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Abstract: The rapid increase in electric vehicles (EVs) has led to a continuous expansion of electric
vehicle (EV) charging stations, imposing significant load pressures on the power grid. Implementing
orderly charging scheduling for EVs can mitigate the impact of large-scale charging on the power
grid. However, the charging behavior of EVs significantly impacts the efficiency of orderly charging
plans. By integrating user portrait technology and conducting research on optimized scheduling
for EV charging, EV users can be accurately classified to meet the diverse needs of various user
groups. This study establishes a user portrait model suitable for park areas, providing user group
classification based on the user response potential for scheduling optimization. First, the FCM and
feature aggregation methods are utilized to classify the quantities of features of EV users, obtaining
user portrait classes. Second, based on these classes, a user portrait inventory for each EV is derived.
Third, based on the priority of user response potential, this study presents a method for calculating
the feature data of different user groups. The individual data information and priorities from the
user portrait model are inputted into the EV-optimized scheduling model. The optimization focuses
on the user charging cost and load fluctuation, with the non-dominated sorting genetic algorithm
II utilized to obtain the solutions. The results demonstrate that the proposed strategy effectively
addresses the matching issue between the EV user response potential and optimal scheduling modes
without compromising the normal use of EVs by users. This classification approach facilitates the
easier acceptance of scheduling tasks by participating users, leading to optimized outcomes that
better meet practical requirements.

Keywords: EVs; charging behavior portrait; fuzzy c-mean; feature quantity

1. Introduction

With the proposal of the national “dual carbon” goal, EVs have obvious advantages
in protecting the environment, saving energy, reducing emissions, and alleviating human
dependence on petroleum [1,2]. As of 2021, the global ownership of EVs has reached
16.5 million, and the projected global market share of EVs is expected to reach USD
190 billion by 2030 [3,4]. The increasing scale of the charging load of EVs will significantly
affect the operation and planning of regional power grids [5,6]. The assessment of the
impacts of EV charging scheduling has received extensive attention recently [7]. Under a
reasonable scheduling strategy, EVs can not only help the power grid relieve the pressure
on the power grid during unordered charging [8–11] but also provide auxiliary services
such as frequency modulation and backup power for the power grid [12,13]. However, the
complex charging behaviors of EV users directly impact the practical implementation of
charging scheduling [14,15]. The accurate analysis of the charging behavior of EVs has
become the primary issue in EV charging scheduling [16].

Plenty of researchers have conducted extensive research on the charging behavior of
EVs, with a specific emphasis on strategies to reduce the overall charging costs for users
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and mitigate the potential impacts on grid stability caused by high-demand charging. The
charging behaviors of EVs have differentiated time, urgency, and flexibility [17]. Ref. [18]
summarized that the charging behaviors of EVs are related to the user’s thoughts, pref-
erences, and habits. Ref. [19] made a statistical analysis on the charging behavior of EV
users in Ireland, revealing that the charging patterns of EV owners are time-dependent
and unaffected by location. Ref. [20] found that private EV owners choose night charging
with lower electricity prices, which should mean lower overnight electricity prices. The
findings in [21] indicated that factors such as charging time, the distance to a charging
station, charging cost, remaining battery energy, and maximum battery rechargeable energy
all play a significant role in influencing drivers’ charging decisions. Different charging
behaviors have a significant impact on the load curve of the power grid [22]. Predictions
for the orderly charging load of EVs have been made through the analysis of EV charging
behavior [23]. Based on the analysis of EV charging behavior, the burden on the electrical
grid can be alleviated by shifting charging times [24]. Actually, several scholars have made
great efforts to classify EV users. Chen J. et al. [25] studied models of EV charging stations,
which were categorized into five types based on travel purposes: home, work, shopping,
social interaction, and others.

The analysis of EV users either employs a user group approach or focuses on typical
vehicles. The research referenced in [26–28] concentrates on the behavior of EV user
groups, overlooking the differences between each EV. Research on each EV focuses on
the behavioral features of typical vehicles and obtains the charging behavior of each EV
user through probability analysis [29], traffic travel law simulation [30–32], and big data
processing [33,34].

Compared to research on user group behavior, the study strategy of focusing on typical
vehicles proves to be more accurate when analyzing EV behavior [35]. However, research
from the perspective of typical vehicles alone overlooks the diversity of group vehicle
behaviors and fails to accommodate the vast scale of EV users, presenting limitations.

The analysis of EV charging behavior mostly adopts the clustering method [36]. Clus-
tering is one of the basic algorithms of unsupervised machine learning. Common clustering
methods include K-means clustering, the density-based spatial clustering of applications
with noise (DBSCAN), fuzzy c-means clustering (FCM), the Gaussian mixture model
(GMM), etc. In cluster analysis, FCM is a soft clustering algorithm. It can automatically
divide clusters based on the distance between sample points and is more flexible than
other clustering methods [37,38]. The study clusters the charging start time, charging end
time, charging time, and charging amount, classifies EV users, and predicts EV charging
behavior [39,40].

In the field of power load analysis, user portrait technology accurately portrays the
features of power consumers using labeled indicators related to energy consumption and
electricity usage [41]. By integrating user portrait technology with research on optimizing
EV charging schedules, EV users can be effectively classified to meet the varying needs of
different user groups. This study proposes a combined approach that integrates both group
and individual user behavior analysis, which can satisfy the behavior analysis of large-scale
vehicle users while also enhancing the accuracy of user group behavior analysis. This study
establishes a user response portrait model and proposes a precise portrait strategy for EVs
in a campus setting. This strategy provides user group classification based on response
potential for scheduling optimization, making it easier for participating users to accept
scheduling tasks, resulting in more realistic optimization outcomes. The research content is
shown in Figure 1 below. The main contributions of this study are as follows:

• The charging behavior portraits of EV users are characterized using FCM. The two-
dimensional clustering results of the arrival time and parking time of EVs and the
clustering results of charging time are aggregated by features, and the charging portrait
categories of EVs in the park are obtained.

• This study introduces a portrait model that combines group portrait categories with
individual EVs. Each portrait category corresponds to a different range of features,
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and the charging data of each EV may include one or several portrait categories, thus
generating a list of user portraits for each EV. Based on the duration of schedulable time
associated with each portrait category, EV users are categorized into four types: high-
quality schedulable users, medium-quality schedulable users, low-quality schedulable
users, and irregular users.

• In order to enhance the accuracy of the user portraits, this study conducted further
statistics based on the charging patterns on weekdays and weekends. The statistics
were categorized into weekday charging, weekend charging, and weekday–weekend
charging for each EV. This study introduces the classification of dispatchable EVs and
their priorities during the peak/flat/valley load periods.

• Based on the priority of user response potential, this study presents a method for
calculating the feature data of different user groups. The data are inputted into the EV
scheduling optimization model for computation and solution, resulting in optimized
scheduling outcomes for each user group. While ensuring user satisfaction is not
compromised, the diverse needs of the power grid can be met based on the priority
of user groups. This study validates the feasibility of certain user group portraits
through three charging scheduling scenarios. The experimental results demonstrate
that when considering the charging cost of EV users as a single objective function, the
charging cost is reduced by 47.42% compared to unstructured charging. When both
the charging cost and load fluctuation of EV users are considered as dual objective
functions, the charging cost of EV users and the load fluctuation of the charging station
are reduced, respectively, by 41.76% and 31.07%.
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2. Research Framework and Methodology

The research framework of this study is shown in Figure 2. The first part of the
research framework—the EV users’ charging behavior portrait categories—was obtained.
The charging behaviors of multiple EV users in the park were reasonably classified by
clustering and feature aggregation, and the charging portrait categories of EVs in the
park were obtained. The second part of the research framework, the charging behavior of
each EV, can be characterized using one or multiple user profile categories. The orderly
scheduling priority of EVs is determined by considering both the proportion of each EV
portrait and the scheduling time. Moreover, the dispatchable EVs and their priority during
the peak/flat/valley load periods are further studied. The specific steps in the two parts
are shown in Figure 2.
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2.1. EV Users’ Charging Behavior Portrait Categories
2.1.1. Collection and Preprocessing of Data

The necessary dataset for this research needed to be collected. Data preprocessing
involves various tasks such as data cleaning, calculation, transformation, and normalization.
Data cleaning included the removal and filling of missing data. Some EV charging data
are sparse and considered irregular users; thus, these were excluded from the clustering
analysis. Abnormal information in the original dataset was corrected accordingly. In case
of missing features, either elimination or filling with the median value was performed
for the data points. Incorrect data, such as the charging time exceeding the stay time,
were removed from consideration. Data calculation entails deriving useful information
through computations. Data transformation involves converting different types of data
into numerical formats recognizable by clustering algorithms. Lastly, data normalization
was conducted to scale the original data within the range 0–1 in order to eliminate impacts
of amplitude.
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2.1.2. Feature Extraction

When analyzing user arrival and departure times, it is crucial to account for instances
where EV users do not arrive and depart within the same calendar day. The parking time
of each EV is calculated based on arrival time, departure time, and the date difference
between the two time points, regardless of overnight stays or visits spanning multiple days.

Tp = Td − Ta + 24 ∗ Ddate (1)

where Tp is the parking time, Ta is the arrival time, and Td is the departure time. Ddate is the
difference in dates between the arrival time and the departure time. In this study, the arrival
time, parking time, and charging time from the data were chosen as feature parameters.

2.1.3. FCM Clustering

The FCM algorithm is a clustering algorithm. In this algorithm, the degree of affiliation
of each sample point with all class centroids is determined through the optimization of a
specific objective function. Upon the acquisition of these membership values, they were
utilized as a foundational criterion for the categorization of the sample dataset.

The difference between the FCM algorithm and traditional clustering algorithms is
that the former changes the “either/or” phenomenon of clustering, and an object can
belong to multiple categories in different degrees. Compared with K-means hard clustering,
FCM clustering provides more flexible clustering results. Considering the complexity of EV
users’ charging behaviors, FCM clustering was used in this study to analyze EV charging
behaviors. The three key parameters of FCM clustering are the number of clusters, the
center of mass of clusters, and the cluster corresponding to data points.

(1) Objective function.

The objective function of clustering is essentially the sum (the sum of squares of errors)
of the Euclidean distances from various points to various classes. FCM clustering is the
calculation of the minimum value of the objective function under the condition that the
membership constraint function is met. The process of clustering solves the minimum
objective function and reduces the error value of the objective function through repeated
iterative operations. When the objective function converges, the final clustering result is
obtained, and the formulas of the objective function are as follows:

Jm =
N

∑
i=1

C

∑
j=1

um
ij ∥xi − vj∥2, 1 ≤ m < ∞ (2)

Constraints:
C

∑
j=1

uij = 1, ∀i = 1, 2 · · · N (3)

where m is the fuzzy index, N is the data volume, and c is the number of clustering centers.
vj represents the j-th center, xi represents the i-th sample, and uij represents the membership
degree of the sample xi to the clustering center. vj.∥ ∗ ∥ can be any measure that represents
the similarity (distance) of data, and the most common one is the Euclidean norm.

(2) The membership degree matrix uij and cluster center vj.

The membership matrix represents the degree to which each sample point belongs
to each class. For a single sample, xi, its membership to each cluster adds up to 1. The
objective function is related to Euclidean distance. When the objective function reaches the
minimum, the Euclidean distance is the shortest. This guarantees the clustering principle
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of the highest intra-group similarity and the lowest inter-group similarity. The formulas of
the membership degree matrix and cluster center are as follows:

uij =
1

C
∑

k=1

( ∥xi−vj∥
∥xi−vk∥

) 2
m−1

(4)

vj =

N
∑

i=1
um

ij xi

n
∑

i=1
um

ij

(5)

where uij and vj are interrelated. FCM clustering is a process of iteratively calculating
membership uij and cluster centers vj until they reach an optimal level.

(3) The termination condition of iteration.

max
∣∣∣ut+1

ij − ut
ij

∣∣∣ < ε (6)

where t is the number of iteration steps, and ε is the error threshold. uij and vj are updated
in the iteration until the maximum change in the membership degree before and after two
iterations does not exceed the error threshold, and, at this time, the comparative optimal
(local optimal or global optimal) state is reached. The process eventually converges to the
local minimum or saddle point of the target Jm.

The detailed description of each step is described as follows:

Step 1. Initialize the matrix determined by the membership function U0 (initialized between
random values [0, 1]) while satisfying the constraints of Formula (3).

Step 2. Calculate the central value of the cluster vj according to Formula (5).
Step 3. Calculate the new membership matrix uij according to Formula (4).
Step 4. Calculate the change in the objective function this time and the last time according

to Formula (2). If the change is less than a certain threshold, then stop the algorithm;
otherwise, go to Step 2.

This clustering process is divided into the following two parts:
The arrival time and parking time of EVs are clustered as K1, K2 . . . . . . Kn using the

two-dimensional FCM algorithm.

fFCM(Ta & Tp) = {K1, K2, . . . , Kn} (7)

The one-dimensional fuzzy FCM algorithm is used to calculate the charging time of
EVs to obtain G1, G2 · · · · · · Gm.

fFCM(Tc) = {G1, G2, . . . , Gm} (8)

where fFCM(Ta & Tp) is the result of arrival time and parking time clustering, and fFCM(Tc)
is the result of charging time length clustering.

2.1.4. Feature Aggregation

When opting for three-dimensional clustering, it becomes challenging to distinguish
between categories. Based on literature references and data analysis, two-dimensional
clustering involving arrival time and parking time is selected, and the results are combined
with the clustering of charging time for feature aggregation.

Feature aggregation refers to clustering different feature quantities or feature vectors
separately and then combining all clustering results into new categories. Through feature
aggregation, related features in the original data can be combined to reduce the dimension-
ality and complexity of the data, extracting more representative and informative features.
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This helps improve the performance and accuracy of models as well as uncover deeper
relationships between data. Feature aggregation is commonly used in feature engineering
and data preprocessing processes.

According to the clustering results K1, K2 . . . . . . Kn of the arrival time and parking
time of EV users and the clustering results G1, G2 . . . . . . Gn of the charging time of EV users,
feature aggregation was conducted to form portrait categories to describe the charging
behavior of EVs, as shown in Figure 3.
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By using feature aggregation and eliminating irrelevant categories, all user portrait
categories could be identified accurately. By analyzing the relationship between parking
time and charging time, the feasible scheduling time for each portrait category could be
established, usually by deducting the charging time from the parking time. A longer
scheduling time indicates higher optimal scheduling behavior within the user’s charging
portrait category.

2.2. Analysis of the Charging Behavior of Each EV

(1) EV charging on weekdays and weekends.

Different users have different patterns of charging behavior on weekdays and week-
ends, which can be generally divided into three categories: charging on weekdays, charging
on weekends, and charging on both weekdays and weekends.

(2) The charging behavior portrait of each EV.

Strictly, the complexity of each EV user’s charging behavior cannot be fully represented
by individual portraits. Each portrait category corresponds to different feature quantities
(selected arrival time, parking time, and charging time), and the charging data information
of each EV user matches one or more portrait categories. The list of the user charging
behavior portrait also differs. Here, the charging behavior portrait of each EV is listed
according to the user’s charging behavior portrait category.

(3) Determine the rules of the user’s charging behavior portrait.

The list of EV users’ charging behavior portraits for each EV may contain multiple
portraits. However, if there are too many portraits in the process, there will be many
difficulties in the subsequent study of EV users’ charging behavior usage. In order to
guarantee the accuracy of the portraits of EV users’ charging behaviors and provide a fast
method for orderly charging scheduling, one or several portraits of EV users’ charging
behaviors with a large proportion are selected as the final portraits of this EV. Based on
this, if the set portrait rules are met, all EVs are divided into regular charging EV users;
otherwise, they are divided into irregular charging EV users.

Based on the clustering process, criteria for assessing the priority of EV users have
been established as follows:
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• If the percentage of any single portrait category data reaches between L and 100%, the
user is classified as a high-quality user.

• If the combined percentage of any two portrait category data reaches between L and
100%, the user is classified as a medium-quality user.

• If the combined percentage of any three portrait category data reaches between L and
100%, the user is classified as a low-quality user.

• Users who do not fall into the above categories are classified as irregular users.

Based on these criteria, users were classified as high-quality, medium-quality, low-
quality, or irregular users.

The response potential of different user groups affects the dispatch efficiency of the
power grid. The response capability of high-quality users is higher than that of medium-
quality users, and the response capability of medium-quality users is higher than that of
low-quality users. When EVs are dispatched into the power grid, priority is given to users
with higher priority levels, as the dispatch results are more likely to be accepted by users,
avoiding impacting user satisfaction and travel usage. Irregular users cannot learn from
vehicle user behavior and, thus, are not selected for dispatch.

3. Case Study

In order to test the effect of the model, the dataset selected for this study was ACN-
Data, which is a public dataset used for EV charging research. The ACN-Data data were
collected from two real-world adaptive charging network facilities in California. The
adaptive charging network facility on the Caltech campus is in a parking lot and has
54 EVSEs (EV supply equipment or charging stations; EV power supply devices or parks)
and a 50 kW DC fast charger. (All the experimental parts are executed using Python 3.9
on an Intel (R) Core (TM) i5-10500 CPU 3.10 GHz system with 16 GB RAM. Additionally,
keras2.7 and sklearn0.0 post 12 are selected as the main deep learning framework for
model training).

In this study, the data from one year (a total of 6555 pieces of data from 28 October
2018 to 28 October 2019) were used, and 53 vehicles with abundant charging data were
selected to analyze users’ charging behaviors.

3.1. EV Users’ Charging Behavior Portrait Categories
3.1.1. Data Preprocessing

After the abnormal data were removed, 6283 pieces of data were available, including
the charging data of 53 vehicles (charging pile number, vehicle number, arrival time, start
time of charging, stop time of charging, departure time, etc.).

3.1.2. Feature Extraction

Considering that the arrival date and departure date may not be the same day, in
order to avoid introducing errors in the results, the parking time was selected and obtained
through calculation. In Figure 4a, the clustering results of arrival time and departure time
exhibit clusters with close inter-cluster distances and relatively dispersed points within the
clusters, indicating poor classification effectiveness. On the other hand, in Figure 4b, the
clustering results of arrival time and parking time clearly delineate four distinct categories.
Meanwhile, the charging time of EVs was selected by considering the difference in EV
users’ charging power and battery capacity. The arrival time, parking time, and charging
time of EV users at the charging pile were selected as the feature quantities with which
to describe the charging behavior portrait of EV users and were converted into a digital
format that could be used for clustering.
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3.1.3. FCM Clustering

The silhouette score is one of the commonly used evaluation metrics for clustering,
and the specific formula is shown below:

S =
1
n

n

∑
i=1

b(xi)− a(xi)

max{b(xi), a(xi)}
(9)

where n represents the total number of data points in the cluster set, xi denotes the clustered
data, a(xi) is the average distance between xi and the other points within the same cluster
set, and b(xi) is the average distance between xi and the points in the other different
cluster sets; the silhouette score ranges from −1 to 1, where a higher value indicates better
clustering performance.

The Calinski–Harabaz score is also one of the commonly used metrics for measuring
clustering effectiveness, with the specific formula as follows:

s(k) =
tr(Bk)

tr(Wk)

m − k
k − 1

(10)

where m represents the number of samples in the training set, k denotes the number of
clusters, Bk is the covariance matrix between clusters, Wk is the covariance matrix within
clusters, and tr(·) denotes the trace of a matrix. A larger Calinski–Harabaz factor indicates
better clustering effectiveness.

Firstly, two-dimensional FCM clustering was performed on arrival time and parking
time. The parameters of the FCM clustering were optimized, including the number of
clusters and the fuzziness factor. Figure 5 and Table 1 display the silhouette score of the
two-dimensional FCM under different numbers of clusters and different fuzziness factors.
Figure 6 and Table 2 display the Calinski–Harabaz score of the two-dimensional FCM
under different numbers of clusters and different fuzziness factors.
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Table 1. The value of the silhouette score of the two-dimensional FCM under different numbers of
clusters and different fuzziness factors.

K

Fuzziness
2 3 4 5 6Factor

2 0.389443 0.395071 0.393793 0.392867 0.392487
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Table 2. The value of the Calinski–Harabaz score of the two-dimensional FCM under different
numbers of clusters and different fuzziness factors.

K

Fuzziness
2 3 4 5 6Factor

2 1.297386 1.308402 1.302959 1.29969 1.265925
3 1.348359 0.616996 0.618025 0.858865 0.616264
4 1.474923 0.85197 0.851415 0.845798 1.662239
5 1.119099 0.780511 0.796129 0.806442 0.763778
6 0.995778 0.861625 0.950117 0.9807 0.793255
7 1.155263 0.860409 0.963581 1.011551 0.838428
8 1.092277 0.876527 0.88891 1.016422 0.844842
9 1.210399 0.922233 1.061232 1.037081 0.884294
10 1.07599 0.936428 1.017053 1.057625 0.884567

From Figures 5 and 6, it can be observed that when the silhouette score and fuzziness
factor are set to 2 and 4, respectively, FCM achieves the best clustering results. According to
the analysis of the results of multiple experiments, in order to achieve better classification
results, the two-dimensional clustering of arrival time and parking time is divided into four
categories, and the charging time is divided into three categories. The results are presented
in Figure 4b.

For a more intuitive representation, the clustering results are shown in a normal
distribution diagram (Figure 7).
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Secondly, one-dimensional FCM clustering was conducted for EV charging time.
Figure 8 and Table 3 display the silhouette score of the one-dimensional FCM under
different numbers of clusters and different fuzziness factors. Figure 9 and Table 4 display
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the Calinski–Harabaz scores of the one-dimensional FCM under different numbers of
clusters and different fuzziness factors.
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K

Fuzziness
2 3 4 5 6Factor

2 0.691652 0.695154 0.691652 0.686091 0.681525
3 0.590455 0.607002 0.790455 0.576179 0.56041
4 0.536281 0.535715 0.636281 0.536453 0.536589
5 0.525425 0.520158 0.525425 0.524821 0.522881
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7 0.506349 0.534602 0.506349 0.498334 0.489293
8 0.508161 0.549598 0.508161 0.500806 0.451887
9 0.463691 0.54531 0.563691 0.470788 0.470259
10 0.533726 0.53577 0.533726 0.482042 0.457723
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Table 4. The value of the Calinski–Harabaz score of the one-dimensional FCM under different
numbers of clusters and different fuzziness factors.

K

Fuzziness
2 3 4 5 6Factor

2 0.57263 0.565634 0.57263 0.581957 0.588573
3 0.572094 0.568296 0.872094 0.577003 0.583342
4 0.602113 0.605636 0.702113 0.600107 0.599057
5 0.600321 0.682988 0.600321 0.590946 0.589008
6 0.737542 0.73023 0.672308 0.658926 0.612362
7 0.706368 0.696925 0.706368 0.699832 0.685206
8 0.682917 0.711881 0.682917 0.684912 0.705973
9 0.68834 0.722074 0.68834 0.679799 0.659787
10 0.670146 0.709694 0.670146 0.687916 0.655985

From Figures 8 and 9, it can be observed that when the silhouette score and fuzziness
factor are set to 3 and 4, respectively, FCM achieves the best clustering results. Based on the
difference in EV users’ electricity demand and charging power, the charging times of EVs
were selected as the feature quantities for clustering analysis, and the multi-user’s charging
time was divided into classes. Figure 10 shows the normal distribution of charging time.
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3.1.4. Generate User Charging Behavior Profile Categories

Considering the complexity of the users’ charging behavior, according to the cluster of
arrival times and parking times, as well as the cluster of charging times, a new cluster was
generated by using feature aggregation to form the portrait category of the overall users’
charging behavior. According to the parameters mean value and variance that determine
the normal distribution curve, this study takes each feature quantity for each cluster datum



Energies 2024, 17, 1651 14 of 26

as the numerical range of this cluster, indicating that 68% of the data in this set fall within
this numerical range.

According to the rationality of the value and the principle that parking time is longer
than charging time, any unreasonable user portraits were removed, and nine categories
were formed through reasonable combination. Then, graphs were generated for each
category with a normal distribution, as shown in Figure 11.
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3.1.5. Schedulable Time of User Charging Behavior Profile Category

The time that can be scheduled in the charging process can be obtained according to the
portrait, and the value of parking time subtracted from the charging time is the scheduling
time of each portrait type. The longer the scheduling time, the better the flexibility and
schedulability of the scheduling of reasonable and orderly charging of EVs, and the better
the portrait type of a user’s charging behavior. Table 5 shows the scheduling time duration
by user portrait category.

Table 5. The scheduling time by user charging behavior profile category.

Portrait Category K1G1 K1G2 K2G1 K2G2 K3G1 K3G2 K4G1 K4G2 K4G3

Scheduling duration 0:00–1:55 0:25–4:13 0:00–1:49 0:00–2:53 0:00–0:53 0:00–1:43 3:07–7:04 5:35–9:15 0:00–2:37
Data volume 338 964 283 833 101 371 821 1999 543
Arrival time 19:15–22:07 19:35–22:20 14:34–17:42 14:58–17:46 0:34–3:02 0:46–3:19 15:09–17:49 15:37–18:03 15:03–17:35

According to the time-sharing pricing of regional peak load in California, USA, the
electricity consumption period can be divided into the valley period (23:00–8:00), peak
period (12:00–19:00), and flat period. According to the peak–valley period and dispatching
time of the power grid, in which the arrival time is located, the priority ranking of the
categories of user charging behavior portraits is shown in Table 6.
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Table 6. Charging scheduling priority based on user charging behavior profile category.

Time of Arrival User Behavior Portrait Prioritization

Valley period K3G1, K3G2
Flat period K1G1, K1G2
Peak period K2G1, K2G2, K4G1, K4G2, K4G3

3.2. Each User’s Charging Behavior Analysis
3.2.1. User Charging Behavior Analysis Based on Weekdays and Weekends

According to EV users’ travel preferences on weekdays and weekends, the daily
charging frequency can be roughly divided into three categories: charging on weekdays,
charging on weekdays and weekends, and charging on weekends. A total of 53 vehicles
were classified (below) according to the number of trips per day, as shown in Table 7.

Table 7. Analysis of daily trips of EVs.

Weekday–Weekend Charging Categories User ID

Weekdays

515, 558, 559, 560, 562, 620, 668, 676, 832, 1095, 1124, 1137, 1534, 1912, 1082, 567,
714, 69,
2170, 1126, 632, 2461, 850, 569, 1470, 858, 1104, 945, 1001, 1154, 1164, 1524, 431,
818, 712,
1099, 324, 1366, 1154

Weekdays and Weekends 1108, 777, 609, 1202, 1222, 754, 1135, 1083, 838, 891, 1161, 743, 1746, 1133
Weekends 248

3.2.2. User Charging Behavior Portrait of Each Car

Based on the complexity of EV users’ charging behaviors for each vehicle, this study
describes the behaviors of a single vehicle and determines the charging behavior portraits
of each EV user by using the proportion of nine categories. A vehicle cannot be completely
represented by a user charging behavior portrait category. According to the criteria in the
article, L is set to 70. In Appendix A, if the percentage of any single portrait category data
reaches 70–100%, the user is classified as a high-quality schedulable user and marked in red.
If the combined percentage of any two portrait category data reaches 70–100%, the user
is classified as a medium-quality schedulable user and marked in green. If the combined
percentage of any three portrait category data reaches 70–100%, the user is classified as a
low-quality schedulable user and marked in blue. Users who do not fall into the above
categories are classified as irregular users and are marked in purple.

3.3. EV Optimal Scheduling Model

Smart charging of EVs can help reduce user costs and grid fluctuations [42–44]. Smart
charging involves establishing objective functions, constraints, and optimization plans.
By combining methods to profile the charging behavior of EV users, we obtained feature
data for each user, and these were input into the EV scheduling model. Based on user
priority, one or more user groups could be selected for scheduling. In order to enhance
the efficiency of EV dispatch, it is recommended to exclude irregular users; the remaining
user groups can be chosen based on the grid’s demand and user satisfaction. On the basis
of meeting the energy and time needs of EV users, we assume constant power, adjusting
the charging time to achieve smart charging scheduling. The scheduling period is 24 h,
with a step size of 15 min. We establish three charging scheduling scenarios: uncontrolled
charging, single-objective charging scheduling with user cost as the objective function, and
multi-objective charging scheduling with user cost and charging station load fluctuation
as objective functions. The genetic algorithm (GA) and non-dominated sorting genetic
algorithm II (NSGA-II) were used to solve the single-objective and multi-objective charging
scheduling models, respectively.
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3.3.1. The Calculation Method of Feature Quantities

Based on the EV user profile model, the feature data of each EV user’s charging
behavior were obtained using the following formulas:

Arrival time : AEVi =
k

∑
j=1

P(Aij)δAij (11)

Parking time : PEVi =
k

∑
j=1

P(Aij)δPij (12)

Charging demand : QEVi =
k

∑
j=1

P(Aij)δQij (13)

where AEVi , PEVi , and QEVi are the feature parameter values representing the arrival time,
parking time, and charging demand of the i−th EV, respectively, and δAij , δPij , and, δQij are
the standard deviations of EV data information for the j−th class of the i−th EV. P(Aij) is
the proportion of the j−th class of EV data information for the i−th EV.

3.3.2. Time-of-Use Price (TOU)

The TOU corresponding to the Caltech campus was chosen [45]. Table 8 shows the
TOU of summer weekdays. It can be seen from Table 8 that the peak price time is from
12:00 to 19:00, and the valley price time is from 23:00 to 08:00 (the next day).

Table 8. The time-of-use price of summer weekdays.

Periods Price/(kWh)

00:00–08:00 0.0562
08:00–12:00 0.0925
12:00–19:00 0.2675
19:00–23:00 0.0925
23:00–24:00 0.0562

3.3.3. Decision Variables

In the scheduling scenario, the start charging time and charging time of EVs are crucial
for efficient scheduling. The decision variables in this context are defined as follows:

{s1, s2, . . . si, . . . , sN ; c1, c2, . . . ci, . . . , cN}

where si is the start charging time of the i−th EV. ci is the length of the charging time of the
i−th EV.

3.3.4. Objective Function

The first objective function minimizes the total charging cost for EV users. Based on
the time-of-use electricity price data, the charging cost for each EV user can be calculated.
By summing up the charging costs for all users, the total charging cost for EV users can be
obtained, thereby defining the first objective function. The formula is as follows:

f1 = min

{
N

∑
i=1

T

∑
t=1

cpt pit △ t

}
(14)

where cpt represents the electricity price for the t−th time period. pit represents the charging
power of the i−th EV during the t−th time period. △t represents the duration of each
time period.
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The second objective function minimizes the fluctuation in charging station load. It
can measure the fluctuation in the charging station load by calculating the variance of the
load curve within a 24 h scheduling period. A smaller variance value indicates a lower
level of load fluctuation. The formula for this objective function is as follows:

f2 = 1
T

T
∑

t=1

(
PEVt − PEV

)
PEVt =

N
∑

i=1
PEViLti

PEV = 1
T

T
∑

t=1
PEVt

(15)

where f2 represents the variance of the load curve of EVs within the region, PEVt is the total
power consumption of EVs at time t, PEV is the average power consumption of EVs within
the region during the day, PEVi is the charging power of the i−th EV, and Lti represents the
charging status of the i−th EV at time t.

3.3.5. Constraints

(1) Charging time constraint:

During the scheduling process of EV charging, the charging time should not exceed
the departure time. The formula is as follows:

si + ci ≤ d̃i (16)

d̃i is the parking time for the i−th EV.

(2) Integer programming constraints:

The decision variables in the EV charging scheduling model are considered as an
integer programming problem, where the values of the decision variables are restricted to
integers or fixed steps:

s̃i ≤ si ≤ d̃i (17)

0 ≤ ci ≤ 24 (18)

(3) Charging Power Constraint:

pciη ≥ ẽi (19)

where p is the charging power of the charging pile, η is the EV charging efficiency, and ẽi is
the charging demand of t the i−th EV.

3.3.6. The Experimental Results

The non-dominated sorting genetic algorithm II (NSGA-II) was employed to solve the
EV charging scheduling model; NSGA-II is an improved version of the non-dominated
sorting genetic algorithm (NSGA) [46].

The following figures compare the results of three different charging scheduling mod-
els, namely GA and NSGA-II. Figure 12 shows the iteration process of the single-objective
charging scheduling model using GA; Figure 13 displays the Pareto optimal solution set
obtained by the NSGA-II algorithm for the multi-objective scheduling model. Both GA and
NSGA-II successfully obtained optimal solutions during the charging scheduling model
optimization process.

In Figure 14, the graph represents the cost of charging and the variance of the load
curve for three different charging scheduling scenarios. Table 9 shows the optimization
results obtained by considering the cost of charging for EV users as the single objective
function. As a result, the EV user’s charging cost was reduced by 47.42%, and the variance
of the load curve decreased by 8.24%. In the case of considering both the EV user’s charging
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cost and the variance of the load curve as the objective functions, the EV user’s charging
cost was reduced by 41.76%, and the variance of the load curve decreased by 31.07%.
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These findings demonstrate the effectiveness of the GA and NSGA-II algorithms in
optimizing the charging scheduling process for EVs. The optimization results indicate
significant improvements in reducing the charging cost for users and minimizing the
fluctuations in the load curve.
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Table 9. The objective function values of two comparative charging scheduling models and the actual
charging scenario.

Scheduling Model Overall Charging Cost (USD) Standard Deviation

Actual charging 104.25 41.5524 kW
Single objective 54.8169 38.1269 kW
Dual objective 60.7204 28.6401 kW

The results highlight the effectiveness of optimizing EV charging scheduling by con-
sidering EV user behavior. The optimization outcomes clearly indicate significant improve-
ments in reducing both EV charging costs and load curve fluctuations.

4. Results and Analysis

The charging behavior portrait categories of EV users were obtained by combining the
charging behavior analysis methods for the groups of users and each EV. One or more user
charging behavior portrait categories were used to describe the charging behavior of each
EV. The accuracy of the charging behavior analysis of EV users was improved.

Based on user priority, one or more user groups can be selected for scheduling. In
order to enhance the efficiency of EV dispatch, it is recommended to exclude irregular users;
the remaining user groups can be chosen based on the grid’s demand and user satisfaction.

As shown in Table 10, the schedulability of orderly charging for EVs is influenced
by the regularity of the EV user’s charging behavior. The table likely presents different
levels or categories of user charging behavior regularity and the corresponding strength of
schedulability for orderly charging.

Table 10. Charging scheduling sequence based on user charging behavior profile.

Weekday EVs Weekend EVs

Vehicle ID

515, 558, 559, 560, 562, 620, 668, 676,832, 1095, 1124, 1137, 1534, 1912, 1083, 567,
714, 69, 2170, 1126, 632, 2461, 850, 569, 1470, 588, 1104, 945, 1001, 1154, 1164, 1524,
431, 818, 712, 1099, 324, 1366, 1154, 777, 609, 1202, 1222, 754, 1135, 1083, 838, 891,
1161, 743, 1746, 1133, 1108

777, 609, 248, 1222, 754, 1135, 1083,
838, 891,
1161, 743, 1746, 1133,
1108, 1202

Valley period
(23:00–8:00)

Category 1 1099, 754 754
Category 2 1133, 1746, 1161, 777, 1164 1133, 1746, 1161, 777
Category 3 1108, 1202 1108, 1202
Irregular EVs 1135, 838 1135, 838

Flat period
(8:00–12:00)
(19:00–23:00)

Category 1 324, 1083, 567, 858, 1126 1083

Category 2

743, 676, 712, 559, 1164, 620, 69,
891, 558, 818, 714, 945, 1912,
562, 1534, 1104, 1095, 632, 1133,
1124, 560, 1222

743, 891, 1133, 1222

Category 3 2170, 1366, 1108, 668, 1154, 2461,
569, 850, 431, 832 1108

Irregular EVs 1524, 1001, 1470, 248 248

Peak period
(12:00–19:00)

Category 1 609 609

Category 2 1746, 1124, 1161, 777, 560, 1222,
562 1161, 777, 1222

Category 3 1202, 832, 1366, 668, 431, 850 1202
Irregular EVs 515, 838, 1083, 1137, 1135 838, 1135

(1) High-quality schedulable EV users (Category 1):

According to Table 10, the most prominent profile categories for these EV users
account for more than 70% of the total. The EV users’ behavior indicates a high degree of
schedulability in EV charging and discharging scheduling and demand-side response. By
dividing the charging periods into peak/flat/valley and weekdays/weekends, it becomes
feasible to precisely analyze the scheduling potential of each EV during any specific time
segment. This analysis facilitates the creation of optimal scheduling plans for the entire
scheduling model.
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(2) Medium-quality schedulable EV users (Category 2):

According to Table 10, these EV users’ two most prominent profile categories account
for more than 70% of the total. The EV user’s behavior can be classified into two distinct
categories, showing a decrease in regularity and an increase in the randomness of charging
behavior. The dispatchability of medium-quality schedulable users is lower compared
to that of high-quality schedulable users. If the charging and discharging schedules of
high-quality dispatch users fail to meet the power grid’s requirements, further dispatching
of medium-quality dispatch users should be considered.

(3) Low-quality schedulable EV users (Category 3):

According to Table 10, these EV users’ three most prominent profile categories account
for more than 70% of the total. The user’s behavior can be categorized into three distinct
profiles, with an increase in randomness in charging behavior and a decrease in regularity.
The dispatchability of medium-quality dispatch users is higher compared to that of low-
quality dispatch users. In the case where the charging and discharging schedules of
medium-quality dispatch users are unable to meet the power grid’s requirements, further
dispatching of low-quality dispatch users should be considered.

(4) Irregular users:

Table 10 shows that the sum of the three highest user profile categories in this user
category is less than 70%. This user category has a larger number of charging behavior
categories, with at least three or more charging behaviors. This indicates a high level
of randomness and poor regularity in their charging behavior, further implying that the
charging behavior of this user category cannot be analyzed effectively.

According to the analysis in the paper, the regularity of charging habits decreases
sequentially from high-quality users to medium-quality users and then to low-quality users.
During the scheduling process of EVs with the power grid, it is important to prioritize
users with higher priority levels. Such scheduling results are more likely to be accepted
by users, thus avoiding any negative impact on user satisfaction and their travel needs.
Irregular users, who do not exhibit predictable vehicle usage patterns, are not selected for
scheduling due to the inability to learn their behavior.

The impact of user profile classification on the power grid can be manifested in the
following aspects:

1. Resource allocation: By accurately identifying irregular users as well as high-, medium-,
and low-quality schedulable users, resources such as charging stations and grid
capacity can be allocated more effectively. High-priority schedulable users could be
given priority access to fast charging stations or reserved time slots, while irregular
users could be scheduled based on the availability of resources, reducing waiting
times, and congestion at charging stations.

2. Grid stability: High-priority schedulable users can help grid operators better manage
and predict electricity demand. Encouraging these users to charge during periods of
low demand or when the generation of renewable energy is high can improve the
stability of the grid and maximize the integration of renewable energy sources.

3. Demand response programs: Differentiating between user types also enables the
implementation of customized demand response programs for each group. Strategies
for participating in demand response programs can be formulated based on the
priority levels of users, helping to balance grid demand. For irregular users, incentive
measures can be introduced to encourage them to adjust their charging patterns,
optimizing grid interaction.

Based on the discussion above, this study proposes a method that combines user
profiling technology with optimized scheduling for EVs. By utilizing the user profiling
model, four different priority levels of user groups are identified, allowing for differentiated
settings within the scheduling model. According to the load curve of the scheduling model,
it is evident that the user groups meeting the grid demand response play a role in peak
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shaving and valley filling, validating the feasibility of this strategy. This model significantly
enhances the targeted scheduling of EV charging and discharging, improving the interaction
efficiency between EVs and the grid.

5. Conclusions

In order to further explore the charging behavior of EVs, this study proposes a method
that combines user profiling technology with an EV optimization scheduling model to
achieve the precise classification of EV users. The individual feature data, priorities, and
group profiles of users are fed into the EV optimization model. The NSGA-II algorithm was
employed to solve the scheduling model, and experimental results prove the effectiveness
of the proposed optimization strategy. The conclusions are as follows:

(1) Based on the user profile model, four types of user groups and their priorities were
identified, which formed the basis for the differentiated settings of users in the EV
scheduling model.

(2) According to the different priorities of the user groups, the feature values of each EV
user were calculated and input into the scheduling model.

(3) By comparing the EV scheduling model before and after optimization, adjusting
the charging times of users effectively reduces charging costs, stabilizes grid load
fluctuations, and improves the efficiency of orderly charging, preliminarily verifying
the effectiveness of the strategy.

(4) Based on satisfying user electricity demand and assessing the potential for user
response, this study validates the feasibility of certain user group portraits through
three charging scheduling scenarios. The experimental results demonstrate that when
considering the charging cost of EV users as a single objective function, the charging
cost is reduced by 47.42% compared to unstructured charging. When both the charging
cost and load fluctuation of EV users are considered as dual objective functions, the
charging cost of EV users and the load fluctuation of the charging station are reduced
by 41.76% and 31.07%, respectively.

In the future, based on the method of this study, further research will be conducted on
integrating renewable energy sources while optimizing EV scheduling to meet the demands
of the power grid.
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Nomenclature

Abbreviations
EVs Electric vehicles
DBSCAN Density-based spatial clustering of applications with noise
FCM Fuzzy c-means
GMM Gaussian mixture model
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Variables
Ta EV arrival time
Td EV departure time
Tp EV parking time
Jm Objective function
m Fuzzy index
N The data volume
c The number of clustering centers
vj The j-th center
xi The i-th sample
uij The membership degree of the sample xi to the clustering center vj.
∥∗∥ The similarity (distance) of data
t The number of iteration steps
fFCM(Ta & Tp) The result of arrival time and parking time clustering
fFCM(Tc) The result of charging time clustering
ε The error threshold
AEVi Feature parameter values of the arrival time of the i−th EV
PEVi Feature parameter values of the parking time of the i−th EV
QEVi Feature parameter values of the charging demand of the i−th EV
δAij The standard deviation of arrival time data for the j−th class of the i−th EV
δPij The standard deviation of parking time data for the j−th class of the i−th EV
δQij The standard deviation of charging demand data for the j−th class of the i−th EV
P(Aij) The proportion of the j−th class of EV data information for the i−th EV.
si The start charging time of the i−th EV
ci The length of charging time of the i−th EV
cpt The electricity price for the t−th time period
pit The charging power of the i−th EV during the t−th time period
△t The duration of each time period
f2 The variance of the load curve of EVS within the region
PEV The average power consumption of EVS within the region during the day
PEVi The charging power of the i−th EV
Lti The charging status of the i−th EV at time t
d̃i The parking time for the i−th EV
p The charging power of the charging pile
η The EV charging efficiency
ẽi The charging demand of the i−th EV

Appendix A

Table A1. Charging behavior portrait proportion of each EV. (Red, green, blue, and purple respectively
represent high, medium, low quality schedulable users, and irregular users).

UserID K1G1 K1G2 K2G1 K2G2 K3G1 K3G2 K4G1 K4G2 K4G3 Maximum
Proportion Portrait Category Proportion

324 0.00% 4.67% 0.00% 11.33% 0.00% 0.67% 0.00% 83.33% 0.00% 83.33% K4G2 83.33%
1082 0.00% 7.43% 0.00% 0.00% 0.00% 6.29% 0.00% 82.29% 3.43% 82.29% K4G2 82.29%
567 1.85% 11.73% 0.00% 1.85% 0.00% 1.23% 1.85% 77.78% 3.70% 77.78% K4G2 77.78%
754 0.00% 18.18% 0.00% 0.00% 3.03% 77.27% 0.00% 0.00% 1.52% 77.27% K3G2 77.27%
858 1.21% 3.03% 3.03% 9.09% 0.00% 1.21% 4.85% 76.97% 0.61% 76.97% K4G2 76.97%
1099 0.00% 0.00% 0.00% 0.00% 23.19% 76.81% 0.00% 0.00% 0.00% 76.81% K3G2 76.81%
609 0.00% 76.67% 0.00% 20.00% 0.00% 3.33% 0.00% 0.00% 0.00% 76.67% K1G2 76.67%
1126 1.16% 9.30% 0.00% 6.98% 0.00% 1.16% 6.98% 73.26% 1.16% 73.26% K4G2 73.26%
743 0.00% 3.82% 0.00% 44.71% 0.00% 0.88% 0.88% 49.71% 0.00% 49.71% K4G2 K2G2 94.41%
1746 0.00% 61.29% 0.00% 3.23% 2.42% 33.06% 0.00% 0.00% 0.00% 61.29% K1G2 K3G2 94.35%
1133 0.00% 8.08% 1.01% 34.34% 0.00% 55.56% 0.00% 0.00% 1.01% 55.56% K3G2 K2G2 89.90%
676 3.13% 1.04% 1.04% 0.00% 0.00% 1.04% 56.25% 3.13% 33.33% 56.25% K4G1 K4G3 89.58%
712 3.27% 4.67% 2.34% 3.27% 0.00% 0.00% 20.56% 62.15% 3.74% 62.15% K4G1 K4G2 82.71%
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Table A1. Cont.

UserID K1G1 K1G2 K2G1 K2G2 K3G1 K3G2 K4G1 K4G2 K4G3 Maximum
Proportion Portrait Category Proportion

1124 10.81% 68.65% 0.00% 0.54% 0.00% 0.00% 2.16% 14.05% 1.08% 68.65% K1G2 K4G2 82.70%
559 3.65% 2.19% 4.38% 2.19% 0.00% 0.73% 49.64% 32.85% 3.65% 49.64% K4G1 K4G2 82.48%
1161 4.76% 45.24% 1.19% 5.95% 1.19% 36.90% 2.38% 2.38% 0.00% 45.24% K1G2 K3G2 82.14%
777 61.11% 1.39% 8.33% 1.39% 19.44% 1.39% 1.39% 1.39% 0.00% 61.11% K1G1 K3G1 80.56%
1164 0.00% 9.41% 1.18% 4.71% 0.00% 36.47% 3.53% 43.53% 1.18% 43.53% K4G2 K3G2 80.00%
620 5.56% 4.44% 0.00% 7.78% 0.00% 0.00% 25.56% 54.44% 2.22% 54.44% K4G2 K4G1 80.00%
69 0.78% 7.75% 2.33% 7.75% 0.00% 0.78% 13.18% 66.67% 0.00% 66.67% K4G1 K4G2 79.84%

891 0.87% 19.05% 0.00% 23.81% 0.00% 0.00% 1.30% 54.55% 0.43% 54.55% K2G2 K4G2 78.35%
558 1.13% 0.56% 1.69% 2.82% 0.00% 2.26% 20.34% 57.06% 14.12% 57.06% K4G1 K4G2 77.40%
818 4.94% 6.17% 4.94% 3.70% 0.00% 2.47% 18.52% 2.47% 58.02% 58.02% K4G3 K4G1 76.54%
714 3.29% 4.61% 1.32% 2.63% 0.00% 0.66% 33.55% 42.76% 10.53% 42.76% K4G2 K4G1 76.32%
945 1.22% 3.66% 1.22% 6.10% 0.00% 0.00% 18.29% 56.10% 13.41% 56.10% K4G1 K4G2 74.39%
1912 1.08% 19.35% 2.15% 23.66% 0.00% 0.00% 2.15% 50.54% 1.08% 50.54% K4G2 K2G2 74.19%
562 1.14% 34.22% 3.80% 39.92% 0.00% 0.00% 1.14% 19.77% 0.00% 39.92% K2G2 K1G2 74.14%
560 2.59% 44.04% 30.05% 3.63% 0.00% 1.04% 14.51% 1.04% 3.11% 44.04% K1G2 K2G1 74.09%
1534 1.03% 1.03% 4.12% 8.25% 0.00% 0.00% 38.14% 35.05% 12.37% 38.14% K4G1 K4G2 73.20%
1104 2.84% 9.22% 9.22% 1.42% 0.00% 0.00% 59.57% 4.26% 13.48% 59.57% K4G1 K4G3 73.05%
1095 2.33% 1.16% 4.07% 5.81% 0.00% 0.00% 27.91% 42.44% 15.70% 42.44% K4G2 K4G1 70.35%
1222 0.00% 32.14% 3.57% 19.64% 0.00% 7.14% 0.00% 37.50% 0.00% 37.50% K1G2 K4G2 69.64%
632 2.56% 2.56% 3.85% 3.85% 0.00% 1.28% 37.18% 11.54% 32.05% 37.18% K4G1 K4G3 69.23%
2170 2.88% 2.88% 0.00% 5.77% 0.00% 0.00% 28.85% 28.85% 30.77% 30.77% K4G3 K4G1 K4G2 88.46%
1366 0.00% 28.68% 0.78% 33.33% 0.00% 10.08% 0.78% 25.58% 0.78% 33.33% K4G2 K1G2 K4G2 87.60%
1108 7.14% 5.71% 0.00% 41.43% 25.71% 18.57% 1.43% 0.00% 0.00% 41.43% K4G2 K3G2 K3G1 85.71%
668 2.22% 22.22% 5.56% 41.11% 0.00% 0.00% 6.67% 21.11% 1.11% 41.11% K4G2 K1G2 K4G2 84.44%
1202 36.59% 21.95% 2.44% 2.44% 4.88% 21.95% 9.76% 0.00% 0.00% 36.59% K1G1 K1G2 K3G2 80.49%
1154 2.90% 7.25% 7.25% 7.25% 0.00% 0.00% 26.09% 31.88% 17.39% 31.88% K4G2 K4G1 K4G3 75.36%
2461 1.33% 12.00% 4.00% 25.33% 0.00% 0.00% 12.00% 37.33% 6.67% 37.33% K4G2 K4G2 K4G1 74.67%
431 5.41% 24.32% 6.76% 28.38% 0.00% 4.05% 10.81% 20.27% 0.00% 28.38% K4G2 K1G2 K4G2 72.97%
832 45.65% 6.52% 13.04% 2.17% 0.00% 0.00% 13.04% 2.17% 11.96% 45.65% K1G1 K2G1 K4G1 71.74%
569 5.67% 4.12% 11.34% 8.76% 0.00% 0.00% 8.76% 13.40% 46.91% 46.91% K4G3 K4G2 K2G1 71.65%
850 8.16% 6.12% 8.16% 8.16% 2.04% 2.04% 48.98% 14.29% 2.04% 48.98% K4G1 K4G2 K1G1 71.43%
838 34.78% 8.70% 1.45% 8.70% 23.19% 11.59% 8.70% 0.00% 0.00% 34.78% K1G1 K3G1 K3G2 69.57%
515 16.67% 31.82% 7.58% 16.67% 0.00% 0.00% 7.58% 13.64% 6.06% 31.82% K1G2 K1G1 K2G2 65.15%
1135 15.24% 23.81% 13.33% 8.57% 25.71% 8.57% 4.76% 0.00% 0.00% 25.71% K3G1 K1G2 K1G1 64.76%
1524 7.81% 3.13% 12.50% 15.63% 0.00% 1.56% 15.63% 10.94% 31.25% 31.25% K4G3 K4G1 K2G2 62.50%
1001 7.50% 10.00% 8.75% 15.00% 0.00% 0.00% 12.50% 26.25% 20.00% 26.25% K4G2 K4G3 K2G2 61.25%
1470 4.47% 8.38% 12.29% 13.97% 0.00% 0.00% 22.35% 13.97% 24.58% 24.58% K4G3 K4G1 K4G2 60.89%
1083 16.48% 26.37% 3.30% 14.84% 0.00% 4.40% 6.59% 13.74% 13.19% 26.37% K1G2 K1G1 K2G2 57.69%
248 13.24% 10.29% 14.71% 23.53% 1.47% 5.88% 10.29% 2.94% 17.65% 23.53% K2G2 K4G3 K4G1 55.88%
1137 13.75% 15.00% 17.50% 15.00% 0.00% 0.00% 11.25% 10.00% 16.25% 17.50% K1G1 K1G2 K2G1 48.75%
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