Effects of Humic Acids on Calorific Value and Chemical Composition of Maize Biomass in Iron-Contaminated Soil Phytostabilisation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pot Experiment
2.2. Analytical Methods
- Cv—the calorific value of the biomass (MJ kg−1);
- Q—the heat of combustion of the biomass;
- Mc—moisture content of the biomass (%);
- 0.0244—water evaporation enthalpy correction factor (MJ kg−1 per 1% moisture).
- BEP—biomass energy production (MJ);
- Y—maize dry matter yield in kg per pot;
- Cv—the calorific value of dried biomass (MJ kg−1).
2.3. Statistical Methods
3. Results
3.1. Plants Height and Dry Matter Yield
3.2. Heat of Combustion, Calorific Value and Energy Production
3.3. SPAD Index
3.4. Macronutrients
3.5. Relations between Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martins, F.; Felgueiras, C.; Smitkova, M.; Caetano, N. Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies 2019, 12, 964. [Google Scholar] [CrossRef]
- Karimi, S.; Karri, R.R.; Tavakkoli Yaraki, M.; Koduru, J.R. Processes and separation technologies for the production of fuel-grade bioethanol: A review. Environ. Chem. Lett. 2021, 19, 2873–2890. [Google Scholar] [CrossRef]
- Cirovic, M.; Makajic-Nikolic, D.; Petrovic, N.; Vujosevic, M.; Kuzmanovic, M. European Union oil import dependency risk analysis. Pol. J. Environ. Stud. 2015, 24, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, N.; Gosh, S.K.; Bannerjee, S.; Aikat, K. Bioethanol production from agricultural wastes: An overview. Renew. Energ. 2012, 37, 19–27. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Sec. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Jiao, Y.; Chen, H.-D.; Han, H.; Chang, Y. Development and utilization of corn processing by-products: A review. Foods 2022, 11, 3709. [Google Scholar] [CrossRef]
- Klopfenstein, T.J.; Erickson, G.E.; Berger, L.L. Maize is a critically important source of food, feed, energy and forage in the USA. Field Crops Res. 2013, 153, 5–11. [Google Scholar] [CrossRef]
- Zbytek, Z.; Dach, J.; Pawłowski, T.; Smurzyńska, A.; Czekała, W.; Janczak, D. Energy and economic potential of maize straw used for biofuels production. MATEC Web Conf. 2016, 60, 04008. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Boros-Lajszner, E.; Kucharski, J. The impact of soil contamination with lead on the biomass of maize intended for energy purposes, and the biochemical and physicochemical properties of the soil. Energies 2024, 17, 1156. [Google Scholar] [CrossRef]
- Konieczna, A.; Roman, K.; Roman, M.; Śliwiński, D.; Roman, M. Energy efficiency of maize production technology: Evidence from Polish farms. Energies 2021, 14, 170. [Google Scholar] [CrossRef]
- Thangaraj, B.; Solomon, P.R.; Wongyao, N.; Helal, M.I.; Abdullah, A.; Abedrabbo, S.; Hassan, J. Synthesis of reduced graphene oxide nanosheets from sugarcane dry leaves by two-stage pyrolysis for antibacterial activity. Nano Mat. Sci. 2024, 1–10. [Google Scholar] [CrossRef]
- Supriyanto, G.; Rukman, N.K.; Nisa, A.K.; Jannatin, M.; Piere, B.; Abdullah, A.; Fahmi, M.Z.; Kusuma, H.S. Graphene oxide from Indonesian biomass: Synthesis and characterization. BioResources 2018, 13, 4832–4840. [Google Scholar] [CrossRef]
- Thangaraj, B.; Mumtaz, F.; Abbas, Y.; Anjum, D.H.; Solomon, P.R.; Hassan, J. Synthesis of graphene oxide from sugarcane dry leaves by two-stage pyrolysis. Molecules 2023, 28, 3329. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Wang, K.; Wu, L.; Yu, S.H.; Antonietti, M.; Titirici, M.M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 2010, 22, 813–828. [Google Scholar] [CrossRef] [PubMed]
- Caputo, A.; Palumbo, M.; Pelagagge, P.M.; Scacchia, F. Economics of biomass energy utilization in combustion and gasification plants: Effects of logistic variables. Biomass Bioenergy 2005, 28, 35–51. [Google Scholar] [CrossRef]
- Dujmović, M.; Šafran, B.; Jug, M.; Radmanović, K.; Antonović, A. Biomass pelletizing process: A review. Drv. Ind. 2021, 73, 99–106. [Google Scholar] [CrossRef]
- Nowak, K.; Rabczak, S. Co-combustion of biomass with coal in grate water boilers at low load boiler operation. Energies 2021, 14, 2520. [Google Scholar] [CrossRef]
- Wojcieszak, D.; Przybył, J.; Czajkowski, Ł.; Majka, J.; Pawłowski, A. Effects of harvest maturity on the chemical and energetic properties of corn stover biomass combustion. Materials 2022, 15, 2831. [Google Scholar] [CrossRef] [PubMed]
- Magdziarz, A.; Wilk, M. Thermogravimetric study of biomass, sewage sludge and coal combustion. Energy Convers. Manag. 2013, 75, 425–430. [Google Scholar] [CrossRef]
- Cervelli, E.; di Perta, E.S.; Pindozzi, S. Energy crops in marginal areas: Scenario-based assessment through ecosystem services, as support to sustainable development. Ecol. Indic. 2020, 113, 106180. [Google Scholar] [CrossRef]
- Strezov, V.; Chaudhary, C. Impacts of iron and steelmaking facilities on soil quality. J. Environ. Manag. 2017, 203, 1158–1162. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S.; Luqman, M.; Farooq Awan, M.U.; Saba, I.; Khan, Z.I.; Ahmad, K.; Muneeb, A.; Nadeem, M.; Batool, A.I.; Shahzadi, M.; et al. Health risk implications of iron in wastewater soil-food crops grown in the vicinity of peri urban areas of the District Sargodha. PLoS ONE 2022, 17, e0275497. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Shekhar, S. Iron contamination in the waters of Upper Yamuna basin. Groundw. Sustain. Dev. 2018, 7, 421–429. [Google Scholar] [CrossRef]
- Siqueira-Silva, A.I.; Rios, C.O.; Pereira, E.G. Iron toxicity resistance strategies in tropical grasses: The role of apoplastic radicular barriers. J. Environ. Sci. 2019, 78, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xiao, S.; Xue, C. The tug-of-war on iron between plant and pathogen. Phytopathol. Res. 2023, 5, 61. [Google Scholar] [CrossRef]
- Rai, S.; Singh, P.K.; Mankotia, S.; Swain, J.; Satbhai, S.B. Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese. Plant Stress 2021, 1, 100008. [Google Scholar] [CrossRef]
- Mehrotra, R.; Verma, R.K.; Pal, A. Iron deficiency chlorosis in aromatic grasses—A review. Environ. Chall. 2022, 9, 100646. [Google Scholar] [CrossRef]
- Lapaz, A.M.; Yoshida, C.H.P.; Gorni, P.H.; de Freitas-Silva, L.; Araújo, T.O.; Ribeiro, C. Iron toxicity: Effects on the plants and detoxification strategies. Acta Bot. Bras. 2022, 36, e2021abb0131. [Google Scholar] [CrossRef]
- Adamski, J.M.; Peters, J.A.; Danieloski, R.; Bacarin, M.A. Excess iron-induced changes in the photosynthetic characteristics of sweet potato. J. Plant Physiol. 2011, 168, 2056–2062. [Google Scholar] [CrossRef]
- Müller, C.; Silveira, S.F.d.S.; Daloso, D.d.M.; Mendes, G.C.; Merchant, A.; Kuki, K.N.; Oliva, M.A.; Loureiro, A.E.; Almeida, A.M. Ecophysiological responses to excess iron in lowland and upland rice cultivars. Chemosphere 2017, 189, 123–133. [Google Scholar] [CrossRef]
- Chatterjee, C.; Gopal, R.; Dube, B.K. Impact of iron stress on biomass, yield, metabolism and quality of potato (Solanum tuberosum L.). Scientia Horticulturae 2006, 108, 1–6. [Google Scholar] [CrossRef]
- Reyt, G.; Boudouf, S.; Boucherez, J.; Gaymard, F.; Briat, J.F. Iron and ferritin dependent ROS distribution impact Arabidopsis root system architecture. Mol. Plant 2015, 8, 439–453. [Google Scholar] [CrossRef] [PubMed]
- Harish, V.; Aslam, S.; Chouhan, S.; Pratap, Y.; Lalotra, S. Iron toxicity in plants: A Review. Int. J. Environ. Clim. Chang. 2023, 13, 1894–1900. [Google Scholar] [CrossRef]
- Siqueira-Silva, A.I.; Silva, L.C.; Azevedo, A.A.; Oliva, M.A. Iron plaque formation and morphoanatomy of roots from species of restinga subjected to excess iron. Ecotoxicol. Environ. Saf. 2012, 78, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Araújo, T.O.; Freitas-Silva, L.; Santana, B.V.N.; Kuki, K.N.; Pereira, E.G.; Azevedo, A.A.; da Silva, L.C. Tolerance to iron accumulation and its effects on mineral composition and growth of two grass species. Environ. Sci. Pollut. Res. 2014, 21, 2777–2784. [Google Scholar] [CrossRef] [PubMed]
- Johan, P.D.; Ahmed, O.H.; Omar, L.; Hasbullah, N.A. Phosphorus transformation in soils following co-application of charcoal and wood ash. Agronomy 2021, 11, 2010. [Google Scholar] [CrossRef]
- Jansen, B.; Nierop, K.G.J.; Verstraten, J.M. Mobility of Fe(II), Fe(III) and Al in acidic forest soils mediated by dissolved organic matter: Influence of solution pH and metal/organic carbon ratios. Geoderma 2003, 113, 323–340. [Google Scholar] [CrossRef]
- Krohling, C.A.; Eutrópio, F.J.; Bertolazi, A.A.; Dobbss, L.B.; Campostrini, E.; Dias, T.; Ramos, A.C. Ecophysiology of iron homeostasis in plants. Soil Sci. Plant Nutr. 2016, 62, 39–47. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Bejger, R.; Debaene, G.; Smreczak, B. Characterization of soil organic matter individual fractions (fulvic acids, humic acids, and humins) by spectroscopic and electrochemical techniques in agricultural soils. Agronomy 2021, 11, 1067. [Google Scholar] [CrossRef]
- Piccolo, A.; Spaccini, R.; De Martino, A.; Scognamiglio, F.; di Meo, V. Soil washing with solutions of humic substances from manure compost removes heavy metal contaminants as a function of humic molecular composition. Chemosphere 2019, 225, 150–156. [Google Scholar] [CrossRef]
- Rong, Q.; Zhong, K.; Huang, H.; Li, C.; Zhang, C.; Nong, X. Humic acid reduces the available cadmium, copper, lead, and zinc in soil and their uptake by tobacco. Appl. Sci. 2020, 10, 1077. [Google Scholar] [CrossRef]
- Mosa, A.; Taha, A.A.; Elsaeid, M. In-situ and ex-situ remediation of potentially toxic elements by humic acid extracted from different feedstocks: Experimental observations on a contaminated soil subjected to long-term irrigation with sewage effluents. Environ. Technol. Innov. 2021, 23, 101599. [Google Scholar] [CrossRef]
- Boguta, P.; D’Orazio, V.; Senesi, N.; Sokołowska, Z.; Szewczuk-Karpisz, K. Insight into the interaction mechanism of iron ions with soil humic acids. The effect of the pH and chemical properties of humic acids. J. Environ. Manag. 2019, 245, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Havelcov, M.; Mizera, J.; Skorov, I.; Pekař, M. Sorption of metal ions on lignite and the derived humic substances. J. Hazard. Mater. 2009, 161, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Tang, C.; Antonietti, M. Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chem. Soc. Rev. 2021, 50, 6221–6239. [Google Scholar] [CrossRef] [PubMed]
- Ondurasek, G.; Rengel, Z.; Romic, D. Humic acids decrease uptake and distribution of trace metals, but not the growth of radish exposed to cadmium toxicity. Ecotoxicol. Environ. Saf. 2021, 151, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Perelomov, L.; Sarkar, B.; Pinsky, D.; Atroshchenko, Y.; Perelomova, I.; Mukhtorov, L.; Mazur, A. Trace elements adsorption by natural and chemically modified humic acids. Environ. Geochem. Health 2021, 43, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Li, R.; Peng, S.; Liu, Q.; Zhu, X. Effect of humic acid on transformation of soil heavy metals. IOP Conf. Ser. Mater. Sci. Eng. 2017, 207, 012089. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Kordala, N.; Brodowska, M.S. Trace element content in soils with nitrogen fertilisation and humic acids addition. Agriculture 2023, 13, 968. [Google Scholar] [CrossRef]
- Varol, M.; Sünbül, M.R.; Aytop, H.; Yilmaz, C.H. Environmental, ecological and health risks of trace elements, and their sources in soils of Harran Plain, Turkey. Chemosphere 2020, 245, 125592. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015; In World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 182. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 14 April 2023).
- Solid Biofuels—Determination of Calorific Value; European Committee for Standardization: Brussels, Belgium, 2017. Available online: https://pkn.pl/pn-en-iso-18125-2017-07 (accessed on 12 December 2023).
- Kopetz, H.; Jossart, J.; Ragossnig, H.; Metschina, C. European Biomass Statistics; European Biomass Association: Brussels, Belgium, 2007. [Google Scholar]
- Wyszkowska, J.; Borowik, A.; Zaborowska, M.; Kucharski, J. Calorific Value of Zea mays biomass derived from soil contaminated with chromium (VI) disrupting the soil’s biochemical properties. Energies 2023, 16, 3788. [Google Scholar] [CrossRef]
- Konica Minolta Optics. Chlorophyll Meter SPAD-502Plus Instruction Manual. Available online: https://www.konicaminolta.com/instruments/download/instruction_manual/color/pdf/spad-502plus_instruction_eng.pdf (accessed on 25 June 2023).
- Bremner, J.M. Nitrogen—Total. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA; American Society of Agronomy Inc.: Madison, WI, USA, 1996; pp. 1087–1123. [Google Scholar]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods of Analysis and Assessment of Soil and Plants Properties, 1st ed.; Institute of Environmental Protection: Warsaw, Poland, 1991; pp. 1–334. [Google Scholar]
- TIBCO Software Inc. Statistica (Data Analysis Software System), Version 13.3. 2017. Available online: http://statistica.io (accessed on 20 February 2024).
- Lipiec, J.; Nosalewicz, J.; Pietrusiewicz, J. Crop response to soil physical conditions. In Encyclopedia of Agrophysics; Gliński, J., Horabik, J., Lipiec, J., Eds.; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; London, UK; New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Walne, C.H.; Reddy, K.R. Temperature effects on the shoot and root growth, development, and biomass accumulation of corn (Zea mays L.). Agriculture 2022, 12, 443. [Google Scholar] [CrossRef]
- Blake, G.R.; Steinhardt, G.C.; Pombal, X.P.; Muñoz, J.C.N.; Cortizas, A.M.; Arnold, R.W.; Schaetzl, R.J.; Stagnitti, F.; Parlange, J.-Y.; Steenhuis, T.S.; et al. Plant roots and soil physical factors. In Encyclopedia of Soil Science; Chesworth, W., Ed.; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Atkinson, B.S.; Sparkes, D.L.; Mooney, S.J. Effect of seedbed cultivation and soil macrostructure on the establishment of winter wheat (Triticum aestivum). Soil Tillage Res. 2009, 103, 291–301. [Google Scholar] [CrossRef]
- Abdelfattah, M.A.; Rady, M.M.; Belal, H.E.E.; Belal, E.E.; Al-Qthanin, R.; Al-Yasi, H.M.; Ali, E.F. Revitalizing Fertility of Nutrient-Deficient Virgin Sandy Soil Using Leguminous Biocompost Boosts Phaseolus vulgaris Performance. Plants 2021, 10, 1637. [Google Scholar] [CrossRef]
- Ampong, K.; Thilakaranthna, M.S.; Gorim, L.Y. Understanding the role of humic acids on crop performance and soil health. Front. Agron. 2022, 4, 848621. [Google Scholar] [CrossRef]
- Lodhi, A.; Tahir, S.; Iqbal, Z.; Mahmood, A.; Akhtar, M.; Qureshi, T.M.; Yaqub, M.; Naeem, A. Characterization of Commercial Humic Acid Samples and Their Impact on Growth of Fungi and Plants. Soil Environ. 2013, 32, 63–70. Available online: https://www.academia.edu/download/85951909/File-Download.pdf (accessed on 26 January 2024.).
- Duary, S. Humic Acid. A Critical Review. Int. J. Curr. Microbiol. App. Sci. 2020, 9, 2236–2241. [Google Scholar] [CrossRef]
- Yigit, F.; Dikilitas, M. Effect of humic acid applications on the root-rot disease caused by Fusarium Spp. on tomato. Plant Pathol. J. 2008, 7, 179–182. [Google Scholar] [CrossRef]
- Delfine, S.; Tognetti, R.; Desiderio, E.; Alvino, A. Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agron. Sustain. Dev. 2005, 25, 183–191. [Google Scholar] [CrossRef]
- Turan, M.A.; Asik, B.B.; Katkat, A.V.; Celik, H. The effects of soil-applied humic substances to the dry weight and mineral nutrient uptake of maize plants under soil-salinity conditions. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 171–177. [Google Scholar] [CrossRef]
- Albiach, R.; Canet, R.; Pomares, F.; Ingelmo, F. Organic matter components and aggregate stability after the application of different amendments to a horticultural soil. Bioresour. Technol. 2001, 76, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Zhang, Y.; Zhuo, Y.; Lestander, T.; Geladi, P. Variations in fuel characteristics of corn (Zea mays) stovers: General spatial patterns and relationships to soil properties. Renew. Energy 2010, 35, 1185–1191. [Google Scholar] [CrossRef]
- Lizotte, P.-L.; Savoie, P.; De Champlain, A. Ash content and calorific energy of corn stover components in Eastern Canada. Energies 2015, 8, 4827–4838. [Google Scholar] [CrossRef]
- Wojcieszak, D.; Pawłowski, A.; Przybył, J. Energy comparison of corn stover fraction. In Farm Machinery and Processes Management in Sustainable Agriculture. FMPMSA 2022. Lecture Notes in Civil Engineering, 289; Pascuzzi, S., Santoro, F., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Ullah, H.; Aung, M.Z.; Tisarum, R.; Cha-Um, S. Iron toxicity tolerance of rice genotypes in relation to growth, yield and physiochemical characters. Rice Sci. 2023, 30, 321–334. [Google Scholar] [CrossRef]
- Setter, T.L.; Waters, I.; Sharma, S.K.; Singh, K.N.; Kulshreshtha, N.; Yaduvanshi, N.P.; Ram, P.C.; Singh, B.N.; Rane, J.; McDonald, G.; et al. Review of wheat improvement for waterlogging tolerance in Australia and India: The importance of anaerobiosis and element toxicities associated with different soils. Ann. Bot. 2009, 103, 221–235. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, M.S.; Sanglard, L.M.V.P.; Barbosa, M.L.; Namorato, F.A.; de Melo, D.C.; Franco, W.C.G.; Pérez-Molina, J.P.; Martins, S.C.V.; DaMatta, F.M. Silicon nutrition mitigates the negative impacts of iron toxicity on rice photosynthesis and grain yield. Ecotoxicol. Environ. Saf. 2020, 189, 110008. [Google Scholar] [CrossRef] [PubMed]
- Brodowska, M.S.; Wyszkowski, M.; Kordala, N. Use of organic materials to limit the potential negative effect of nitrogen on maize in different soils. Materials 2022, 15, 5755. [Google Scholar] [CrossRef]
- Hansel, C.M.; Fendorf, S.; Sutton, S.; Newville, M. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ. Sci. Technol. 2001, 35, 3863–3868. [Google Scholar] [CrossRef] [PubMed]
- da Silveira, V.C.; de Oliveira, A.P.; Sperotto, R.A.; Espindola, L.S.; Amaral, L.; Dias, J.F.; da Cunha, J.B.; Fett, J.P. Influence of iron on mineral status of two rice (Oryza sativa L.) cultivars. Braz. J. Plant Physiol. 2007, 19, 127–139. [Google Scholar] [CrossRef]
- Thomine, S.; Vert, G. Iron transport in plants: Better be safe than sorry. Curr. Opin. Plant Biol. 2013, 16, 322–327. [Google Scholar] [CrossRef]
- Aung, M.S.; Masuda, H. How Does Rice Defend Against Excess Iron?: Physiological and Molecular Mechanisms. Front. Plant Sci. 2020, 11, 1102. [Google Scholar] [CrossRef]
- Aung, M.S.; Masuda, H.; Kobayashi, T.; Nishizawa, N.K. Physiological and transcriptomic analysis of responses to different levels of iron excess stress in various rice tissues. Soil Sci. Plant Nutr. 2018, 64, 370–385. [Google Scholar] [CrossRef]
- Onaga, G.; Dramé, K.N.; Ismail, A.M. Understanding the regulation of iron nutrition: Can it contribute to improving iron toxicity tolerance in rice? Funct. Plant Biol. 2016, 43, 709–726. [Google Scholar] [CrossRef] [PubMed]
- Suh, H.J.; Kim, C.S.; Lee, J.Y.; Jung, J. Photodynamic effect of iron excess on photosystem II function in pea plants. Photochem. Photobiol. 2002, 75, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.; Asch, F. Iron toxicity in rice—Conditions and management concepts. J. Plant Nutr. Soil Sci. 2005, 168, 558–573. [Google Scholar] [CrossRef]
- Onyango, D.A.; Entila, F.; Dida, M.M.; Ismail, A.M.; Drame, K.N. Mechanistic understanding of iron toxicity tolerance in contrasting rice varieties from Africa: 1. Morpho-physiological and biochemical responses. Funct Plant Biol. 2019, 46, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, L.; Graziano, M.; Lamattina, L. Decoding plant responses to iron deficiency: Is nitric oxide a central player? Plant Signal Behav. 2008, 3, 795–797. [Google Scholar] [CrossRef] [PubMed]
- Hindt, M.N.; Guerinot, M.L. Getting a sense for signals: Regulation of the plant iron deficiency response. Biochim. Biophys. Acta Mol. Cell Res. 2012, 1823, 1521–1530. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, C.; Li, K.; Cai, X.; Wu, M.; Chen, G. Fe deficiency induced changes in rice (Oryza sativa L.) thylakoids. Environ. Sci. Pollut. Res. 2017, 24, 1380–1388. [Google Scholar] [CrossRef]
- Eryiğit, T.; Husamalddin, A.H. Effects of different humic acid doses on yield and quality properties of corn (Zea mays L.) in Iraq-Sulaymaniyah conditions. J. Inst. Sci. Technol. 2023, 13, 1377–1393. [Google Scholar] [CrossRef]
- Baldotto, M.A.; Melo, R.O.; Baldotto, L.B. Field corn yield in response to humic acids application in the absence or presence of liming and mineral fertilization. Semin. Cienc. Agrar. 2019, 40, 3299–3304. [Google Scholar] [CrossRef]
- Khaled, H.; Fawy, H.A. Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil Water Res. 2011, 6, 21–29. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Kordala, N.; Brodowska, M. Role of humic acids-based fertilisers and nitrogen fertilisers in the regulation of the macroelement content in maize biomass. J. Elem. 2023, 28, 1289–1309. [Google Scholar] [CrossRef]
- Ifansyah, H. Soil pH and solubility of aluminum, iron, and phosphorus in ultisols: The roles of humic acid. J. OF Trop. Soils 2013, 18, 203–208. [Google Scholar] [CrossRef]
- Herviyanti; Prasetyo, T.B.; Ahmad, F.; Saidi, A. Humic acid and water management to decrease ferro (Fe2+) solution and increase productivity of established new. J. Trop Soils 2012, 17, 9–17. [Google Scholar] [CrossRef]
- Evangelou, V.P.; Marsi, M.; Chappel, M.A. Potentiometric-spectroscopic evaluation of metal-ion complexes by humic fractions extracted from corn tissue. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2002, 58, 2159–2175. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowska-Malina, J. Functions of organic matter in polluted soils: The effect of organic amendments on phytoavailability of heavy metals. Appl. Soil Ecol. 2017, 123, 542–545. [Google Scholar] [CrossRef]
- Abros’kin, D.P.; Fuentesb, M.; Garcia-Minab, J.M.; Klyainc, O.I.; Senikd, S.V.; Volkova, D.S.; Perminovaa, I.V.; Kulikova, N.A. The effect of humic acids and their complexes with iron on the functional status of plants grown under iron deficiency. Eurasian Soil Sci. 2016, 49, 1099–1108. [Google Scholar] [CrossRef]
- Rasouli, F.; Nasiri, Y.; Asadi, M.; Hassanpouraghdam, M.B.; Golestaneh, S.; Pirsarandib, Y. Fertilizer type and humic acid improve the growth responses, nutrient uptake, and essential oil content on Coriandrum sativum L. Sci. Rep. 2022, 12, 7437. [Google Scholar] [CrossRef]
- Eyheraguibel, B.; Silvestre, J.; Morard, P. Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresour. Technol. 2008, 99, 4206–4212. [Google Scholar] [CrossRef]
- Cimrin, K.M.; Yilmaz, I. Humic acid applications to lettuce do not improve yield but do improve phosphorus availability. Acta Agric. Scand. B Soil Plant Sci. 2005, 55, 58–63. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Brodowska, M.S.; Kordala, N. Trace element contents in maize following the application of organic materials to reduce the potential adverse effects of nitrogen. Materials 2023, 16, 215. [Google Scholar] [CrossRef] [PubMed]
Fe Dose mg kg−1 of Soil | Humic Acids (HAs) Application in g kg−1 of Soil | ||||
---|---|---|---|---|---|
0 | 0.3 | 0.6 | 0.9 | Average | |
Height (cm) | |||||
0 | 139.9 ef | 153.3 fg | 154.7 fg | 153.1 fg | 150.3 C |
250 | 152.1 fg | 154.1 fg | 158.8 g | 152.7 fg | 154.4 D |
500 | 94.4 ab | 131.4 de | 148.8 fg | 147.1 f | 130.4 B |
750 | 81.7 a | 84.1 a | 106.1 bc | 119.6 cd | 97.8 A |
Average | 117.0 A | 130.7 B | 142.1 C | 143.1 C | 133.2 |
r | −0.876 ** | −0.906 ** | −0.826 ** | −0.861 ** | −0.906 ** |
Aerial parts dry matter yield (g pot−1) | |||||
0 | 67.03 g | 81.71 i | 87.89 j | 87.18 j | 80.95 D |
250 | 67.95 g | 66.78 g | 73.62 h | 84.70 ij | 73.26 C |
500 | 18.38 c | 31.23 d | 45.52 e | 56.93 f | 38.02 B |
750 | 3.37 a | 8.89 b | 18.45 c | 32.30 d | 15.75 A |
Average | 39.18 A | 47.15 B | 56.37 C | 65.28 D | 52.00 |
r | −0.934 ** | −0.989 ** | −0.991 ** | −0.959 ** | −0.976 ** |
Fe Dose mg kg−1 of Soil | HAs Application in g kg−1 of Soil | ||||
---|---|---|---|---|---|
0 | 0.3 | 0.6 | 0.9 | Average | |
Heat of combustion, MJ kg−1 of plant | |||||
0 | 18.03 b | 18.33 gh | 18.48 i | 18.50 i | 18.34 D |
250 | 18.09 bc | 18.19 de | 18.24 ef | 18.21 ef | 18.18 B |
500 | 18.38 h | 18.12 bc | 18.13 cd | 18.31 g | 18.23 C |
750 | 17.89 a | 18.27 fg | 17.84 a | 18.31 g | 18.08 A |
Average | 18.10 A | 18.23 C | 18.17 B | 18.33 D | 18.21 |
r | −0.076 | −0.357 | −0.986 ** | −0.521 | −0.865 ** |
Calorific value, MJ kg−1 of plant | |||||
0 | 15.48 b | 15.74 hi | 15.88 j | 15.89 j | 15.75 D |
250 | 15.53 c | 15.62 de | 15.66 ef | 15.64 ef | 15.61 B |
500 | 15.79 i | 15.55 c | 15.57 cd | 15.72 gh | 15.66 C |
750 | 15.36 a | 15.69 fg | 15.31 a | 15.72 gh | 15.52 A |
Average | 15.54 A | 15.65 C | 15.60 B | 15.74 D | 15.63 |
r | −0.076 | −0.357 | −0.986 ** | −0.521 | −0.865 ** |
Energy production from maize biomass, MJ pot−1 | |||||
0 | 0.913 h | 1.081 l | 1.102 m | 1.146 o | 1.061 D |
250 | 0.979 k | 0.975 j | 1.106 n | 1.158 p | 1.054 C |
500 | 0.361 d | 0.416 e | 0.769 g | 0.939 i | 0.621 B |
750 | 0.088 a | 0.164 b | 0.304 c | 0.533 f | 0.272 A |
Average | 0.586 A | 0.659 B | 0.820 C | 0.944 D | 0.752 |
r | −0.924 ** | −0.970 ** | −0.931 ** | −0.910 ** | −0.950 ** |
Fe Dose mg kg−1 of Soil | HAs Application in g kg−1 of Soil | ||||
---|---|---|---|---|---|
0 | 0.3 | 0.6 | 0.9 | Average | |
Nitrogen | |||||
0 | 14.93 e | 11.20 a | 11.29 ab | 11.57 ab | 12.25 A |
250 | 16.80 f | 15.21 e | 11.95 bc | 12.51 c | 14.12 B |
500 | 19.97 h | 17.08 f | 16.43 f | 13.53 d | 16.75 C |
750 | 28.09 j | 19.13 g | 21.00 f | 14.93 e | 20.79 D |
Average | 19.95 D | 15.66 C | 15.17 B | 13.14 A | 15.98 |
r | 0.947 ** | 0.982 ** | 0.962 ** | 0.995 ** | 0.985 ** |
Phosphorus | |||||
0 | 2.693 h | 2.043 f | 2.112 f | 1.631 bc | 2.120 A |
250 | 2.730 h | 2.243 g | 1.898 e | 1.619 a–c | 2.123 A |
500 | 2.767 h | 1.772 de | 1.522 ab | 1.717 cd | 1.945 C |
750 | 1.876 e | 1.804 de | 1.571 ab | 1.496 a | 1.687 B |
Average | 2.517 D | 1.966 C | 1.776 B | 1.616 A | 1.968 |
r | −0.728 ** | −0.693 ** | −0.924 ** | −0.434 | −0.928 ** |
Potassium | |||||
0 | 20.67 f | 15.58 c | 14.61 b | 14.20 a | 16.27 A |
250 | 20.72 f | 20.50 f | 16.67 d | 15.50 c | 18.35 B |
500 | 26.85 j | 23.56 h | 24.46 i | 19.66 e | 23.63 C |
750 | 37.25 m | 27.77 k | 29.49 l | 22.32 g | 29.21 D |
Average | 26.37 D | 21.85 C | 21.31 B | 17.92 A | 21.86 |
r | 0.923 ** | 0.996 ** | 0.980 ** | 0.983 ** | 0.983 ** |
Fe Dose mg kg−1 of Soil | HAs Application in g kg−1 of Soil | ||||
---|---|---|---|---|---|
0 | 0.3 | 0.6 | 0.9 | Average | |
Sodium | |||||
0 | 0.348 d–f | 0.433 g | 0.303 ab | 0.287 a | 0.343 B |
250 | 0.361 ef | 0.441 g | 0.306 a–c | 0.299 a–c | 0.352 AB |
500 | 0.373 f | 0.442 g | 0.310 a–c | 0.324 b–d | 0.362 A |
750 | 0.328 b–e | 0.441 g | 0.338 c–e | 0.322 b–d | 0.357 A |
Average | 0.353 B | 0.439 C | 0.314 A | 0.308 A | 0.354 |
r | −0.327 | 0.763 ** | 0.877 ** | 0.934 ** | 0.839 ** |
Magnesium | |||||
0 | 2.028 fg | 1.797 de | 1.732 b–d | 1.608 a | 1.791 B |
250 | 2.139 h | 2.095 gh | 2.010 fg | 1.672 a–c | 1.979 D |
500 | 2.003 fg | 1.844 e | 1.987 f | 1.865 e | 1.925 C |
750 | 1.665 a–c | 1.778 de | 1.648 ab | 1.742 cd | 1.708 A |
Average | 1.959 D | 1.879 C | 1.844 B | 1.722 A | 1.851 |
r | −0.773 ** | −0.272 | −0.195 | 0.697 ** | −0.317 |
Calcium | |||||
0 | 5.057 c | 4.899 b | 4.609 a | 4.558 a | 4.781 A |
250 | 6.635 f | 6.785 g | 6.694 fg | 5.795 d | 6.477 B |
500 | 6.718 fg | 6.798 g | 6.797 g | 6.820 g | 6.783 D |
750 | 6.731 fg | 7.077 h | 6.629 f | 6.419 e | 6.714 C |
Average | 6.285 C | 6.390 D | 6.182 B | 5.898 A | 6.189 |
r | 0.804 ** | 0.843 ** | 0.757 ** | 0.864 ** | 0.832 ** |
Variable | SPAD I | SPAD II | Height | DM Yield | Heat of Combustion | Calorific Value | Energy Production | N | P | K | Na | Mg |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SPAD II | −0.516 ** | |||||||||||
Height | 0.750 ** | −0.487 ** | ||||||||||
DM yield | 0.879 ** | −0.499 ** | 0.907 ** | |||||||||
Heat of combustion | 0.502 ** | −0.047 | 0.332 * | 0.481 ** | ||||||||
Calorific value | 0.499 ** | −0.051 | 0.333 * | 0.481 ** | 0.998 ** | |||||||
Energy production | 0.867 ** | −0.515 ** | 0.936 ** | 0.985 ** | 0.471 ** | 0.472 ** | ||||||
N | −0.781 ** | 0.457 ** | −0.837 ** | −0.870 ** | −0.672 ** | −0.669 ** | −0.875 ** | |||||
P | 0.341 * | −0.124 | 0.015 | 0.119 | 0.007 | 0.008 | 0.108 | 0.064 | ||||
K | −0.838 ** | 0.476 ** | −0.858 ** | −0.933 ** | −0.665 ** | −0.665 ** | −0.924 ** | 0.978 ** | −0.025 | |||
Na | −0.110 | 0.133 | −0.227 | −0.272 | −0.101 | −0.099 | −0.307 * | 0.160 | 0.283 | 0.188 | ||
Mg | 0.250 | −0.254 | 0.295 * | 0.123 | −0.085 | −0.081 | 0.211 | −0.090 | 0.659 ** | −0.082 | 0.290 * | |
Ca | −0.645 ** | 0.235 | −0.423 ** | −0.682 ** | −0.464 ** | −0.451 ** | −0.581 ** | 0.564 ** | −0.110 | 0.625 ** | 0.275 | 0.322 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyszkowski, M.; Kordala, N. Effects of Humic Acids on Calorific Value and Chemical Composition of Maize Biomass in Iron-Contaminated Soil Phytostabilisation. Energies 2024, 17, 1691. https://doi.org/10.3390/en17071691
Wyszkowski M, Kordala N. Effects of Humic Acids on Calorific Value and Chemical Composition of Maize Biomass in Iron-Contaminated Soil Phytostabilisation. Energies. 2024; 17(7):1691. https://doi.org/10.3390/en17071691
Chicago/Turabian StyleWyszkowski, Mirosław, and Natalia Kordala. 2024. "Effects of Humic Acids on Calorific Value and Chemical Composition of Maize Biomass in Iron-Contaminated Soil Phytostabilisation" Energies 17, no. 7: 1691. https://doi.org/10.3390/en17071691
APA StyleWyszkowski, M., & Kordala, N. (2024). Effects of Humic Acids on Calorific Value and Chemical Composition of Maize Biomass in Iron-Contaminated Soil Phytostabilisation. Energies, 17(7), 1691. https://doi.org/10.3390/en17071691