Determining how to adaptively
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switch two control modes and improve system stability according to the grid conditions
using intelligent optimization needs further investigation.

The intelligent optimization should be deployed in a way that affects the system’s
overall performance and makes the PV system an intelligent unit. Current optimization
mostly concentrates on improving the performance of a certain control loop. Further
study is required to determine how to coordinate and optimize the system to solve the
interaction problems between different control loops and improve the system’s global
control performance. A centralized or upper intelligent controller deserves more attention.

More intelligent algorithms should be introduced and modified to improve PV systems’
intelligence and hybrid control. Combining these systems with traditional and intelligent
methods will be a good choice in future research. Even for intelligent controllers with many
benefits in dealing with complex and nonlinear system control problems, their performance
is largely reliant on the design process. The design of fuzzy rules and membership functions
in fuzzy control has yet to be further explored to improve the system’s response speed
and accuracy. Data processing techniques such as real-time data gathering and feature
extraction pose challenges for ANN and other related control methods that require a lot
of data support. The cooperation of intelligent control and traditional control will be an
important research topic for a long time. The shortcomings of intelligent control, such as
that it is time consuming and hard to implement in real time can be solved with the help of
traditional control. On the other hand, intelligent control can be utilized to make up for
the problems of traditional control, such as difficulties in system modeling and adaptive
regulation of controller parameters.

Deeper and more comprehensive intelligent control should be investigated with
regard to an intelligent PV system. Although the performance of the PV system has
been improved by intelligent optimization, there is still a long way to go before we can
achieve a fully intelligent PV system. Many aspects of PV systems should be taken into
consideration, including (but not limited to) the intelligent control of power converters,
the intelligent operation and protection control system, and the intelligent sensing and
detection technologies. Furthermore, the intelligent distributed PV system with the demand
response, user-side intelligent housekeepers, and optimal power flow will contribute
significantly to PV system promotion and application.

6. Conclusions

A centralized and distributed PV system is an important part of a renewable power
system. Intelligent control of PV systems helps to constitute the smart grid and energy
internet. However, the current research on intelligent PV systems is still in its infancy.
In this paper, the research on typical control and intelligent optimization of PV inverter
systems is reviewed. Future development and research topics are discussed and summa-
rized. The combination of intelligent methods and traditional control is a good choice for
improving these systems’ performance. Multi-layer and multi-aspect intelligent control
can be investigated to improve the intelligence and control of PV systems. The research in
this paper can provide a reference for the intelligent development and stability control of
PV systems.
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