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Abstract: The complex environmental impact makes it difficult to predict wind speed with high pre‑
cision for multiple wind turbines. Most existing research methods model the temporal dependence
of wind speeds, ignoring the spatial correlation between wind turbines. In this paper, we propose a
multi‑wind turbine wind speed prediction model based on Weighted Diffusion Graph Convolution
and Gated Attention Network (WDGCGAN). To address the strong nonlinear correlation problem
among multiple wind turbines, we use the maximal information coefficient (MIC) method to cal‑
culate the correlation weights between wind turbines and construct a weighted graph for multiple
wind turbines. Next, by applying Diffusion Graph Convolution (DGC) transformation to the weight
matrix of the weighted graph, we obtain the spatial graph diffusion matrix of the wind farm to ag‑
gregate the high‑order neighborhood information of the graph nodes. Finally, by combining the
DGC with the gated attention recurrent unit (GAU), we establish a spatio‑temporal model for multi‑
turbine wind speed prediction. Experiments on the wind farm data in Massachusetts show that the
proposed method can effectively aggregate the spatio‑temporal information of wind turbine nodes
and improve the prediction accuracy of multiple wind speeds. In the 1h prediction task, the average
RMSE of the proposed model is 28% and 33.1% lower than that of the Long Short‑Term Memory
Network (LSTM) and Convolutional Neural Network (CNN), respectively.

Keywords: spatio‑temporal correlation; maximummutual information; diffusion graph convolution;
multi‑ turbine wind speed prediction

1. Introduction
In recent years, with the continuous advancement of new energy grid connection poli‑

cies, the proportion of wind power installed capacity in the power system has become in‑
creasingly high [1,2]. However, affected by the wind farm environment, the wind speed
shows strong randomness and fluctuation. It has a serious impact on the stability of the
power grid [3,4]. In the time dimension, the environment in the wind farm changes at
any time, and the wind speed of the same wind turbine at adjacent moments has tem‑
poral dependence. In the space dimension, influenced by the geographical location and
the distribution of wind turbines, there is a certain correlation between the neighboring
wind turbines. The above analysis shows that the speeds of wind turbines in a region have
spatio‑temporal correlation. Therefore, making full use of the spatio‑temporal correlation
information of wind turbines can improve the predictive precision to reduce the impact of
uncertainty on dispatching [5,6].

The classic wind speed predictive methods mainly rely onmathematical principles to
construct prediction models. Physical methods [7] refer to the construction of numerical
weather prediction systems using physical and meteorological variables, which have high
computational costs and are more suitable for medium‑ and long‑term planning [8]. Clas‑
sical statistical methods such as Auto‑Regressive Integrated Moving Average (ARIMA) [9]
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cannot capture the nonlinear relationship of the data. Machine learning methods per‑
form well in short‑range time horizon forecasting tasks [10,11]. The mathematical rela‑
tionship between data sequences is very complicated. Complex coupling relationships
between adjacent historical data or different variables also exist [12]. Shallow mathemati‑
cal models cannot express the intricate spatio‑temporal correlation betweenmultiple wind
turbines [13]. Therefore, deep models are needed to characterize the nonlinear relations
between multiple nodes.

To solve the problem of expressing the nonlinear correlation characteristics between
nodes, Zhu et al. [14] constructed a predictive deep convolutional neural network (PD‑
CNN),which uses ConvolutionalNeuralNetwork (CNN) to obtain the spatial dependence
in wind sequence and predicts wind speeds at multi‑turbine sites. However, the spatial
features of the wind farm cannot be efficiently described by this model. Huang et al. [4]
combined the copula functionwith Long Short‑TermMemoryNetwork (LSTM) tomine the
spatio‑temporal correlation of wind speed residual sequences and wind speed sequence.
In [15], the information of neighboring wind farms was viewed as input features, and a
CNN was combined with Gated Recirculation Unit (GRU) to predict the wind power of
multiplewind turbines. However, thismodel is only a simple splicing of the single‑channel
convolution layer and GRU. It fails to effectively extract the spatial features of input data
and is difficult to directly extend to multiple wind speed prediction for a wind farm of
irregular distribution.

In order to effectively extract the spatial features of wind farms with irregular distri‑
bution [16], Yu et al. [17] connected the wind turbines within a certain distance according
to their geographical location to form a graph and extract the spatial characteristics of wind
speed series for prediction. Khodayar et al. [18] used the average mutual information to
construct the graph connection between wind turbines, and realized the multi‑wind tur‑
bines speed prediction by concatenating graph convolution and LSTM. Li et al. [19] con‑
structed the correlation based on the distance between sensors and introduced the Diffu‑
sion Graph Convolution (DGC) to realize the accurate prediction of traffic flow. However,
due to the above distance being inversely proportional to the corresponding correlation, it
undoubtedly causes the loss of effective information.

Aiming at the problem of multi‑turbine prediction for the wind farm of irregular dis‑
tribution, we propose amulti‑wind speed predictionmethod based onWeightedDiffusion
Graph Convolution and Gated Attention Network (WDGCGAN). Based on the wind field
distribution and graph theory, we defined the multi‑wind turbine structure graph. To
address the strong non‑linear correlation among multiple turbines, we use the Maximal
Information Coefficient (MIC) method to calculate the weights of the graph node connec‑
tions and obtain a weight matrix that is more consistent with the correlation among the
wind turbines than the original adjacencymatrix. By applying graph diffusion convolution
transformation to the weight matrix of the weighted graph, we obtain the graph diffusion
matrix of the wind farm spatial information, which aggregates the high‑order neighbor‑
hood information of the weighted graph nodes. Finally, DGC are combined with GAU to
establish a spatio‑temporal model for multi‑turbine wind speed prediction. Experiments
on the wind farm data in Massachusetts show that our model can better predict the future
wind speed of multiple wind turbines.

2. Problem Description and Spatio‑Temporal Relevance Analysis
2.1. Multi‑Wind Turbine Wind Speed Prediction Problem Description

Multi‑wind speedprediction is based on the distribution structure andhistorical infor‑
mation of a certain wind farm to calculate the future wind speed [20]. The input‑output re‑
lationship is shown in Figure 1. The input X = {S1,S2,…,Sn} is defined as the matrix of wind
speed values for n turbines over h periods from t− h + 1 to t, where Sn = {vt−h+1

n , vt−h+2
n , · · ·,

vt
n} is thewind speed series of the nth turbine. The vector

{
vt+1

1 , vt+1
2 , · · · , vt+1

n

}
represents

the predicted wind speeds of n turbines at time t + 1.
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wind speed characteristics of multiple wind turbines and that of single wind turbines, 
which is known as the cluster effect [21]. Affected by the cluster effect, the wind speed of 
different position wind turbines has a certain temporal lag and spatial correlation. In the 
time domain, Recurrent Neural Network (RNN) and LSTM are commonly used to deal 
with wind speed temporal features [22]. Li et al. [23] proposed a hybrid model for wind 
speed interval prediction based on GRU and variational mode decomposition, which cap-
tures the temporal dependency in the wind speed sequence. However, considering its 
large computational cost, the training process will encounter problems such as gradient 
vanishing [24], which limits its ability to process the data of multi-wind turbines. 

As more and more new energy sources are integrated into the power system, the 
time-series prediction of a single wind turbine is no longer sufficient to meet the accuracy 
requirement. Therefore, researchers try to extract the spatial feature information to reflect 
the complex relationship between multiple wind turbines. 

We selected the wind speed data downloaded from the National Renewable Energy 
Laboratory (NREL, www.nrel.gov/grid/wind-toolkit.html (accessed on 30 July 2022)) of 
the United States for analysis. The data contains the wind speed data of five wind turbines 
on 1 January 2012, with a sampling interval of 5 min. The wind speed changes within one 
day are shown in Figure 2. In Sections 1 and 2, it is obvious that although five wind speeds 
showed some delay characteristics, the overall change trend was consistent and reflected 
strong correlation between wind speeds of wind power generation units in the same 
space. This phenomenon motivates us to use the graph to represent the relationship of 
wind turbines in space. 
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2.2. Wind Farm Spatio‑Temporal Relevance Analysis
The interaction and distribution of wind turbines cause the difference between the

wind speed characteristics of multiple wind turbines and that of single wind turbines,
which is known as the cluster effect [21]. Affected by the cluster effect, the wind speed
of different position wind turbines has a certain temporal lag and spatial correlation. In
the time domain, Recurrent Neural Network (RNN) and LSTM are commonly used to deal
with wind speed temporal features [22]. Li et al. [23] proposed a hybrid model for wind
speed interval prediction based on GRU and variational mode decomposition, which cap‑
tures the temporal dependency in the wind speed sequence. However, considering its
large computational cost, the training process will encounter problems such as gradient
vanishing [24], which limits its ability to process the data of multi‑wind turbines.

Asmore andmore new energy sources are integrated into the power system, the time‑
series prediction of a single wind turbine is no longer sufficient to meet the accuracy re‑
quirement. Therefore, researchers try to extract the spatial feature information to reflect
the complex relationship between multiple wind turbines.

We selected the wind speed data downloaded from the National Renewable Energy
Laboratory (NREL, www.nrel.gov/grid/wind‑toolkit.html (accessed on 30 July 2022)) of
the United States for analysis. The data contains the wind speed data of five wind turbines
on 1 January 2012, with a sampling interval of 5 min. The wind speed changes within
one day are shown in Figure 2. In Sections 1 and 2, it is obvious that although five wind
speeds showed some delay characteristics, the overall change trend was consistent and
reflected strong correlation between wind speeds of wind power generation units in the
same space. This phenomenon motivates us to use the graph to represent the relationship
of wind turbines in space.
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2.3. Graph Theory
As is shown in Figure 3, a graph can be expressed as

G = (V, E), (1)

where V represents the set of nodes, and E is the set of edges. Some related definitions are
given as follows.
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Definition 1. (Adjacency Matrix). The adjacency matrix is a mathematical form of the graph,
denoted as A∈RN×Nwith Aij> 0 if (vi,vj) ∈E and Aij< 0 if (vi,vj) /∈E.

Definition 2. (Degree). The degree is the number of edges related to a vertex in the adjacency
matrix, denoted by D. For directed graphs, the degree is divided into in‑degree DI and out‑degree
DO, which represent the number of directed edges with the vertex as the end point or the start point,
respectively.

Definition 3. (Node Embedding). The node embedding is expressed asM ∈ RN×d, where N is the
number of nodes, d represents the dimension of node embedding, and d≪N. The node‑embedding
vector of the ith node is expressed as Mi ∈ Rd. Node embedding is a low‑dimensional representation
of a node of a graph that contains structural information [25,26].

3. Gated Attention Network Improved by Weighted Diffusion Graph Convolution
3.1. Definition of Multi‑Wind Turbines Weighted Graph Structure

Topological graphs [27] are commonly used in power systems to describe the attributes
and associations of nodes. Similarly, when processing multi‑wind turbine data, each tur‑
bine can be regarded as a topological graph node. The node connections in the graph
indicate the correlations between the speeds of wind turbines. Therefore, the definition of
a multi‑turbines graph is given by

G = (V, W, X), (2)

whereW = [wij]∈RN×N , i, j =1, …, N, is the weight matrix that represents the correlations
between nodes.

The specific steps for constructing themulti‑wind turbineweighted diagram structure
are given by:
(i) Treat eachwind turbine as a node, with nodes defaulting to interconnect, forming the

basic topology structure for multiple turbines.
(ii) On the basis of the original graph structure, we use wij to indicate the spatial correla‑

tion characteristics between wind turbines i and j. The larger the weight, the greater
the mutual influence between turbines.

(iii) Set a connection threshold α. If wij ≥ α, there is a strong correlation between node
i and node j, and a connection is established. Otherwise, it is considered weakly
correlated and wij = 0.
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(iv) Based on all the connected nodes, construct the weighted graph structure as shown
in Figure 4.
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3.2. Graph Weighting Calculation Based on MIC
In the wind farm graph structure, every node has different degrees and every con‑

nection has different weights [28]. The nodes in the center graph have higher values of
degrees than the nodes on the edge. The degrees of the graph structure can describe the
connections between nodes without considering the mutual influence of the wind speed
between the turbines. It is necessary to redefine the connecting weight between nodes.

Mutual Information (MI) is an important concept in information theory, which repre‑
sents the correlation of two random variables [29]. MIC is a statistic based on MI, which
is used to measure the degree of association between two continuous variables. It can
effectively distinguish between linear and non‑linear relationships and has a consistent
standard for different forms of relationships, with universality and fairness [30].

For any wind turbines, i and j, their wind speed sequence can be expressed as
Si =

{
v1

i , v2
i , · · · , vL

i
}
and Sj =

{
v1

j , v2
j , · · · , vL

j

}
, where L is the length of sampling. The

MIC calculation steps between turbine i and j are given as follows.
Step 1. MI calculation.
By dividing the value range of Si and Sj into several intervals, the mutual information

between turbines i and j can be expressed as

MI
(
Si, Sj

)
= ∑

Si ,Sj

p
(
Si, Sj

)
log2

p
(
Si, Sj

)
p(Si)p(Sj)

, (3)

where p(Si,Sj) is the joint probability density of turbines i and j under any grid partition
scheme, and p(Si) and p(Sj) are the marginal probability density of turbines i and
j, respectively.

Step 2. MI normalization.
The mutual information values under the same partition are min‑max normalized as

MI∗ =
MI − MImin

MImax − MImin
. (4)

Step 3. MIC expression.
The mesh division with the maximum mutual information value is recorded as

Z = (s,t), where s and t, respectively, represent the number of intervals divided by the value
range of Si and Sj. Then, MIC values of turbines i and j can be expressed as

MIC(Si, Sj) = max

{
MIZ

(
Si, Sj

)
log2 min{s, t}

}
, (5)
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whereMIz(Si,Sj) represents themutual information value under partitionZ, and log2min{s,t}
represents the normalized mutual information value. Then, the connection weight be‑
tween nodes i and j can be expressed as

wij =

{
MIC(Si, Sj),MIC(Si, Sj) ≥ α

0 ,MIC(Si, Sj)α
. (6)

3.3. Gated Attention Network Improved by Weighted Diffusion Graph Convolution
The DGC network realizes the convolution operation on the non‑Euclidean space

through the forward and backward bidirectional diffusion process [31]. This diffusion fea‑
ture is suitable for dealing with irregularly distributedmulti‑wind turbine data. As shown
in Figure 5, the formula of weight DGC is given by

DGC =
K−1

∑
k=0

(θk,1(D−1
o wij)

k
+θk,2(D−1

I wijT)
k
)X, (7)

where θk,1 and θk,2 are adjustable training parameters, DO and DI are the out‑degree di‑
agonal matrix and in‑degree diagonal matrix of the graph, respectively, and D−1

O wij and
D−1
I wij are the forward diffusion matrix and backward diffusion matrix, respectively.
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In order to ensure the complete extraction of spatio‑temporal features of wind farms,
we useDGC to calculate theweightmatrices of the reset gate, update gate, and hidden state
in GRU. Due to the fact that each turbine node contains its own historical information and
the spatial information of the surrounding turbines at the same time, the network param‑
eters and computational amount are increased. Therefore, the attention mechanism [32]
is added to the output end of the GRU network, which focuses on the contribution of the
hidden layer to the output, reduces the linear operations, and speeds up the network con‑
vergence. The improved gated attention network model is expressed as

Rt = σ(DGC[W, X, Ht−1] + br)
Ut = σ(DGC[W, X, Ht−1] + bu)
Ĥt = tanh(DGC[W, X, (Rt ⊙ Ht−1)] + bh)
Ht = f (Ut ⊙ Ht−1, (1 − Ut)⊙ Ĥt)

(8)

and
f =

exp(ati)
t

∑
k=i

exp(atk)
, i = 1, 2, 3, · · · , t − 1, (9)

where Rt andUt represent the reset gate and the update gate, respectively, Ĥt is the hidden
state information at time t, Ht−1 and Ht represent the state information of the previous
and the next time steps, respectively, br, bu, and bh are the bias terms, σ and tanh represent
activation functions, f is the attention function, and ati is the contribution of the ith hidden
unit to the output at time t.
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4. Model Prediction Framework
As shown in Figure 6, the operation process is given by the following process.
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(i) Construct the graph structure (G) of the wind farm based on the latitude and longi‑
tude of the wind turbines.

(ii) Calculate the weight (W) by MIC between the turbine nodes in the graph.
(iii) Input the graph G and the weight matrix W into the WDGCGANmodel.

(a) Spatial feature extraction. In each WDGCGAN unit, the DGC module calcu‑
lates the diffusion convolution of graph G according to the weight matrix W.
The obtained spatial feature matrix is output to each GRU gated module of
the unit.

(b) Temporal feature extraction. The spatialmatrix is activated by the activation func‑
tion and then splicedwith the parameters of each gating and the state vector of
the previous unit. The attention mechanism (AT) evaluates the contribution
of the previous unit’s state vector and the current unit’s hidden state vector
to the prediction result, allocates appropriate weights, and outputs the state
vector of the current unit to the fully connected layer and the next unit.

(iv) The fully connected layer is responsible for decoding the output ofWDGCGANunits
and obtains the multi‑wind turbine wind speed prediction results containing spatio‑
temporal features.

5. Experimental Results and Analysis
5.1. Data Description

Experimentalwind speed datawas downloaded from theNational Renewable Energy
Laboratory (NREL, www.nrel.gov/grid/wind‑toolkit.html (accessed on 30 July 2022)). The
dataset contains ten wind turbines, whose distribution is shown in Figure 7.

www.nrel.gov/grid/wind-toolkit.html
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Figure 7. Multi‑wind turbine distribution.

The geographical coordinates and data statistics of each wind turbine are shown in
Table 1. Based on the coordinates, the distance between adjacent wind turbines is about
4 km. The time ranges from 1 January 2012 to 31 December 2012 and the sampling interval
is 5 min, which totals 102,120 data points. To ensure the temporal continuity of the data,
we sequentially divided the raw dataset into training and testing sets with a ratio of 8:2.

Table 1. The statistics of the wind speed data.

Wind Turbine
Number Latitude Longitude Mean Standard

Deviation Min Max

1 41.184898 −70.977417 8.69 4.25 0.05 38.79
2 41.143829 −70.969116 8.71 4.27 0.04 38.18
3 41.161507 −70.961548 8.70 4.27 0.03 38.39
4 41.179184 −70.953949 8.69 4.26 0.05 38.33
5 41.138123 −70.945649 8.71 4.28 0.07 38.43
6 41.155788 −70.938050 8.70 4.27 0.02 37.99
7 41.173466 −70.930481 8.69 4.27 0.05 37.25
8 41.191128 −70.922852 8.68 4.26 0.07 37.62
9 41.208806 −70.915253 8.67 4.25 0.07 37.50
10 41.150074 −70.914581 8.70 4.28 0.08 37.20

5.2. Models and Experimental Setup
In this paper, we set up six representative multi‑turbine prediction models as bench‑

mark models and comprehensively validated the prediction performance of the
proposed model.

CNN [14] and LSTM [4] are classic models in the prediction field, commonly used to
handle time‑series prediction tasks. CNN‑LSTM [15] is a linear combination model based
on CNN and LSTM, used to process the temporal and spatial features in the sequence.
WDGC_GAN is a linear combination of a graph convolutional network and gated attention
network after weighting. DGCGAN and WDGCGRU are derived models based on the
model in this paper. DGCGAN refers to not performing graph structure weighting on the
basis of the model in this paper, while WDGCGRU refers to removing the added attention
mechanism on the basis of themodel in this paper. Themodel parameter settings are given
in Table 2.

In this experiment, all the models were built under the same deep learning platform,
with the RedHat 64‑bit operating system environment, Pytorch1.8‑based model frame‑
work, RTX‑3060 hardwareGPUmodel, 16Gmemory, AMDRyzen 7‑5800HCPU@3.20GHz,
and Python3.9.

In order to quantitatively and comprehensively evaluate the multi‑wind turbines pre‑
dictionmodel, we chose the coefficient of determination (R2), rootmean square error (RMSE)
and mean absolute percentage error (MAPE) as the evaluation criterions
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R2 =
∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2 , (10)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (11)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100%, (12)

where n represents the number of samples in the dataset, yi denotes the actual wind speed
value for the i‑th sample, ŷi signifies the model’s predicted value for the i‑th sample, and
y denotes the average value of the wind speed.

Table 2. Model parameter settings.

Model Parameters Value/Name

Model input sequence length 12
Number of hidden layers 64
Model initial learning rate 0.001

Training optimization algorithm Adam
Activation function Sigmoid/Tanh

Number of training iterations 100
Training optimization goal MSE

5.3. Multi‑Wind Turbine Prediction Results Analysis
Weset the threshold of node connection α = 0.8 and input theweighted graph structure

of the multi‑wind turbine into the trained WDGCGANmodel for spatio‑temporal feature
extraction. The prediction results are output at the end. The prediction error is given in
Table 3 and the MIC values between multiple turbines are shown in Figure 8a.

Table 3. The forecast error of ten wind turbines.

Wind Turbine
Number 1 2 3 4 5 6 7 8 9 10

R2 0.86 0.89 0.91 0.89 0.88 0.90 0.91 0.86 0.88 0.89
RMSE (m/s) 0.76 0.76 0.73 0.75 0.77 0.76 0.74 0.76 0.73 0.79
MAPE (%) 8.53 8.09 7.80 8.28 8.04 7.93 7.68 8.42 7.94 8.07
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Figure 8. The correlation description of wind turbines. (a) The MIC thermodynamic diagram be‑
tween wind turbines. (b) The average wind speed MIC of the wind turbines.

After the prediction task was completed, we compared the prediction error level and
theMIC heat map of the ten wind turbines. As shown in Table 3, the R2, RMSE, andMAPE
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indicators of the 3rd, 4th, 6th, and 7th wind turbines perform excellently. At the same time,
we calculated the average MIC value of each wind turbine with other wind turbines, as
shown in Figure 8b. The average MIC of the ith wind turbine is calculated by

Average MICi =
∑n

j=1MIC(Si, Sj
)

n
(13)

We found that the average MIC values of the 3rd, 4th, 6th, and 7th wind turbines
were better than other wind turbines. This indicates that the 3rd, 4th, 6th, and 7th wind
turbines can better aggregate the historical information of the surrounding wind turbines,
which helps to improve the model prediction accuracy. At the same time, this also verifies
the conclusion that the 3rd, 4th, 6th, and 7thwind turbines have excellent prediction errors.

To improve the forecasting indicators, we studied the number of training iterations for
the model parameters. Keeping the other parameters constant, we tried different numbers
of model training iterations and recorded the corresponding training times. The relation‑
ship between the number of training iterations and the total average prediction error is
shown in Figure 9.
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As we can see in the figure, as the number of training iterations increases, the predic‑
tion error tends to decrease. Additionally, since the number of iterations is closely linked
to training time, an increase in iterations also leads to an increase in training time, and the
rate of increase in training time is greater than the decrease in prediction error. Consid‑
ering the greater impact of the number of iterations on training time, we have chosen a
training count of 100.

5.4. Spatio‑Temporal Model Prediction Performance Comparison
To analyze the prediction performance of the model in different seasons, this section

divides the wind speed dataset into spring (January to March), summer (April to June),
autumn (July to September) and winter (October to December). The wind speed statistics
for the four seasons are given in Table 4.

Table 4. Seasonal wind speed statistics.

Season Mean Standard
Deviation Min Max

Spring 7.06 3.29 0.36 22.35
Summer 8.23 3.74 0.25 24.12
Autumn 9.76 4.32 0.32 25.42
Winter 9.66 4.83 0.34 37.41
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The average wind speed in spring was 7.06 m/s, the standard deviation was 3.29 m/s,
and the maximum wind speed was 22.35 m/s. The average wind speed in winter was
9.66 m/s, the standard deviation was 4.83 m/s, and the maximum wind speed was
37.41 m/s. We found that the wind speed changes were relatively smooth in spring, while
the wind speed fluctuations were intense in winter, when the wind speed extremes were
the highest.

We experimented with the proposed model and the traditional spatio‑temporal pre‑
diction models LSTM, CNN, and CNN‑LSTM in different seasons to evaluate the model
prediction performance. The model parameters are shown in Table 2. The RMSE of the
prediction results are given by Figure 10.
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In Figure 10, we found that the prediction errors RMSE of each model gradually in‑
creased from spring to winter. Combinedwith Table 4, it can be known that this is because
the standard deviation of wind speed data gradually increased from spring to winter, the
degree of wind speed fluctuation gradually intensified, and thus affected the prediction
accuracy of the model. However, the proposed model is still superior to the comparison
model in each season.

The prediction results of the comparison model are given in Table 5. We found that
the proposed model outperforms the comparison model in all four seasons.

Table 5. Comparison of spatio‑temporal models.

Season Error
Indicator

30 min 1 h

LSTM CNN CLSTM WDGCGAN LSTM CNN CLSTM WDGCGAN

Spring

R2 0.81 0.83 0.88 0.94 0.76 0.81 0.84 0.90
RMSE
(m/s) 0.98 1.01 0.69 0.64 1.03 1.17 0.76 0.68

MAPE (%) 10.89 9.78 7.27 6.79 10.93 10.08 8.81 7.57

Summer

R2 0.80 0.81 0.85 0.91 0.75 0.78 0.83 0.88
RMSE
(m/s) 1.07 1.05 0.91 0.73 1.15 1.14 0.97 0.76

MAPE (%) ‑‑ 9.92 7.96 5.77 11.04 10.28 8.08 6.46

Autumn

R2 0.78 0.81 0.86 0.90 0.72 0.77 0.82 0.88
RMSE
(m/s) 1.05 0.92 0.89 0.76 1.11 1.18 0.98 0.76

MAPE (%) 11.03 10.69 9.97 8.79 11.63 11.47 9.19 8.96

Winter

R2 0.75 0.76 0.82 0.88 0.70 0.76 0.79 0.85
RMSE
(m/s) 1.22 1.18 0.98 0.93 1.24 1.36 1.17 1.04

MAPE (%) 11.57 11.02 9.19 8.64 11.92 ‑‑ 12.8 11.06
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In the 30 min prediction task, the average RMSE of our model was 26.4% and 29.1%
lower than that of CNN and LSTM, respectively. CNN and LSTM have large prediction
errors in each season, because they are single models that can only extract limited spa‑
tial or temporal features. The average RMSE of our model was 11.8% lower than CLSTM.
Generally, the multi‑wind turbine distribution is irregular. The CLSTM needed to fill in
the missing parts with zeros when processing the space features, which increased irrele‑
vant information and affected the final prediction result. Otherwise, the proposed model
constructs a graph structure that can describe the arbitrary shape of the wind farm.

In the 1h prediction task, the prediction scale increased, making the time dependence
in the time series harder to capture. The prediction errors of each model increased com‑
pared with the 30 min prediction. However, the proposed model still outperformed the
comparison models, with the average RMSE being 28%, 33.1%, and 16.5% lower than that
of LSTM, CNN, and CLSTM, respectively.

5.5. Ablation Experiment Analysis
In this section, we split the historical wind speed data of 2012 at a ratio of 8:2 and

compared the prediction performance of the WDGC_GAN, DGCGAN, WDGCGRU, and
WDGCGANmodels. The parameter settings of these models are given in Table 2.

We evaluated the models on three aspects: the prediction accuracy of the weighted
graph construction method, the effectiveness of improving GRU by DGC embedding op‑
eration, and the effectiveness of the attention mechanism on model performance. The pre‑
diction results of ablation model are expressed in Figure 11.
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Figure 11. Prediction results of the ablation model. (a) The prediction results of the 1st wind turbine. 
(b) The prediction results of the 4th wind turbine. (c) The prediction results of the 7th wind turbine. 
(d) The prediction results of the 10th wind turbine. 

Due to space limitations, we only show the prediction results of the 1st, 4th, 7th, and 
10th wind turbines. The WDG_GAN model’s prediction results differ greatly from the 
actual values and fail to capture the wind speed change trend. The DGCGAN and 
WDGCGRU models can predict the future wind speed signal trend correctly, but they 
have errors at the peaks and valleys due to the data’s violent fluctuation. The WDGCGAN 
model can learn the wind speed trend better and obtain more accurate multi-wind turbine 
wind speed prediction results. 

We take the 10th wind turbine as an example for a detailed analysis. The prediction 
error of the 10th wind turbine is shown in Table 6. 

Figure 11. Prediction results of the ablation model. (a) The prediction results of the 1st wind turbine.
(b) The prediction results of the 4th wind turbine. (c) The prediction results of the 7th wind turbine.
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Energies 2024, 17, 1658 13 of 15

Due to space limitations, we only show the prediction results of the 1st, 4th, 7th, and
10th wind turbines. The WDG_GAN model’s prediction results differ greatly from the
actual values and fail to capture the wind speed change trend. The DGCGAN andWDGC‑
GRUmodels can predict the future wind speed signal trend correctly, but they have errors
at the peaks and valleys due to the data’s violent fluctuation. The WDGCGANmodel can
learn thewind speed trend better and obtainmore accuratemulti‑wind turbinewind speed
prediction results.

We take the 10th wind turbine as an example for a detailed analysis. The prediction
error of the 10th wind turbine is shown in Table 6.

Table 6. Prediction error of the 10th wind turbine.

Model R2 RMSE (m/s) MAPE Training Time/s

WDGC_GAN 0.81 1.05 11.91 1559.3
DGCGAN 0.85 1.01 11.79 1563.5
WDGCGRU 0.87 0.85 8.34 1604.1
WDGCGAN 0.91 0.79 8.07 1565.7

In contrast to DGCGAN, WDGCGAN reduces the prediction errors of RMSE and
MAPE by 0.22 m/s and 3.72%, respectively, with almost no change in the training time.
It shows that the weighted graph structure can better characterize the correlation of the
multi‑wind turbine.

Compared with WDG_GAN, WDGCGAN increases the parameter amount and the
training time by 6.4s due to the DGC operations. But, it reduces the errors of RMSE and
MAPE by 0.26m/s and 3.84%, respectively. With a small increase in the training time, it
shows that the weighted DGC operation can effectively extract the spatio‑temporal fea‑
tures of the multi‑wind turbine data and improve the prediction model performance.

UnlikeWDGCGRU,WDGCGANreduces the training time by 38.4 s anddecreases the
RMSE and MAPE by 0.06m/s and 0.16%, respectively. It shows that the attention mecha‑
nism in our model can speed up the model training and slightly improve the
prediction accuracy.

By comparison, the WDGCGANmodel has excellent performance on indicators such
as R2, RMSE, and MAPE, indicating its contribution to the accuracy and stability of wind
speed prediction. In contrast, the combined model WDGC‑GAN has the worst prediction
performance, with higher RMSE andMAEvalues and a lowerR2 value, reflecting relatively
low prediction accuracy.

6. Conclusions
The core of this paper is to study the structure and modeling method of the spatial

relationships between wind speeds, to extract the wind speed characteristics of irregular
wind farms more effectively, and to achieve multi‑turbine wind speed prediction. We pro‑
posed a multi‑wind turbine wind speed prediction method based on the weighted graph
structure and WDGCGAN. The following conclusions are drawn from the case:
(i) There is a spatial correlation between the wind speeds of the wind turbines in the

same wind farm. We can use the maximum mutual information of the wind speed
between the wind turbines to express and model the spatial relationship of multiple
wind turbines and the inclusion of wind speed features with strong correlation also
helps to improve the prediction performance of the model.

(ii) The experiments show that the model with the maximummutual information spatial
correlation module and the attention mechanism can reduce the prediction error of
themodel andmake the prediction curve of eachwind turbine closer to the true value
of the wind speed. In the 1h prediction task, the average RMSE was 28%, 33.1%, and
16.5% lower than that of LSTM, CNN, and CLSTM, respectively.

(iii) Based on the efficient modeling of the spatial relationship of multiple wind turbines,
our next workwill consider using correlation analysis, random forest, and the conclu‑
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sion of the maximum mutual information in Section 5.3 of this manuscript to select
thewind parameter feature variables that are strongly correlatedwith thewind speed
prediction, such as wind speed duration, wind direction, etc., and jointly construct a
large‑scale variableweighting graph to express their complex correlation relationship.

(iv) In futurework, we plan tomodel for different types of wind farms and conductmulti‑
turbine wind speed forecasting for more nodes. We will try to use optimization algo‑
rithms to find the optimal parameters for the model. Additionally, based on the exist‑
ing wind speed correlation modeling, we also hope to extend the model to the wind
power domain, achieving synchronous forecasting of multi‑turbine wind power.
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