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Abstract: Integration of inverter-based distributed energy resources (DERs) is reshaping the landscape
of distribution grids to fulfill the socioeconomic, environmental, and sustainability goals. Addressing
the technological challenges of DER grid integration requires an adaptive communication layer for
efficient DER management and control. This transition has given rise to a cyberphysical system (CPS)
architecture within the distribution system, causing new vulnerabilities for cyberphysical attacks.
To better address potential threats, this paper presents a comprehensive risk assessment framework
for cyberphysical security in distribution grids with grid-edge DERs. The framework incorporates
a detailed CPS model accounting for dynamic DER characteristics within the distribution grid. It
identifies vulnerabilities in DER communication systems, models attack scenarios, and addresses
communication latency crucial for inverter control timescales. Subsequently, the quantification of
attack impacts employs an attack probability model including both the vulnerability and criticality of
cyber components. The proposed risk assessment framework was validated through testing on the
modified IEEE 13-node and 123-node test feeders.

Keywords: cyberattack; cyberphysical system; cybersecurity; grid-edge; inverter-based DER; risk
assessment; virtual oscillator controller (VOC)

1. Introduction

The traditional distribution grid is shifting from a unidirectional electricity flow model
to an active distribution grid with bidirectional electricity flow capabilities. This transition is
driven by the imperative to address environmental, socioeconomic, and sustainability goals,
resulting in a distribution grid with high penetration of the distributed energy resources (DERs)
at the edge. These DERs facilitate the incorporation of diverse renewable energy sources into
the primary grid through interfaces like synchronous generators, induction generators, and
inverter-based resources. Notably, inverter-based DERs have gained considerable traction due
to specific attributes, including improved power quality by minimizing harmonics, control of
reactive power and voltage across a wide power factor range, and rapid responses for tasks
like high-frequency regulation, quick switching, and fault isolation.

Inverter-based DERs present challenges despite their advantages [1]. The first challenge
involves system reliability, primarily stemming from the inherent uncertainty in renewable
energy sources. Despite employing multiple forecasting methods to estimate inverter output,
accurately predicting the variance between forecasted and actual values remains elusive.
In networks with high penetration of DERs, this cumulative forecasting error can lead to
significant reliability issues, particularly when reserve capacity is insufficient [2]. The second
challenge pertains to system stability. Inverter-based DERs have low inertia [3], which can di-
minish the system stability margin. Consequently, disturbances that are typically manageable
in traditional synchronous machine-dominated grids, such as load switches, system reconfig-
uration, and short-term faults, may provoke stability concerns in DER-dominated grids. This
will sometimes result in large-scale blackouts. The third challenge revolves around system
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protection. Existing protection devices are primarily designed to respond to high-amplitude
fault currents, a characteristic common in synchronized machines. However, fault currents in
inverters are typically of smaller magnitude, potentially failing to activate protection devices
promptly [4]. Consequently, faults in inverters may not be promptly isolated, leading to
voltage or frequency violations and potentially triggering cascade failures.

To overcome these challenges, an efficient communication network is essential for real-
time monitoring and control of DERs. This network enables bidirectional data exchange,
handles increased sensors and actuators, adapts to the complex topology of dispersed
DERs, and allows third-party involvement for collaborative efforts among stakeholders,
such as DER owners, manufacturers, and aggregators [5].

Distribution grids incorporating a communication network for DER management and
control manifest a cyberphysical system (CPS), which has significantly expanded the potential
cyberattack surfaces [6–8]. Slower safety mechanisms and protection devices behind the
expanded cyber networks have made vulnerabilities easier to exploit. Moreover, the require-
ment to involve DER manufacturers, owners, and third parties can lead to incomplete or
underdeveloped authorization and access protocols, posing a substantial risk to distribution
network stability and reliability. Therefore, an extensive risk assessment framework becomes
crucial for ensuring the cyberphysical security of distribution grids with grid-edge DERs.

A detailed CPS model embedded with the interdependency of cyber and physical
elements is crucial for risk assessment, ensuring precise evaluation of the potential attacks’
impact [9]. Simultaneously, calculating the likelihood of these attacks is equally important.
Given the defense resources constraints, identifying the most frequent attacks becomes
imperative. An accurate attack probability model guarantees the optimal selection of
defensive strategies, thereby fortifying CPS resilience.

Several CPS risk assessment methods have been proposed. Some of them deploy con-
ventional probability evaluation methods. For instance, [10] introduced a cyber risk strategy
focused on protection systems. This approach uses Monte Carlo methods to simulate compro-
mised protection components, identifying cascade failures and load-shedding effects. Ref. [11]
introduced an attack graph-based method to evaluate the cyber risk of the cyberphysical
power system. In [12], authors used the stochastic game theory to model attacker and de-
fender behaviors in order to assess cybersecurity risks. The works from [13,14] employed
the Bayesian network to address CPS cyberphysical risks related to system vulnerabilities.
Additionally, emerging learning-based methodologies have gained popularity in recent years.
These methods, compared to conventional approaches, are more suited for large-scale system
analysis. For instance, [15] utilized deep reinforcement learning to find optimal network tran-
sition policies from the attacker’s perspective, evaluating potential attack impacts. Ref. [16]
presented a rank algorithm based on learning methods to achieve real-time risk evaluation.
However, they typically necessitate large amounts of data for the training set, which can be
challenging to collect in real-world scenarios, posing feasibility issues.

Nevertheless, these works in the literature are generally based on the steady-state
model, which typically treats DER behavior as PV or PQ buses and overlooks crucial
DER functionalities outlined in the IEEE 1547-2018 standard [17], such as Volt-Var support
and ride-through capabilities. Consequently, these works fail to capture the dynamic
behavior of DERs, potentially leading to inaccurate results. Therefore, a comprehensive
cyberphysical system (CPS) model incorporating dynamic DER behavior is essential for
accurately assessing the potential impact of cyberattacks on DERs.

Moreover, current frameworks often oversimplify the communication layer by employ-
ing time-static models or treating potential cyberattacks merely as contingencies, assessing
their impacts through contingency analysis. However, with the integration of inverter-based
DERs, communication latency can significantly reduce the system stability region, espe-
cially in scenarios with high DER penetration [18,19]. This emphasizes the need to consider
communication system latency for precise cyber risk assessment within such systems.

Furthermore, within the impact quantification, it is crucial to link the attack probability
to both the “cost” (vulnerability) and “reward” (criticality) of a component. Previous studies
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have often focused on one of these aspects or assumed a fixed probability distribution for
attack likelihood, which might not accurately reflect current attack patterns.

To address the aforementioned limitations, this work introduces a novel cyber risk as-
sessment framework for active distribution grids with inverter-based DERs. The innovative
steps within the proposed framework are as follows:

1. A DER-explicit distribution grid model accounting for dynamic attributes of inverter-
based DERs.

2. A high-fidelity DER communication layer model with communication latency to
facilitate the precise execution of cyber layer attacks.

3. A cyberattack risk quantification method based on an attack probability model that
accounts for both cyber component vulnerability and criticality.

The paper structure is as follows: Section 2 outlines the proposed risk assessment
framework. Section 3 describes the DER-explicit CPS model. Section 4 delineates cyber-
system vulnerabilities and cyberattack models. Section 5 introduces the method for risk
quantification. Simulation results and conclusions are discussed in Sections 6 and 7.

2. Proposed Risk Assessment Framework

The proposed risk assessment framework comprises three main sections, as shown in
Figure 1: (i) cyberphysical system modeling, (ii) threat identification with cyberattack models,
and (iii) impact quantification. This framework enables rapid snapshot analysis, focusing on
steady-state evaluation. Moreover, due to the integration of the inverter dynamic model, it
also facilitates accurate simulation of dynamic behavior, allowing for a detailed exploration of
the potential impact of cyberattacks on the physical system. This framework has a modular
structure, offering scalability and flexibility to incorporate other modules. Once the system
configuration is collected, this framework can be tailored accordingly. It enables the assessment
of risks posed by specific attacks and identifies the most vulnerable components in the cyber
layer. Consequently, it provides valuable insights for crafting effective defense policies.

Cyber-Physical System 
Modeling

❑ Control algorithm layer.

❑ Physical system layer.

❑ Communication system layer.

Threat Identification

❑ Identifying vulnerabilities.

❑ Determining attack scenarios.

❑ Modeling attack scenarios.

Impact Quantification

❑ Impact metric.

❑ Attack probability index.

Figure 1. Proposed risk assessment framework.

2.1. Cyberphysical System Modeling

The first and foremost important section is the CPS model of a distribution grid with
inverter-based DERs. The proposed cyberphysical distribution system (CPDS) includes
three layers: (i) the control layer, (ii) the physical system layer that embodies a DER-explicit
distribution grid, and (iii) a communication layer manifesting interaction among the control
and physical layers.

The optimal power flow (OPF) and load-sharing control represent examples of control
algorithms tailored to achieve specific control objectives in physical system operation. It
is important to recognize that various other DER control algorithms can also be deployed
within this framework. However, different algorithms operate on distinct time scales and
may necessitate different data exchange patterns. Given the low inertia of inverter-based
distributed energy resources (DERs), these nuances are critical for accurately assessing risk,
underscoring the necessity of specifying them prior to conducting risk assessment.

A DER-explicit unbalanced distribution system constitutes the physical layer of CPDS.
With a focus on a distribution grid characterized by high DER penetration, the power-flow
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(PF) equations for the unbalanced distribution grid are utilized for steady-state analysis,
complemented by the virtual oscillator controller (VOC)-based dynamic inverter model for
dynamic analysis.

Finally, the communication layer within the CPDS employs a graph-based mapping
function that captures the data exchange patterns between the control and physical system
layers. This model also integrates time-stamp data for dynamic modeling and introduces
communication system latency, which is essential for accurately representing the system’s
dynamic characteristics.

2.2. Threat Identification

This section identifies potential threats to the DER communication network and as-
sesses their probable impacts. In this section, the first step is to collect the cyber layer
configuration, such as gateway info (manufacturer, software version) communication proto-
cols, and so on. Based on the given information, the system vulnerability can be identified
according to the vulnerability database. In this framework, the National Vulnerability
Database (NVD) is utilized for vulnerability identification. Given the variety of threats,
some could pose a risk to data confidentiality, potentially resulting in financial losses for
utilities or customers, and others have the capacity to disrupt grid operations significantly,
giving rise to concerns about public safety. This work primarily focuses on the latter cate-
gory of attacks. To analyze the impact of cyberattacks, a suitable attack model is developed
that aligns with the CPDS cyber model. This model can be integrated into the previously
proposed cyberphysical interdependency model, capturing the atypical cyber component
behaviors when attackers exploit vulnerabilities, leading to the execution of an attack.
Through simulation of the CPDS model, the propagation of such attacks can be identified,
thereby enabling determination of their potential impact on the physical layer.

2.3. Impact Quantification

To quantify impact, let i denote the cyber component index. The risk for the ith cyber
component being attacked is defined as follows:

Riski = Ip
i ∗ Dim

i (1)

Here, Dim
i represents the degree of impact, specifically the financial repercussions in

this work, which is caused by the ith component being compromised. This assessment is
facilitated by integrating the attack model with the proposed CPDS model, as discussed
earlier. The parameter Ip

i denotes the attack probability index, indicating the likelihood
of the ith node being targeted. This is grounded in a cost–reward decision-making model.
The associated “cost” reflects the “difficulty” of compromising a cyber node, established
based on a Bayesian network using vulnerabilities identified in the preceding section. The
“reward” is determined by the criticality of components, modeled as sensitivity in this study,
i.e., the extent of change in physical state variables when the cyber variable transmitted in
the component deviates from its desired value. This sensitivity is derived from analyzing
the cyberphysical model for a given attack type. The overall attack probability index is
calculated using the expected utility function, which amalgamates the “cost” and “reward”
from the attackers’ perspective.

In the subsequent sections, each topic will be introduced in detail.

3. Cyberphysical System Modeling

Figure 2 provides an overview of the CPS model. The proposed model comprises
three layers: (i) the control layer, (ii) the physical system layer representing a DER-explicit
distribution grid, and (iii) a communication layer illustrating the interaction between
the control and physical layers. These layers are depicted as time-dependent functional
modules. These modules interconnect through a closed-loop data flow, where data serve
as inputs and outputs for each module. Initially based on the static cyberphysical model
proposed in [20], we adapted it into a time-variant model to suit our low-inertia inverter-
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dominant CPS. Let t denote time and D(t) represent the measurement data collected at
time t, encompassing voltage, power information, etc., thus serving as the output of the
physical system layer at time t. Similarly, C(t) denotes the control command reflecting the
output of the control layer at time t, encompassing operational commands generated for
the inverter, such as real and reactive setpoints. The communication system layer further
divides into two submodules: the measurement data path module M1(t) and the control
command path module M2(t). These modules delineate the data flow pattern and time
latency. Consequently, for the M1(t) module, the output is denoted as D(t) · M1(t), which
becomes the input of the control layer. Similarly, C(t) · M2(t) refers to the output of M2(t)
module. At the same time, it also refers to the input of the physical layer. Thus, by properly
modeling the attacks, their propagation pattern and the potential impact can be derived
from this CPS model. More details about each layer are elaborated in subsequent sections.

Control Algorithm 

Physical System Model

Mapping Function 𝑴𝟏(𝒕)

Control algorithm layer

Communication system layer

Physical system layer

𝑪(𝒕)

𝑪 𝒕 ∙ 𝑴𝟐(𝒕)

𝑫 𝒕 ∙ 𝑴𝟏(𝒕)

𝑫(𝒕)

Mapping Function 𝑴𝟐(𝒕)

Figure 2. Architecture of the cyberphysical system.

3.1. Control Layer

In this work, two control algorithms will be analyzed based on the desired control
objective for the physical system operation.

3.1.1. Algorithm 1

The first control algorithm is the optimal power flow (OPF) [21], with updates every
15 to 30 min. The objective of this algorithm is to regulate DER output, thus minimizing
transmission-side power consumption costs and minimizing voltage deviations. Within
this control, the control command carries the information of active and reactive power
setpoints and is dispatched to each DER through the communication network. Let us
consider a three-phase unbalanced distribution grid with N buses and L lines, and a set of
G inverter-based DERs. The OPF problem can be formulated as follows:

min
PDER

g ,QDER
g

(
αPsub + β ∑

i∈N

(
|Vi| − |Vnom|

)2
)

subject to F (Vi, Pj,Qj) = 0

|Vmin| ≤ |Vi| ≤ |Vmax|
Pmin

j ≤ Pj ≤ Pmax
j

Qmin
j ≤ Qj ≤ Qmax

j

(PDER
g )min ≤ PDER

g ≤ (PDER
g )max

(QDER
g )min ≤ QDER

g ≤ (QDER
g )max

(Psub)min ≤ Psub, ≤ (Psub)max

(Qsub)min ≤ Qsub, ≤ (Qsub)max

i ∈ N , j ∈L, & g ∈ G

(2)
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In (2), α and β are weight coefficients, Vi refers to the complex voltage phasor of each
bus, and Pj, Qj indicate the real and reactive power of each line. The equality equations
set F refers to the power flow equation, where Psub, Qsub and PDER, QDER denote real and
reactive power from the substation and DER, respectively. The Vnom indicates the nominal
voltage value. Additionally, the superscripts “min” and “max” correspond to the lower
and upper limits of the respective variables and parameters.

3.1.2. Algorithm 2

In the second algorithm, the scenario assumes that the distribution-level OPF algorithm
is unavailable. Consequently, we treat the distribution grid as a single bus and execute
the OPF algorithm at the upstream or transmission control center. Control variables
are defined as real and reactive power at the point of common coupling (PCC) on the
distribution side. DERs are capable of load sharing [22] and regulating real and reactive
power at the substation level by exchanging output real and reactive power information
with neighboring units. At steady state, the real and reactive power at the PCC achieves
desired values, while the power ratio of each DER remains constant, as expressed in the
following equation:

PDER
g

(PDER
g )max =

PDER
k

(PDER
k )max

, ∀ g, k ∈ G (3)

3.2. Physical System Layer

A general mathematical model for an unbalanced distribution grid with inverter-based
DERs is presented here.

3.2.1. System Dynamic Model

The dynamic model of three-phase unbalanced distribution with inverter-based DERs
can be described by a set of differential-algebraic equations (DAEs) [23]:

ẋd = Fd
(
xd, xa, r, µ

)
0 = F a

(
xd, xa, r, µ

) (4)

Here, Fd : R(m+n+p+q) ×R → Rm denotes a set of differential equations representing
the dynamics of inverted-based DER generators, and F a : R(m+n+p) ×R → Rn represents
PF equations. The vectors xd ∈ Rm and xa ∈ Rn denote dynamic state variables (e.g.,
system frequency) and physical algebraic variables (e.g., voltage magnitudes and phase
angles), respectively. Finally, r ∈ Rp represents a vector of physical control variables (e.g.,
droop coefficients), and µ ∈ Rq is a vector of system parameters, e.g., nodal injections
including setpoints, i.e., PDER

g , QDER
g .

The DERs are modeled as virtual oscillator controller (VOC)–based inverters, with
multiple advantages compared to other control algorithms, such as droop or VSM [21].
The control framework is based on [24]. By leveraging a phase-decouple technology, this
framework is able to be employed in a highly unbalanced network. Figure 3 illustrates
the hierarchical inverter control framework (using phase a as an example). The inverter
is first operated in the synchronization mode. When the voltage and phase differences
between the grid and inverter are small enough, the inverter can be connected to the grid
and start working in GFL mode, where p∗a , q∗a are the active and reactive power set points
from the control layer. When operating in the load-sharing mode, p∗a , q∗a are replaced by the
neighbor’s power ratio.
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Synchronization Secondary 
control

Grid

VOC

inverter

PI

PI

PI

PI

GFL

Primary 
Control

Power link

Figure 3. The framework of VOC-based inverter control.

The VOC dynamics can be represented as follows:

d
dt

V =
σ

2c
(
V − β

2
V3)− kvKi

2cV
P

d
dt

θ = ω∗ − ω +
kvKi

2cV2 Q

β = 3α(k2
vσ)

−1

(5)

where V is the averaged terminal-voltage magnitude, and θ denotes the averaged phase off-
set. P and Q are the averaged active and reactive output power of the inverter, respectively.
α, σ and Ki are preselected design parameters. The regulation of the inverter is achieved by
continuously tuning two parameters, the voltage scaling factor kv and the virtual capacitor
c, based on the control objective from the secondary control layer.

3.2.2. Steady-State Model

Consider the three-phase unbalanced distribution grid introduced previously in the
section. A general expression for the ith bus complex voltages Vi can be written as a
function of nodal power injections Sj = Pj + jQj and complex voltage phasors Vj of all
buses in the network as follows:

Vi = V1 −
n

∑
j=2

Z ij

(Pj + jQj

Vj

)∗
, ∀(i, j) ∈ N , & i, j ̸= 1 (6)

where Z ∈ Cn×n is a dense matrix with complex entries. The structure of Z is defined
through grid topology and line parameters [25,26]. The (6) refers to the algebraic equation
set depicting load flows in the unbalanced distribution grid.

For the steady-state analysis, the power system model in (4) operates around its equi-
librium, which is defined by the solutions of the algebraic set by equating the derivatives
of dynamic state variables to zeros. Under normal operation, the slack bus (substation)
is treated as an infinite bus. However, because of the potential cyberattacks, the power
extracted from the substation may severely exceed the normal range and therefore lead to a
voltage drop. Thus, in order to pull voltages back to the normal range, some load shedding
may be required [27].

3.3. Communication System Layer
3.3.1. DER Communication Network Overview

A typical DER communication network [28] is provided in Figure 4. It is a three-layer
hierarchical communication network analogous to an SCADA system. The first layer is the
DERMS located at the utility control center. The DERMS is responsible for the operational
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control of all DERs. The second layer consists of DER clients enabling communication
with DERMS, as well as the communication among clients for data exchange to enable
distributed control. The local controller is the third layer, responsible for collecting field
device measurement data and regulating DER output. Generally, this layer only supports
local communication.

DERMS

DER Client

local DER 
controller

DNP3

Modbus

Figure 4. A DER communication network architecture.

3.3.2. Cyber Component Model

The cyber components can be divided into two groups, nodes and links. The nodes
refer to packet senders or receivers, which are capable of packet processing, including
DERMS, DER client, and local controller. The links refer to communication channels.

For a single server node, the arriving data packets will queue in the server’s buffer
and wait for the server to process. As a result, the time delay of cyber nodes includes the
processing and queuing delay. Assuming the server processing rate is µ and the packet
arrival rate is v, the average processing delay Dp and queuing delay Dq can be expressed
as follows [29]:

Dp =
1
µ

(7)

Dq =
v

µ(µ − v)
(8)

In the case of transmission-only nodes, the processing rate is much greater than the
arrival rate, i.e., µ >> v. Thus, the time delay is determined mainly by the processing delay.
For the processing nodes, as the server needs to decode packets and modify payload, the
processing rate µ is comparable to v. The dominant delay will be the queuing delay [30].
Therefore, assuming λ(t) refers to any cyber variable processed in cyber nodes, and f (t)
indicates the payload modification function with respect to λ(t), where t refers to time, the
nodes model F(t) can be expressed as follows:

F(t) :

{
λout(t) = λin(t − Dp) transmission node
λout(t) = f (λin(t − Dq)) processing node

(9)

For long-distance communication, the main delay of communication links is the
propagation delay, denoted as Dl , which depends on the distance between sender and
receiver, as well as the links’ propagation speed, which can be modeled as follows:

Dl =
Distances,r

Speed
(10)

Similarly, the link model P(t) can be defined as follows:

P(t) : λout(t) = λin(t − Dl) (11)
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3.3.3. Communication Network Model

In the earlier work cited as [20], the communication network was thoroughly char-
acterized using a time-invariant graph-based mapping function model. Recognizing the
pivotal impact of latency, this study progresses by formulating an advanced time-dependent
mapping function model, as depicted in the subsequent equation:

M(t) =
(
diag(P(t)⊙ F(t))

)⊤ · S (12)

where F(t) refers to the node function matrix, P(t) denotes the path function matrix, and
S indicates the starting node incidence matrix. Assuming the communication network is
modeled as a connected graph C = (V ,M), where V represents vertices (nodes) and M
denotes edges (links), the number of input and output streams are L and K, respectively.
Therefore, F(t) will be a V × K matrix depicting the functional list, and can be defined
as follows:

F(t) =


F1(t) F1(t) · · · F1(t)
F2(t) F2(t) · · · F2(t)

...
...

. . .
...

FV (t) FV (t) · · · FV (t)


V×K

(13)

where each row has the same elements, with each entry Fi(t) defined through (9). For a
multiple-input multiple-output (MIMO) node, it may contain multiple functions, which
can be described as follows:

Fn(t) = [F1
n(t) F2

n(t) . . . FOn
n (t)]⊤ (14)

where n refers to the node index, and On indicates the number of node functions.
Take Figure 5 as an example to illustrate the modeling process. This communication

network comprises six nodes and five links with two input and output streams, respectively.
For node 3, the target nodes are nodes 5 and 6, with the node function map as F1

3 (t) and
F2

3 (t). Similarly, for node 6, F1
6 (t) and F2

6 (t) denote the function corresponding to inputs
from node 3 and node 4, respectively. The node function matrix F(t) in this system is

F(t) =
(

F1(t) F2(t) F1
3 (t) F2

3 (t) F4(t) F5(t) F1
6 (t) F2

6 (t)
F1(t) F2(t) F1

3 (t) F2
3 (t) F4(t) F5(t) F1

6 (t) F2
6 (t)

)⊤
(15)

In1 1
3

62

51
4

3

42 5In2 Out2

Out1

Figure 5. An example of a communication network.

P(t) is an (L ∗ K)× V matrix, indicating the transmission path for each data packet,
which can be modeled as follows:

P(t) = [P1
1 (t) P2

1 (t) . . . PL
1 (t) . . . PL

K(t)]
⊤ (16)

where the superscripts and subscripts refer to the network input and output data streams,
respectively. Let Pl

k(t) be a 1 × V vector indicating the path from an input l to an output
k, then the vector sequence is consistent with columns of F(t). P(t) is determined by the
following steps:

1. Create a 1 × V null vector representing all the nodes. In this example, the initial P1
1(t)

is a 1 × 8 null vector, as there are two MIMO nodes.
2. Trace the transmission paths from the “In-1” to “Out-1”. Then, replace the “In-1”

starting node with 1, resulting in P1
1(t) = [1 0 0 0 0 0 0 0].



Energies 2024, 17, 1587 10 of 24

3. Next, replace the following arrival node with the corresponding path function P(t). In
this case, the next arrival node is node 3 through the “link-1” path, which corresponds
to a function of F1

3 (t). Thus, the path vector becomes P1
1(t) = [1 0 P1(t) 0 0 0 0 0],

where P1(t) is defined through (11).
4. Repeat step 3 until the end node is reached. P1

1(t) = [1 0 P1(t) 0 0 P3(t) 0 0] in
this example.

The transmission path matrix P(t) in this example will become

P(t) =


1 0 P1(t) 0 0 P3(t) 0 0
0 0 0 0 0 0 0 0
1 0 0 P1(t) 0 0 P4(t) 0
0 1 0 0 P2(t) 0 0 P5(t)

 (17)

Finally, we define the starting node incidence matrix S, which indicates the input
starting node configuration for each output, as follows:

S = [S1 S2 . . . SK]
⊤ (18)

where Sk is an L × L matrix with S1 = S2 = · · · = SK. Calculating Sk involves the
following steps:

1. Generate the initial Sk as a 2 × 2 null matrix.
2. Columns of Sk correspond to inputs. The first and second columns refer to “In-1” and

“In-2”, respectively.
3. Rows of Sk refer to the input starting nodes. The first and two rows outline node 1

and node 2, respectively.
4. Replace the exact starting node for each input with 1. Hence, the Sk will become

Sk =

(
1 0
0 1

)
(19)

Then, M(t) for the model in Figure 5 becomes(
F1(t)⊕ P2(t)⊕ F1

3 (t)⊕ P3(t)⊕ F5(t) 0
F1(t)⊕ P1(t)⊕ F2

3 (t)⊕ P4(t)⊕ F1
6 (t) F2(t)⊕ P2(t)⊕ F4(t)⊕ P5(t)⊕ F2

6 (t)

)
(20)

where the operators ⊙ and ⊕ can be referred to in [20].

4. Cyber Threat Identification

In this section, the common vulnerabilities of the typical DER cyber layer are identified,
followed by attack modeling.

4.1. Cyber Vulnerabilities in CPS

A comprehensive overview of cyber vulnerabilities within the CPS with high DER
penetration is summarized in Figure 6 [6,31,32]. Cyberattacks might target either nodes
or links. Among the cyber nodes, DERMS and DER clients usually perform strict security
policies as the compromised data server may impact multiple devices within the network.
However, due to software vulnerabilities or improper security configurations, the possibility
of the potential threat still exists. The most common attacks include jamming or denial-
of-service (DoS) attacks in order to disable accessibility and replay attacks or false data
injection (FDI) attacks aiming to destroy data integrity.

For local controllers, the accessibility policy only allows local communication, and the
most common attack is unauthorized access, including control parameters modification,
set-point modification, DER disconnection, etc., which is easy to accomplish and may lead
to severe consequences.
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Figure 6. An overview of CPS vulnerabilities and possible threats.

The most common attack on communication channels is the man-in-the-middle
(MITM) attack. Due to existing protocol vulnerability, the attackers may intercept data
packets transferred in the channel, which can delay or even drop the packets. Attackers
can modify the payload data if there is no or weak cryptographic policy.

The possible consequences of these attacks in the physical layer include increased grid
distribution losses, branch overflow, voltage or frequency violation, and stability issues.
Note that the latter three may trigger protection devices and lead to load shedding or
even blackouts.

Compared to compromising a cyber node, the impact of attacking the channel appears
to be limited. Therefore, attacks on nodes are more prevalent. In this study, we primarily
focus on node-based attacks.

4.2. Cyberattack Models

To incorporate the CPDS model for impact assessment, the attacks can be portrayed as
either the fundamental attacks listed below or through various combinations of these attacks.

4.2.1. Jamming Attack

A jamming attack is implemented by flooding the server buffer with junk packets (i.e.,
increasing the packet arrival rate v). If v remains below the server processing rate µ, the
server will function, albeit with extended time delays. In contrast, if v surpasses µ, the
superfluous junk packets will rapidly congest the server buffer, leading to the rejection of
subsequent incoming packets, thus transforming the jamming attack into a denial-of-service
(DoS) attack. Let λ(t) denote the original cyber variable, as presented before, and λ′(t)
denotes the compromised value. The jamming attack can be modeled as

λ′(t) =

{
λ(t − v

µ(µ−v) ) v < µ

∅ v ≥ µ
(21)

4.2.2. Replay Attack

Replay attacks encompass the retransmission of outdated data packets. Attackers
capture data packets previously sent by legitimate sources and subsequently resend these
obsolete packets to the intended recipients. Detecting such attacks proves difficult since
the outdated data often fall within normal ranges. Consequently, replay attacks can inflict
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significant disruptions on power grid operations. This type of attack can be depicted using
the following equation:

λ′(t) = λ(Ta), Ta ∈ (0, t) (22)

where Ta refers to the time stamp of replacing data packets, which is determined by attackers.

4.2.3. FDI Attack

False data injection (FDI) attacks involve attackers directly altering captured data
packet payloads to desired values. This manipulation is usually kept within a feasible
range to avoid bad data detection. However, executing an FDI attack requires a more
comprehensive understanding of system configuration and background knowledge. The
FDI attack can be represented as follows:

λ′(t) = λ(t) + δ(λ(t)) (23)

The attack signal δ(λ(t)) is usually generated by an external system devised by
attackers. This system aims to maximize the impact of the attack while avoiding detection
by the bad data detection algorithm, enabling stealthy attacks. Various example systems
are discussed in [33–35]. Once δ(λ(t)) is established, for linear systems, the compromised
node function can be reformulated as follows:

F′(t) :

{
λout(t) = λin(t − Dp) + δ(λin(t − Dp)) transmission node
λout(t) = f (λin(t − Dq)) + f (δ(λin(t − Dq))) processing node

(24)

Therefore, by substituting F′(t) with the original F(t), the FDI attack manifests in the
mapping function, and its impact can be estimated by simulating the integrated CPS model.
However, pinpointing δ(λ(t)) at a specific time t poses challenges. For risk analysis, a
practical approach involves considering the worst-case scenario by assessing the range of
δ(λ(t)). A commonly utilized method entails using the threshold value of the bad data
detection algorithm to approximate this range. Nevertheless, it is crucial to acknowledge
that this approximation might not comprehensively capture FDI attack characteristics. In
FDI-specific research, a more precise model of δ(λ(t)) should be developed.

FDI attacks can impact DER operations in various ways. When FDI targets real or
reactive power measurements, it alters the power flow within the system, potentially
leading to branch overflow or even necessitating load shedding. However, if the attack
targets voltage or frequency measurements, DERs may erroneously adjust terminal voltage
or frequency regulation, thereby introducing significant stability issues.

Once the attack type is selected and the corresponding parameters representing the
attack capability are determined, the attack model is established and can be integrated into
the cyber layer mapping function for impact prediction.

5. Cyberattack Risk Quantification

Risk quantification involves two aspects: impact quantification and attack probability
evaluation. In this study, impact quantification is represented by the impact degree Dim,
while attack probability is assessed using the attack probability index Ip. The following
sections will introduce each aspect in detail, respectively.

5.1. Cyberattack Probability Index Ip

The cyberattack probability index Ip is influenced by two crucial elements: component
vulnerability and component criticality [36]. Component vulnerability indicates how
easily a component can be compromised, while component criticality emphasizes the
potential severity of the consequences if it were to be compromised. In current research,
many methods for assessing attack probability focus on component vulnerability, but
they may not fully account for nuances in attacker behavior. Launching attacks can lead
to physical consequences and trigger alerts to operators, prompting defensive measures
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that hinder continuous attacks. When a component’s criticality is low, its impact may be
limited, causing attackers to perceive their previous efforts as futile. Therefore, attackers
often prioritize investigating component criticality before launching attacks to maximize
impact. Hence, it is crucial to consider component criticality for accurately modeling attack
probability levels.

From the standpoint of attackers, vulnerability pertains to the likelihood of successful
attacks, denoted as Pa, while criticality signifies the outcome of those attacks, labeled as Oa.
Attackers often prioritize components with substantial outcomes, even if the Pa value is
comparatively modest. In order to reflect this subjective preference, a utility function U(Oa)
is introduced. Hence, the expected utility of attacking component i, which can be denoted
as EUi, can be utilized to quantitatively assess the attack probability, as modeled below:

EUi = Pa
i ∗ U(Oa

i ) (25)

Therefore, a normalized attack probability index of the ith component, denoted as Ip
i ,

can be expressed as

Ip
i =

EUi
max{EU1, EU2, ..., EUN}

. (26)

The following sections will introduce the derivations of the likelihood of successful
attacks Pa and attack outcome utility U(Oa), respectively.

5.1.1. Likelihood of Successful Attacks Pa

The probability of a successful attack of node i, which is denoted as Pa
i , is determined

through a Bayesian network. The following steps are employed to compute Pa
i :

1. Assume that node i has K vulnerabilities. Let exploitabilityk denote the exploitability
score of the kth vulnerability, as defined in the standard vulnerability evaluation
system (CVSS). The exploitable probability for the kth vulnerability Pexp

k can be
derived by the following equation [37]:

Pexp
k =

exploitabilityk
3.9

(27)

2. Let binary variable Vk indicate whether the kth vulnerability is exploited. Thus, the

attack condition, denoted as
→
V, can be formed as [V1, ..., Vk, ..., VK]. The likelihood of

ith component being compromised under condition
→
V can be expressed as,

P(i|
→
V) = 1 −

K

∏
1
(1 − Pexp

k ∗ Vk). (28)

3. Let P(
→
V) denote the prior probability of condition

→
V. The probability of successful

attacks Pa
i is formulated as

Pa
i = ∑

{
→
V}

P(i|
→
V) ∗ P(

→
V). (29)

The detailed description can be found in [13].

5.1.2. Attack Outcome Utility U(Oa)

Estimating the precise amount of lost load before executing an attack presents chal-
lenges due to the intricate protection and operational strategies in place. An alternative
approach is to gauge the impact of an attack on the ith component through its sensitivity,
which signifies the change in a physical state variable in response to alterations in the
cyber variable λi. In this study, we choose to employ bus voltages V as the selected state
variable, as the voltage is a key factor affecting DER operation status according to IEEE
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1547. Consequently, the attack outcome can be quantified using the cyber component
sensitivity ∇

λi
V, representing the ratio of voltage deviation to the cyber variable deviation.

It is important to note that the physical layer deviation in this work pertains to bus voltages,
which may vary across buses. We select the maximum value as the attack outcome, as
shown in the following equation:

Oa
i = max(∇

λi
V) (30)

where ∇
λi

V is determined as follows:

∇
λi

V =
∂V
∂λi

=
∂V

∂Inphy
∂Inphy

∂λi
(31)

where Inphy refers to the physical layer input. In this work, it refers to the control com-
mand. The first term pertains to the physical system sensitivity, denoting the sensitivity
of bus voltage phasors with respect to the control command. To compute physical system
sensitivities, we differentiate the complex voltage phasor Vi with respect to a scalar pa-
rameter ρ. Consequently, the sensitivities can calculated by solving the following system
of equations:

∂V
∂Inphy :=


∂Vr

i
∂ρ

∂Vm
i

∂ρ

 =


Re
[

∂Vi
∂Vr

k

]
Re
[

∂Vi
∂Vm

k

]
Re
[

∂Vi
∂S∗

i

]
Im
[

∂Vi
∂Vr

k

]
Im
[

∂Vi
∂Vm

k

]
Im
[

∂Vi
∂S∗

i

]



∂Vr
k

∂ρ

∂Vm
k

∂ρ

∂S∗
i

∂ρ


(32)

Here, Vr
i and Vm

i denote the real and imaginary components of the complex voltage
phasor Vi, where Si represents the complex nodal injections. The index k ∈ N and
parameter ρ from (32) correspond to Inphy, which represents the control command derived
from the control function layer. In the case of the OPF algorithm, the input corresponds
to the real and reactive power setpoints of DERs. For the load-sharing algorithm, the
input would involve the power at the grid-side PCC or the power ratio of other DERs.
It is important to note that these inputs result in differing physical sensitivities. While
not explicitly discussed here, the sensitivities in Equation (32) were computed using the
QR-decomposition-based algorithm, which enables fast calculations even for a large-scale
test case.

The second term in (31) represents the cyber system sensitivity, illustrating how
alterations in the communication layer output, influenced by changes in λ at the ith node,
lead to deviations in the physical layer input. Cyber sensitivity is defined based on the
preceding mapping function, which can be obtained by the below equation:

∂Inphy

∂λi
=

dMi(λi)

dλi
(33)

where Mi refers to the mapping function from node i to physical layer input. As illustrated

in Figure 5, the 1st node cyber sensitivity will be dInphy
1

dλ1
= P

′
2 ∗ (F1

3 )
′ ∗ P

′
3 ∗ F

′
5. Finally, the

utility function can be defined as follows:

U(Oa
i ) = γi ∗ Oa

i (34)

The coefficient γi reflects the attacker’s subjective preference. Typically, a higher value
of Oa

i indicates a more severe consequence, which tends to be more enticing to attackers,
resulting in a higher γi value.
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5.2. Impact Degree

The impact degree quantifies the economic losses stemming from power outages or
interruptions triggered by cyberattacks on power grids. This measure can be computed
using the following formula:

Dim
i = PLost

i ∗ Pc ∗ Tr (35)

where PLost
i refers to the lost load due to compromised component i, Pc refers to the

electricity price, and Tr indicates the restoration time. From this equation, it is evident
that DER clients or the control center, due to their ability to influence multiple DER
units, are susceptible to considerable lost load (PLost

i ) when these nodes are compromised,
especially when compared to local controllers. Therefore, they inherently face higher risks.
Additionally, considering the electricity price (Pc), attacks launched during peak hours,
when Pc is relatively high, it can significantly amplify the impact. Notably, Tr differs
from traditional physical restoration time as it includes the time required for identifying
and recovering the compromised cyber components. From the operator’s perspective,
mitigating the potential impact of cyberattacks involves focusing on several defensive
measures. Firstly, securing client nodes to reduce their vulnerability to attacks; secondly,
organizing reserve or alternative resource capabilities to balance electricity prices between
peak and nonpeak hours; and thirdly, actively deploying attack detection algorithms to
promptly identify and recover cyber systems from attacks.

In dynamic analysis, determining the lost load can be challenging. However, if attacks
lead to stability issues and trigger protection devices, the DERs are highly likely to be
disconnected from the main grid. Therefore, the lost DER capacity can be approximated as
the lost load in this scenario.

6. Case Study
6.1. IEEE 13-Node Test Case

In the modified IEEE 13-node test feeder, two DERs are integrated at node 680, with
capacities of 500 kW and 800 kW, respectively. An additional DER is located at node 692
with a 1000 kW capacity. The DER penetration is about 66%. It is assumed that the power
limit of the substation is 500 kW per phase. In normal operations, the substation can
be modeled as a traditional slack bus with constant voltage. However, when the power
exceeds the limit, the substation voltage will slightly decrease by 0.1Vn/1000 kW.

Figure 7 illustrates the data flow in the communication layer. In Algorithm 1, the
control center calculates the real and reactive setpoints and sends them to each DER, while
in Algorithm 2, DER at node 692 adjusts its power injection to control real and reactive
power at PCC, and DERs at node 680 use the power ratio of DER at node 692 as input to
achieve load sharing. In the following simulation, cases 1, 2, and 3 deploy Algorithm 1,
and Algorithm 2 is implemented in case 4. The system dynamic model is implemented in
MATLAB 2022, utilizing a machine with the following configuration: an Intel i7 processor
with 16 GB of RAM running at 2.8 GHz.
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Figure 7. LHS: Data flow in OPF mode; RHS: Data flow in load-sharing mode.
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Integrating the VOC-based inverter into the IEEE 13-node test feeder demanded careful
consideration due to its low inertia, with minor disturbances risking system instability.
Our exploration of inverter operation strategy highlighted potential stability challenges,
underscoring the need for real-time monitoring and protection mechanisms to maintain
system stability.

6.1.1. Case 1: Modification of Setpoints in OPF Mode

The control command [PDER
1 (t), PDER

2 (t)] is issued for adjusting the setpoints of
DERs. The two DERs at node 680 are considered a unified single unit during the OPF
control level. Based on their respective capacities, DER client2 divides PDER

2 (t) and
transmits the information to two local controllers, as depicted in Figure 7. Considering
the high data processing rate at the control center, the delay time can be disregarded.
The communication network parameters are detailed in Table 1, with µp and µ f repre-
senting the processing rate and forwarding rate, respectively. The node function can be
characterized as follows:

F1 : λout(t) = λin(t)

F2_1 : λout
1 (t) = λin(t − 0.001)

[
1
0

]
F2_2 : λout

2 (t) = λin(t − 0.001)
[

0
1

]
F3_1 : λout

1,2 (t) =
5

13
λin(t − 0.003)

F3_2 : λout
1,2 (t) =

8
13

λin(t − 0.003)

F4 : λout(t) = λin(t − 0.001)

F5,6 : λout(t) = λin(t − 0.0005)

(36)

Table 1. Communication network parameters.

Nodes Links

v2 = 500, µ
p
2 = 1 k, µ

f
2 = 5 k Distance1 = 300 km

v3 = 300, µ
p
3 = 500, µ

f
3 = 5 k Distance2 = 200 km

µ4 = 1 k Distance3 = 10 km

µ5 = 2 k Distance4 = 10 km

µ6 = 2 k Distance5 = 15 km

Note: Propagation speed is 2.5 × 105 km/s.

The functions F2_1 and F2_2 correspond to the outputs directed towards nodes 4 and
3, while F3_1 and F3_2 represent the outputs to nodes 5 and 6, respectively. As detailed in
Section III, the communication layer outputs, specifically the setpoints of the three DERs,
can be described as follows: Out1

Out2
Out3

 =

 PDER
1 (t − 0.0032)

5
13 PDER

2 (t − 0.0065)
8

13 PDER
2 (t − 0.0066)

 (37)

Table 2 provides an overview of recent vulnerabilities from NVD that could potentially
result in malicious modifications. The probability index for each node is outlined in
Table 3. The control center exhibits the lowest vulnerabilities due to its stringent security
policy. Comparatively, client1, functioning as a subcenter, employs a more robust security
mechanism than client2, resulting in a lower vulnerability. Local controllers, being primarily



Energies 2024, 17, 1587 17 of 24

restricted to local communication, maintain the weakest security policy, rendering them
the most vulnerable. Meanwhile, parameter γ signifies the attacker’s preference. Given the
values of Oa

i found in Table 3, γ can be determined as follows:

γ =


0.2 Oa

i < 0.05
1 0.05 ≤ Oa

i < 0.1
2 Oa

i ≥ 0.1

(38)

It can be observed that nodes 5 and 6 have the highest probability index, as they are
the easiest to compromise and may cause significant voltage variation. Node 2 also has
a high probability index, as it can impact all DER setpoints. It is worth noting that the
probability index may vary depending on the definition of Oa

i and U(Oa
i ).

The impact degree is determined by the worst-case scenario. Taking node 3 as an
example, in the worst case, the setpoints were modified to 0 (standby mode), i.e., F3_1,2 :
λout′(t) = 0. The simulation results from the MATLAB model are shown in Figure 8,
illustrating the impact of the DER power output attack on voltage variations across all
buses. The corresponding DERs are connected to the grid at 3 s (DER 692) and 3.5 s (DER
680_1, DER 680_2), initially staying in the standby state after connection to the primary
grid. We observe a minor disturbance in the voltage profile during this stage, attributed to
the slight voltage gap between the inverter terminal and grid at the connecting moment.
Upon connection to the grid, the DER output power (real/reactive) remains zero while the
voltage profile remains unchanged. At 4 s, the control center executes OPF and dispatches
real and reactive setpoints to field devices. The DERs’ output ramps up and reaches the
desired value at around 5 s, operating at full capacity. Consequently, this also causes a
slight elevation in the voltage profile.

Around 7 s, attackers compromise node 3 and reset the setpoints to 0. Consequently,
the power output of DER 680_1 and DER 680_2 drops to 0, while DER 692 maintains
its output. As a result, to meet the load demand, the power drawn from the substation
increases significantly, exceeding the substation’s power limit and causing a voltage
decline. Some bus voltages fall below 0.95 p.u., potentially triggering protection mecha-
nisms necessitating load shedding. To maintain voltages within the acceptable range,
an optimal load-shedding plan is formulated. This plan involves cutting loads 646, 692,
675a, 611, and 670c, resulting in a total loss of 1172 kW. Assuming that load shedding is
initiated at 11 s, the bus voltages subsequently return to the normal range, as illustrated
in the figure.

In this paper, we assume Pc = 0.166$/kWh and Tr is 24 h [38]. In this case, the risk of
node 3 (DER client2) is

Risk3 = Ip
3 ∗ Dim

3 = 0.44 ∗ 1172 ∗ 0.166 ∗ 24 = 2054.47 (39)

The risks associated with each cyber node are presented in Table 4. The result reveals
that node 2 carries the highest risk, closely followed by node 1. These nodes can impact all
DER units located at bus 680 and 692 simultaneously according to cyberphysical interde-
pendency, thus holding the most significant criticality. Among them, as node 1 is the control
center and deploys the strictest security policy, this node is not easy to compromise, making
the attack probability of node 1 much lower than node 2. However, considering their high
risks, implementing advanced security measures becomes imperative to fortify these spe-
cific nodes. Nodes 4, 5, and 6 are local controllers. Their vulnerable levels are comparable.
Among them, node 6 holds the highest risk, even higher than node 3. This is due to the
high sensitivity (especially the physical layer sensitivity) of this node. Node 4 reveals the
lowest risk, as its vulnerability, although noteworthy, is counterbalanced by a less impactful
outcome, rendering it less appealing to potential attackers.
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Table 2. FDI-related vulnerabilities.

Vul.
No. Vul. ID Description Exploitability

Score
Component Prior

Prob.

1 CVE-2021-22803
Unrestricted Upload of File, could lead
to remote code execution of malicious file. 3.9 control center 0.01

2 CVE-2020-7545
Improper Access Control vulnerability
that could allow for arbitrary code execution. 1.2 control center 0.02

3 CVE-2020-7530
Improper Authorization vulnerability which
allows improper access to executable code folders. 2.8 control center 0.02

4 CVE-2020-7532
Deserialization of Untrusted Data
vulnerability could allow arbitrary code execution. 1.8 control center 0.01

5 CVE-2022-24312
Improper Limitation of a Pathname to a
Restricted Directory vulnerability exists that
could cause modification of an existing file.

3.9 control center 0.01

6 CVE-2022-24320 Improper Certificate Validation Vulnerability. 2.2 DER client1 0.02

7 CVE-2021-22772
Missing Authentication for Critical Function
vulnerability that could cause unauthorized
operation when authentication is bypassed.

3.9 DER client1,2 0.05, 0.1

8 CVE-2020-28212
Improper Restriction of Excessive
Authentication Attempts could cause
unauthorized command execution.

3.9 local
controller 0.1

9 CVE-2020-28213
Download of Code Without Integrity Check
vulnerability could cause unauthorized
command execution.

2.8 local
controller 0.2

Table 3. The attack probability index of cyber nodes.

Rank Node Pa
i Oa

i EU(Oa
i ) Ip

i

1 6 0.23 0.0636 0.0146 1

2 5 0.23 0.0636 0.0146 1

3 2 0.061 0.102 0.0125 0.85

4 3 0.1 0.0636 0.0064 0.44

5 1 0.029 0.102 0.0059 0.4

6 4 0.23 0.041 0.0019 0.13

Table 4. Cyber node risks under setpoint modification attack.

Rank Node PLost
i (kW) Dim

i Riski

1 2 2037 8115.41 6898.10
2 1 2037 8115.41 3246.16
3 6 530 2111.52 2111.52
4 3 1172 4669.25 2054.47
5 5 298 1187.23 1187.23
6 4 748 2980.03 387.40

Note: Risk values decrease from red to green, indicating lower risk.
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Figure 8. Case 1: Modification of DER setpoint.

6.1.2. Case 2: FDI Attack on Local Controllers

In this case, attackers try to compromise the local controllers and implement an
FDI attack. Assuming the DER operation schedule is the same as in Case 1, attackers
compromise node 6 at the beginning and start modifying the local voltage measurement
data to 1.2 times the original value, i.e., F6 : λout′(t) = 1.2λin(t). This will impact the DER
synchronization process. Specifically, as the measurement data are altered, maintaining
the same control algorithm, the actual voltage of the inverter tends to be approximately
0.83 times that of the voltage on the grid side. Consequently, at 3.5 s, when the inverter
connects to the grid, the significant voltage differential, combined with the low inertia of
the inverter, induces an inrush current from the grid into the inverter. This results in a
substantial voltage drop on the grid side, as depicted in Figure 9. Following the transition
to GFL mode, the inverter aligns with the grid-side voltage, restoring the voltage profile to
within normal ranges. However, in practical scenarios, this inrush current may surpass the
maximum current limit, triggering protective mechanisms and causing a DER trip.

6.1.3. Case 3: Modification of Local Controller Parameters

In this scenario, the attackers’ aim is to compromise local controllers by manipulating
control parameters. Assuming the DER operation schedule remains consistent with previ-
ous cases, node 6 is compromised, leading to modifications in the PI controller parameters at
the GFL side at 3 s. At this time, the inverter operates in synchronization mode, keeping its
performance unaffected and ensuring stable terminal voltage regulation. However, when
the DER switches to GFL mode at 4 s, the inverter starts to adjust its output accordingly.
Referring to Figure 3, with the inverter initial output at 0, the deviations between the real
and reactive power and their setpoints (p − p∗, q − q∗) are notably high. Upon malicious
modification of the PI controller, specifically by enlarging its parameters, this disturbance
pushes the system out of its stability zone, resulting in detrimental oscillations, as depicted
in Figure 9. In practice, this scenario may trigger inverter undervoltage (UV) protection,
leading to a DER trip. If not promptly isolated, these significant voltage oscillations may
cause further DER trips and potentially lead to load shedding.
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Figure 9. (Top) (Case 2): FDI attack on local voltage measurement. (Bottom) (Case 3): Modification of
local controller parameters.

6.1.4. Case 4: Jamming Attack in Load-Sharing Mode

In this case, the distribution system operates following Algorithm 2, i.e., the load-
sharing algorithm, with the upper-level OPF dictating a setpoint of 1000 kW at the grid-side
PCC. In contrast to Case 1, the roles of nodes 2 and 3 were altered as follows:

F2_1,2 : λout
1,2 (t) = λin

1,2(t − 0.0002)

F3_1,2 : λout
1,2 (t) = λin(t − 0.003).

(40)

Here, F2_1 and F2_2 refer to the function forwarding to nodes 4 and 3; F3_1 and F3_2
refer to the function sending packets to nodes 5 and 6, respectively. The cyber layer
outputs become  Out1

Out2
Out3

 =

 Psub(t − 0.0024)
R1(t − 0.0051)
R1(t − 0.0052)

 (41)

where R1 refers to the power ratio of DER_1, as depicted in Figure 7. Let us assume that
attackers can send junk packets to jam node 6. As a result, whenever the packet arrival rate
is comparable to the processing rate, time latency will increase significantly. Assuming that
the arrival rate of node 6 becomes 1800/s due to junk packets, the Out3 latency becomes
approximately 0.01 s. Figure 10 shows the attack consequence. The top and bottom plots
indicate an attacked scenario without and with consideration of latency, respectively. It is
noted that when considering latency, the jamming attack may lead to an unstable system.
However, when the communication latency is ignored, the same jamming attack does not
cause system instability. This may lead operators to ignore possible grid oscillations and
cause large-scale cascade failure.
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Figure 10. Case 4: Jamming attack on local controller with and without considering
communication latency.

6.2. IEEE 123-Node Test Case

The IEEE 123-node test feeder was modified to incorporate DER units according to the
configuration shown in Table 5. The DER penetration level was 80%. We tested the attack
scenario involving the modification of real and reactive power setpoints in the control
layer when deploying the OPF algorithm. The data flow for this scenario is illustrated in
Figure 11. The cyber node risk associated with this test feeder is shown in Table 6.

Table 5. DER configuration in 123-node test system.

DER Location Number of Units Capacity per Unit (kW)

44 3 500

79 1 400

81 1 400

108 2 250

control 
center     

1

client1   
2

local 
control 
44_1       

6

locol 
control 
41_1       

8

1

7

client4   
5

client3   
4

local 
control 
44_2       

7

client2   
3

local 
control 79        

9

local 
control 81 

10

4

2

local 
control 

108       
12

5 6 11

3

8 9

local 
control 

108       
11

10

Figure 11. Data flow in OPF mode of IEEE 123-node test system.

In this test system, the control center (node 1) presents the highest risk due to its
critical role. While not easily compromised, its compromise could impact all DER units,
potentially leading to severe load shedding, thus presenting the overall highest risk. While
client nodes generally offer higher utility outcomes, they are less vulnerable compared to
local controllers. Simulation results exhibit an interspersed pattern among these two types
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of nodes, as illustrated in the table. Among client nodes, node 4 exhibits the highest
criticality as a transfer node, with access to data transmitted to nodes 3 and 5. Despite
having the highest probability of attack among all cyber nodes, its impact degree is much
lower compared to node 1, positioning it as the second-highest risk if compromised. Node 3
carries the lowest risk among all cyber nodes. It can only affect one DER unit and provides
similar outcome utility to the local controller node 9. However, its higher level of security
compared to node 9 makes it less attractive from an attacker’s perspective.

It is noteworthy that in comparison to the IEEE 13 node test system, compromising
the control center in this highly distributed test feeder yields a similar impact. However,
compromising a DER client or a local controller in this system may only affect limited DER
capacities, resulting in a significantly lower impact compared to the IEEE 13 node test sys-
tem. Overall, this distributed system demonstrates greater resilience against cyberattacks
than the IEEE 13 node test feeder.

Table 6. Cyber nodes risk of IEEE 123-node test system.

Rank Node Pa
i Oa

i Ip
i Dim

i Riski

1 1 0.029 0.0706 0.1501 7928.16 1190.13
2 4 0.061 0.0769 0.3439 2290.8 787.88
3 11 0.23 0.0593 1 277.78 277.78
4 12 0.23 0.0593 1 277.78 277.78
5 5 0.0636 0.0593 0.2765 617.52 170.76
6 6 0.023 0.0228 0.0769 1494 114.88
7 7 0.023 0.0228 0.0769 1494 114.88
8 8 0.023 0.0228 0.0769 1494 114.88
9 2 0.0636 0.0226 0.0211 2848.56 60.04

10 9 0.23 0.0257 0.0867 478.08 41.44
11 10 0.23 0.0241 0.0813 478.08 38.86
12 3 0.0636 0.0257 0.024 478.08 11.46

Note: Risk values decrease from red to green, indicating lower risk.

7. Conclusions

The integration of grid-edge inverter-based DERs into distribution grids highlights the
necessity for real-time control and monitoring through efficient communication systems.
However, this integration of communication networks increases the vulnerabilities suscepti-
ble to cyberattackers. As a result, the development of a comprehensive CPS risk assessment
framework becomes imperative. In light of limitations in the literature work, this research
presents a novel risk assessment framework tailored for distribution grids with substantial
penetration of inverter-based DERs. The framework encompasses (i) a detailed distribution
grid model that explicitly incorporates the dynamic attributes of inverter-based DERs,
(ii) a high-fidelity DER communication layer model that considers communication latency,
enabling precise execution of cyber layer attacks, and (iii) a cyberattack risk quantification
approach using an attack probability model that factors in both cyber component vulner-
ability and criticality. Furthermore, the impact of cyberattacks is quantified in terms of
economic losses resulting from load shedding. The numerical studies consider various cy-
berattack scenarios on standard IEEE distribution feeders with grid-edge DERs to validate
the framework’s efficacy, affirming its ability to identify high-risk components and guide
security policy improvements, thereby contributing to the reinforced system’s reliability
and resilience.

Based on the previous discussion, we identified several potential steps to mitigate
the cyber risks within the system: (i) Given that high-critical nodes can engender more
severe consequences, it is imperative to enhance their security mechanisms to minimize
cyber risks. (ii) Recognizing that the degree of impact is assessed based on economic
losses incurred from load shedding, it is essential to implement measures such as demand
response or augmenting reserve capacity. These actions aim to reduce lost load, particularly
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during peak hours when electricity prices are relatively high. (iii) Developing a cyber layer
restoration strategy is crucial to minimizing post-attack restoration time and mitigating
overall risks. (iv) Based on our previous discussion, implementing a high-distributed DER
placement strategy enhances system robustness, thereby mitigating system risks.

We observed an increase in emerging cyberphysical coordinated attacks and mul-
tistage, multiwave attacks, which are more challenging to detect but can result in more
severe consequences. In our future research, we aim to analyze the characteristics of these
attacks and develop risk assessment platforms for them. This will enable us to provide
guidelines for implementing corresponding defensive strategies and enhancing power
system security.
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