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Abstract: This paper presents a detailed review of the existing literature on peer-to-peer (P2P) energy
trading considering market architectures, trading strategies, and enabling technologies. P2P energy
trading enables individual users in the electricity network to act as sellers or buyers and trade energy
among each other. To facilitate the discussion on different aspects of P2P energy trading, this paper
focuses on P2P market mechanisms, relevant bidding strategies, and auction models. In addition, to
solve the energy management problems associated with P2P energy trading, this paper investigates
widely used solution methods such as game-theoretic models, mathematical optimisation, as well as
more recent machine learning techniques and evaluates them in a critical manner. The outcomes of
this investigation along with the identification of the challenges and limitations will allow researchers
to find suitable P2P energy trading mechanisms based on different market contexts. Moreover, the
discussions on potential future research directions are expected to improve the effectiveness of P2P
energy trading technologies.

Keywords: peer-to-peer energy trading; distributed energy resources; bidding; game theory;
mathematical optimisation

1. Introduction

The increasing adoption of distributed renewable energy sources such as rooftop solar
in the electricity grid has enabled consumers to become prosumers, who can generate
and sell energy to other users [1]. This leads to a new form of energy market acting in
parallel with the traditional wholesale or retail energy market. In an electricity distribution
network, if there are many users with distributed energy resources (DERs), there can be
some users with an energy excess and other users with an energy deficit. If these users can
share or trade energy among each other, they can balance their electricity supply/demand
locally, thus forming a peer-to-peer (P2P) energy market [2]. Such energy transactions are
often monitored by centralised platforms with mechanisms to settle market prices between
prosumers ensuring fairness and end user engagement.

Government agencies and energy policy makers throughout the world aim to achieve
‘Net Zero by 2050’ target aligned with United Nation’s Sustainable Development Goals
(SDG) on climate action and affordable clean energy [3]. To achieve this goal, they
provide incentives for renewable energy integration and uptake of energy efficiency
technologies [4]. P2P energy trading technologies can help achieve such goals by enhanc-
ing the adoption of renewable energy technologies and reducing carbon emissions [5–7].
The existing energy market mechanisms often fail to manage the new challenges arising
with changes in the energy mix. In this regard, P2P energy trading mechanisms can offer
innovative market solutions [8] to engage new participants in the market. With the increas-
ing penetration of renewable energy sources, there can be adverse effects on electricity
distribution networks such as reverse power flow and voltage rise issues. P2P energy
trading can balance the energy excess/deficit locally and prevent the aforementioned is-
sues. As a result, network operators can avoid the need for expensive upgrades of the
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electricity infrastructure, which would otherwise be required for maintaining the required
network performance.

Existing research on P2P energy markets identified different categories based on
connectivity among peers. These categories include full (one-to-one), community based
(one-to-many) and hybrid (both one-to-one and one-to-many at different levels) P2P energy
markets [9]. One of the very first contributions in P2P energy trading research has identified
three different P2P energy trading strategies, namely bill sharing, mid-market rate and
supply–demand ratio [10,11]. Bill sharing considers a community microgrid architecture
where the overall electricity costs are shared by individual customers. The mid-market rate
assigns the energy exchange price as the mid-point between energy buying and selling
prices in the network. The supply–demand ratio considers the ratio of electricity supply
and demand, based on which the electricity exchange price is determined [12]. These
strategies were evaluated in [11], which implemented a multi-agent simulation framework
to simulate prosumer behaviour for residential customers in Great Britain. The studies
found that the mid-market ratio performs well when solar penetration is at moderate levels;
whereas with increasing solar penetration, the supply–demand ratio outperforms other
mechanisms. The P2P energy trading strategies can be further characterised as centralised
(presence of a central coordinator) [13] and decentralised markets (decentralised bidding
and market coordination) [14].

Apart from the aforementioned strategies, there can be other strategies based on game
theory and optimisation models. Game-theoretic approaches formulate the competing
interests of sellers and buyers as a game and aim to achieve an equilibrium point where
both seller and buyer utilities are maximised [15]. A commonly used game-theoretic model
is the Stackelberg game, where a prosumer acts like the leader and sets up the prices,
while others become followers [16]. Since P2P energy trading problems are associated with
maximising the utilities of the prosumers either in terms of profit or cost savings, different
optimisation approaches have been undertaken in many existing research studies in P2P
energy trading. These approaches include mixed integer linear programming (MILP) [17],
convex [18] and non-convex programming [19]. Existing research on P2P energy trading
has also emphasised the importance of auction mechanisms and bidding. In a P2P market,
prosumers will submit bids to optimise their utilities based on maximising profits and
savings. In addition, there can be different types of auction-based approaches, where an
auctioneer determines which prosumers can participate in the trading and what is the
market clearing price. With the advancement of big data, P2P energy trading problems are
being integrated with machine learning (ML) algorithms such as reinforcement learning for
managing P2P energy trading decisions [20,21]. Another important aspect of P2P energy
trading integration in electricity networks is battery energy storage, which can add a new
dimension to the energy/load combination. The authors in [22] considered a central energy
storage for all participants in a P2P energy market to minimise the electricity costs for end
users. A non-cooperative game theoretic model was implemented in [23] to obtain the
market equilibrium for P2P market participants embedded with shared energy storage
units. On the other hand, a strategic bidding model was adopted in [24] for individual
energy storage units considering uncertainties in wind power generation.

There have been a number of review papers that outlined the P2P energy trading
mechanisms, potential technologies, challenges and barriers towards the adoption of
such technologies. Three different types of market architectures, namely, community
self-consumption, transactive energy and P2P architectures, were discussed in [25]. Simi-
larly, the authors in [26] described and compared P2P, community-based, and a group of
community-based architectures. The authors in [27] described the categorisation of P2P
energy trading mechanisms through a systematic framework. In particular, they defined
market models in terms of market scope, assumptions, objectives, and market mechanisms
with detailed discussions on corresponding allocation and payment rules. Different pric-
ing strategies for P2P energy trading, such as synchronous, asynchronous, uniform, and
negotiation-based strategies were discussed in [28]. The authors in [29] described a trans-
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active energy framework with different approaches towards the integration of DERs, and
highlighted P2P energy trading as an option for DER integration. The physical components
that enable the P2P energy trading and the challenges associated with the physical network
constraints were outlined in [30]. Different optimisation algorithms for solving the P2P
energy trading problem were reviewed in [7] with a detailed discussion on game theory,
operational research, machine learning models, and blockchain technologies. A number
of P2P energy trading pilot projects were discussed in [31]. From the perspectives of de-
veloping countries, the authors in [32] discussed suitable business models for promoting
P2P energy trading technologies. From the aforementioned discussion, it can be observed
that the existing review papers have focused on a certain number of enabling technologies
among game theory, optimisation, bidding, auction and ML models. However, a joint
consideration of all these enabling technologies and comparative review of their suitability
is missing in the existing review papers, which is important to investigate. Table 1 shows a
comparative analysis of the existing review papers and the proposed work in terms of the
key aspects elaborated in these papers.

Table 1. Comparison table for existing review papers on P2P energy trading.

Paper Market
Structure

Game
Theory

Optimisation
Algorithms

Machine
Learning

Bidding
Strategies

Auction
Models

[9] ✓ × × × × ×

[25] ✓ × ✓ × ✓ ×

[26] ✓ ✓ ✓ × × ✓

[27] × ✓ ✓ ✓ × ✓

[28] ✓ ✓ ✓ × × ✓

[29] ✓ ✓ ✓ × ✓ ✓

[30] ✓ ✓ ✓ × ✓ ✓

[7] ✓ ✓ ✓ ✓ × ×

[31] ✓ ✓ ✓ × ✓ ✓

[32] ✓ ✓ × × ✓ ✓

This paper ✓ ✓ ✓ ✓ ✓ ✓

Based on the research gap outlined in the previous discussion and tabulated in Table 1,
this paper presents an in-depth review of the P2P market architecture, enabling technologies
such as game theory, optimisation, and machine learning, as well as bidding and auction
models. In particular, the comparison among different market mechanisms, strategies, and
technologies is evaluated critically to identify the suitability of these solutions in different
scenarios. The key contributions made in the proposed research are as follows:

• A detailed analysis of different P2P market architectures as well as different market
mechanisms is presented. In addition, different bidding strategies and auction models
that enable effective P2P energy trading are compared and evaluated.

• Different solution methods for P2P energy trading problems such as game theory,
mathematical optimisation, and machine learning-based techniques are reviewed.
The analysis helps evaluate the suitability of the aforementioned solution methods
towards the P2P energy trading applications.

• The challenges associated with the P2P energy trading implementation in real-life
platforms are reviewed. Finally, a number of innovative solutions which can further
enhance the effectiveness of P2P energy trading are proposed for future research.

The rest of the paper is organised as follows. The architecture of P2P energy mar-
kets and different market mechanisms are described in Section 2. A number of real-life
P2P energy trading platforms and implementation projects are discussed in Section 3.
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The technological solutions that enable P2P energy trading, such as the game theoretic,
optimisation-based, or auction models, are outlined in Section 4. The key challenges and
barriers for different economies to adopt P2P energy trading are elaborated in Section 5.
Potential future research directions to overcome these barriers are presented in Section 6.
Finally, the concluding remarks are outlined in Section 7.

2. Overview of P2P Market Structure

The emergence of the P2P market needs to be viewed in relation to two other relevant
market structure evolving from the introduction of the innovative demand response and
renewable energy technologies. These market structures incorporate community self
consumption (CSC) and transactive energy (TE) models [25]. Any user integrated with
renewable energy generation can be part of the CSC market model, who is able to store or
sell excess energy to other loads in close proximity [33]. On the other hand, TE models focus
on balancing the supply and demand in a dynamic manner through appropriate control
technologies, often enabled by real-time pricing mechanisms [34]. In contrast to CSC,
TE models incorporate the entire electricity grid ranging from small-scale to large-scale
networks [35]. P2P market models can be considered a special case of TE, where the key
motivation is obtaining profits by selling energy to peers rather than dynamically changing
load patterns for improved network reliability [1].

Based on the connectivity of the peers, a P2P market can be categorised into full,
community-based, and hybrid P2P markets [9]. In a full P2P market, the participants
engage directly with each other for energy transactions. There is no centralised controller
to manage the energy sell/purchase activities. Thus, the market involves a number of
bilateral trades among the peers [36]. In a community-based P2P market, a central energy
management platform will be present to monitor and coordinate the energy transactions
among the participants in the market [37]. This central manager can also coordinate
with external markets such as the utility grid to negotiate financial incentives for the
community for providing different market services [38]. The hybrid P2P market represents
a combination of both full and community P2P markets [39]. In this market, the end users
will be selling/purchasing energy through a central energy management system (EMS),
and there will be clusters of central EMSs who will directly exchange market decisions as
in a full P2P market [40].

Based on the interactions of the market participants with the market settlements, the
market architectures are categorised into six classes. These designs include the futures mar-
ket, real-time market, multi-layer market, mixed decentralised/centralised market, mixed
futures/real-time market, and settlement-after-the-fact market [1]. The futures market is
the most common type of market design observed in the real-life energy markets, which
involve trading decisions made before the actual market settlement [2]. In contrast to the
futures market, the real-time market allows participants to update their trading decisions
during the settlement [19]. Though such markets offer more flexibility for renewable-based
users, as their supply/demand balance can change during the settlement, achieving the
overall balance in supply/demand in such markets can be challenging [1]. The typical
market mechanisms associated with the aforementioned markets are the different types
of auctions [41] and bilateral contracts [42]. The multi-layer market has settlements at
multiple layers. For example, in the lower level, the individual communities can trade
energy within the peers of the communities, and then the remaining supply/demand
can be settled by an aggregator from each community with external markets [43]. The
mixed decentralised/centralised market adopts a similar mechanism, but it involves bi-
lateral negotiations at the lower level, and the residuals are then settled through a central
auction [44]. In the mixed futures/real-time market, some energy trading occurs prior to
the settlement and any remaining supply/demand is then traded during the settlement
period [45]. Finally, the settlement-after-the-fact market involves any trading that happens
after settlement, and a fixed price is charged to any participants who need to achieve sup-
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ply/demand balance after the settlement [46]. The different types of market architectures
are illustrated in Figure 1.

Energy markets

Community self-consumption Transactive energy Peer-to-peer energy trading

Full Community based Hybrid

Futures 
market

Real-time 
market

Multi-layer 
market

Mixed 
decentralised
/centralised

Mixed 
Futures/
real time

Settlement 
after the 

fact

Figure 1. Different types of market architectures.

There are a number of price formation strategies for the P2P energy trading market as
discussed by the authors in [1]. These strategies include auction-based, negotiation-based,
system-determined and equilibrium-based mechanisms. Auction-based markets involve
either one party (single auction) [47] or both parties (double auction) [48] to ask for specific
prices or specific quantities of energy as bids. Negotiation-based mechanisms involve
one-to-one bids rather than a centralised method like auctions to determine the market
price [49]. System-determined mechanisms enable a system entity, such as the network
operator or aggregator, to set the market prices [50]. On the other hand, equilibrium-based
mechanisms are associated with reaching an equilibrium point between sellers’ and buyers’
utilities, for example, as in a game theoretic model [51].

It is essential to have the discussions on bidding mechanisms given their strong
correlation with the market structure and operation. The authors in [32] identified three
different types of bidding strategies for the P2P energy trading market, which involves zero
intelligence, zero intelligence plus, and adaptive aggressiveness. Zero intelligence bidding
involves randomly generated bids without any prior knowledge of the supply/demand
conditions of the market [52]. On the other hand, zero intelligence plus involves prior
knowledge of the bids from different buyers and sellers, which allows them to update
their profit margin [53]. Zero intelligence plus algorithms can be more effective than zero
intelligence algorithms if the bids are updated based on certain thresholds. Adaptive
aggressiveness enables automatic updates of the bids by adapting with the changes in
market clearing prices using a learning mechanism [54]. The authors in [54] found that
such mechanisms can bring more profits in comparison to the two other mechanisms
mentioned before. A similar approach was presented in [14], where prosumers obtain
knowledge of each other’s bids through automatic learning based on the market prices
without violating user privacy. It can be noted that the zero intelligence mechanism
needs the least computational resources among the three bidding strategies. Thus, there
is a trade-off between the benefits achieved from additional information and required
memory resources. Zero intelligence plus and adaptive aggressiveness can be quite useful
when users have specific bidding trends. On the other hand, if most of the users are
bidding randomly, then it might be sufficient to adopt a simpler bidding strategy such as
zero intelligence. Zero intelligence plus and adaptive aggressiveness strategies can help
manipulate the outcomes of the P2P energy trading models, and hence, there should be
appropriate limits designed for bids. The effectiveness of these bidding mechanisms can be
further enhanced by the integration of machine learning algorithms such as reinforcement
learning, which can assist with intelligent decision making [55].
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The authors in [56] reviewed a number of bidding mechanisms based on how the
payoff will be distributed among the participants. These include the best offer approach
and market power approach. In the best offer approach, market participants aim for the
best bids without consideration of the supply/demand scenario. On the other hand, the
market power approach takes into account the imbalance between supply and demand,
and based on this, determines how competitive the participants need to be. For example,
when the market demand exceeds the market supply, all sellers may achieve some payoff,
whereas only the buyer with the best bid can win.

3. P2P Energy Trading Platforms

To validate the theoretical and conceptual model of the P2P energy trading framework,
a number of pilot projects have been implemented commercially throughout the world. The
sustainability benefits integrated with the popular perception of energy independence as
well as the inception of new business models have motivated many retailers and software
developers to work together towards successful implementations of P2P energy trading
platforms. It is essential to reflect on the findings from such projects to better understand
the key design considerations of the P2P energy trading technologies.

The authors in [31] have outlined a number of pilot implementation projects under-
taken by different countries. One of the very popular P2P energy trading pilot implementa-
tion projects is Piclo in the UK, where an online platform was developed for energy trading
between prosumers [57]. Other similar projects include Vandebron in the Netherlands [58],
Peer Energy Cloud [59], Pebbles [60], Sonnen Energy Community [9], Lichtblick Swarm
Energy [61] and Smart Watts [58] in Germany, Brooklyn Microgrid [8] in the USA, City of
Fremantle (Renew Nexus) [62] in Australia, Chiang Mai University in Thailand [63], Energy
Collective in Denmark [64], EnerPort in Ireland [65], eRex peer-to-peer trial in Japan [66],
NRGcoin in Belgium [67], SEDA peer-to-peer trial in Malaysia [68], and Prosumer Driven
Integrated Smart Grid in India [31]. A detailed list of real-world P2P projects along with
their scale and technological features is available in [69]. In the following part, a number of
the aforementioned projects are briefly discussed to shed light on the real-world challenges
and implementation issues in a pilot scale P2P energy trading project.

The Brooklyn microgrid involves a number of residential and commercial users inte-
grated with solar energy and blockchain technologies [70]. To enable P2P energy trading,
additional smart meters needed to be incorporated with existing utility meters along with
the energy management system platform where users share the price limits and energy
source preferences through a mobile application. On the other hand, the Pebbles project in
Germany involves solar, wind, and battery energy storages as well as controllable loads,
which allows prosumers to trade energy in a blockchain-enabled platform [60]. Piclo in
the UK involves commercial users purchasing energy from renewable energy generators
who have the ability to prioritise the generators from whom they want to purchase [57]. A
similar platform is Vandebron, which involves farmers with wind turbines, allowing them
to sell electricity to other consumers [58]. Sonnen Community, developed by sonnenBatterie
energy storage manufacturers in Germany, involves users with battery storage who can
share surplus energy through a virtual pool without involving the utility network [9].

Some of the pilot P2P energy trading projects have only been implemented through
small-scale trials. For example, Uttar Pradesh in India hosted the P2P pilot trading project
through blockchain technologies by including nine prosumers and three consumers [71].
The trial continued for three months through a simulated platform without involving direct
financial transaction among the participants. Similarly, a testbed with three prosumers was
developed in Indian Institute of Technology Gandhinagar (IITGN) [31]. These prosumers
are set up at the laboratory scale, considering the different types of loads a residential
user may have. There are blockchain-based platforms to coordinate the financial transac-
tions and a microcomputer to aggregate the solar generation and load demand data for
optimisation and forecasting applications. Another example is Enerport, which aims to
develop a laboratory-scale prototype of smart homes enabled with P2P energy trading
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features in NUI Galway, Ireland [65]. A functional interface is being developed between
the blockchain simulator and smart metering platforms for implementing different types of
auction mechanisms.

4. P2P Energy Trading Techniques

Existing research has explored a number of techniques that enable P2P energy trading
considering different aspects of energy system networks. It is important to investigate
these techniques in terms of their unique features, challenges and complexities for practical
implementation. Particularly, this section will highlight some insights on popular methods
such as game theory, mathematical optimisation, and auction methods as well as machine
learning-based approaches for P2P energy trading.

4.1. Game Theoretic Approaches

Game theory has been widely adopted for P2P energy trading techniques due to the
fact that participants in P2P energy market compete against a common financial objective
which can be modelled as a game to identify the market equilibrium [72]. Game theoretic
models can be categorised as non-cooperative and cooperative games [51]. In the non-
cooperative scenario, the participants act independently for achieving a common goal
that can have conflicting interests [12]. The actions can take place once in the game for
static non-cooperative games. On the other hand, dynamic non-cooperative games allow
participants to take actions multiple times based on the decisions of other participants [15].
Non-cooperative games can be solved using the Nash equilibrium, which defines a stable
point in the game where no participant can earn benefits by deviating from their action in
the Nash equilibrium if other participants are following their equilibrium actions [73].

In a non-cooperative game, there is usually a leader (e.g., aggregator) who coordinates
the participants’ actions while participants act like followers [74]. In such games, the
leader can first publish the prices, and participants optimise their actions accordingly. The
other option is that participants inform their prices and the leader optimises the market
clearing [7]. Bilateral contracts can also be considered non-cooperative games given that
they match participants’ actions and expectations through a set of interactions between
two parties [75]. The authors in [74] evaluated optimal pricing strategies for prosumers in
a Stackelberg game. On the other hand, the authors in [76] formulated a generalised Nash
game to model distributed P2P energy trading.

Different from the non-cooperative games, cooperative games focus on providing
incentives for a group of participants so that they can act together to achieve the common
goal [77]. Cooperative games can include canonical coalition, coalition formation, and
coalition graph games. Canonical coalition games investigate how to form a grand coalition
and how the benefits can be fairly shared with the participants. Coalition formation games
analyse how different participants interact with each other to form a coalition. Coalition
graph games define a network graph to evaluate how participants are connected to each
other in terms of communicating their actions [77].

Cooperative games involve the redistribution of incentives among the participants
forming the coalition. Usually, the participants have an agreement on how the profit
will be shared among each other prior to joining the games. The individual participant’s
optimal actions should also converge with the group’s optimal strategies [78]. There are
a number of profit redistribution strategies proposed in the literature, which include the
Vickrey–Clarke–Groves (VCG) model, the Shapley value, and nucleus methods [7]. The
VCG model aims for the maximisation of combined profit [79], whereas the Shapley-value
method redistributes profit based on participants’ marginal contributions [80]. On the
other hand, the nucleus method minimises costs or losses resulting from the non-optimal
distribution of incentives [81].
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4.2. Mathematical Optimisation

P2P energy trading often involves the maximisation of incentives or minimisation
of costs, implying the necessity of optimisation-based approaches. Existing research has
considered a significant number of optimisation-based approaches to obtain the most
effective solutions for P2P energy trading. Some of these approaches are associated with
centralised optimisation at the aggregator [43] or decentralised/distributed optimisation
at the participants [82]. In terms of the goals of the optimisation, existing research has
considered cost minimisation [83], the optimisation of power exchanges among peers [36],
the maximisation of retailer welfare [84], the minimisation of battery depreciation [85] or
the optimisation of participant profits for voltage management services [17]. A number
of mathematical optimisation algorithms, including linear programming, mixed-integer
linear programming, convex optimisation, second-order cone programming, quadratically
constrained quadratic programming, and non-convex programming are widely used in the
context of P2P energy trading optimisation based on the aforementioned objectives. These
optimisation algorithms are explained in the following part of this subsection.

Linear programming problems are associated with the linear objective function and
linear constraints. The variables involved in the optimisation problem can be integers or
real numbers. Usually, these problems are solved using the simplex method and graphical
method. The authors in [44] optimised battery flexibility through a multi-period linear
programming problem in a pool-based P2P market considering grid consumption, battery
charging, and discharging as linear variables over a number of time periods. On the other
hand, the optimal capacity of different distributed energy resources was optimised in [40]
to achieve the optimal supply–demand balance in a P2P market. Mixed integer linear
programming (MILP) is a special subclass of linear programming, where the variables
can be a mix of integer and floating point numbers. Typical solution algorithms include
branch-and-bound, cutting plane and branch-and-cut methods. The authors in [17] utilised
MILP to solve the social welfare maximisation of prosumers and consumers as well as the
cost minimisation problem of consumers in a P2P energy market. The supply/demand
balance problem from a household level was modelled as MILP in [53] while considering
the selling and purchasing prices as well as the amount of energy sold/purchased.

Convex optimisation problems involve minimising convex objective functions or
maximising concave objective functions over convex constraints. These functions can be
linear or non-linear. Convex functions are characterised by those functions for which
the line connecting two points in the graph of the function lies above the graph. Convex
problems include linear programming, quadratic programming (with convex objectives and
linear/convex quadratic constraints), and second-order cone programming [86]. There are
a range of solution methods for convex problems, such as bundle methods, the subgradient
method, the ellipsoid method and the Lagrange multiplier method [87]. The authors in [84]
maximised prosumer profit and minimised consumer purchase costs by optimising energy
sold and purchased through joint consideration of two convex optimisation problems. A
quadratic utility function as well as a quadratic cost function were considered in [39] and
modelled as convex optimisation problem to maximise the total welfare in the P2P market.

Second-order cone programming (SOCP) and quadratically constrained quadratic
programming (QCQP) (with convex objective and constraints) are special subclasses of
convex programming. SOCPs are non-linear convex problems, where a linear function is
minimised over a second-order quadratic cone [88]. SOCPs are solved using the primal-
dual interior point method [89]. The authors in [18] considered energy cooperation among
multiple microgrids while applying convex relaxations to optimal power flow problem and
transforming it into a SOCP to optimise the charging/discharging power of batteries as
well as power drawn from the utility grid and other microgrids. QCQPs can be formulated
as SOCPs if the objective function and constraints are convex. QCQPs are transformed to
convex problems using semidefinite programming relaxation. The authors in [43] solved a
QCQP using the branch and bound method to optimise the profit at the sellers considering
that the prices are functions of energy sold. Non-convex programming defines a broad
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subclass of optimisation problems which do not satisfy the convexity conditions. Such
problems are hard to solve due to the presence of local minima and widely changing
curvatures. Such problems are solved using stochastic gradient descent, mini-batching,
and alternating minimisation methods. The authors in [19] minimised the operating cost
of community microgrids by solving a non-convex optimisation problem to optimise the
energy purchased from utility, battery energy storages and other prosumers. Table 2
illustrates the state-of-the-art mathematical optimisation algorithms and what features
make them distinct.

Table 2. Comparison table for state-of-the-art optimisation algorithms.

Optimisation Algorithm Distinct Features

Linear programming Linear objective function with linear constraints

Mixed integer linear programming Variables can be a combination of integer and floating
point numbers

Convex programming Objective function and constraints should be convex

Second-order cone programming Linear objective minimised over a second-order
quadratic cone

Quadratically constrained
quadratic programming

Quadratic objective function with
quadratic constraints

Non-convex programming Non-convex objective and/or non-convex constraints

4.3. Auction Methods

Auction defines a mechanism where multiple parties can submit bids and negotiate
with each other for trading a certain object [32]. Auctions can be categorised into single-
round and multi-round auctions [90]. Single-round auctions involve a single bid for each
trading interval, whereas multi-round auctions are associated with multiple bids submitted
during the same interval. Single-round auctions can be further categorised into first-price
and second-price sealed bid auctions, and descending and ascending bid auctions. In
first-price sealed bid auctions, the seller will choose the buyer with highest bid, and the
selected buyer will pay the highest bid price. The second-price sealed bid auction is
similar except the fact that the selected buyer (with highest bid) now pays the second
highest bid price [91]. The terminology ‘sealed’ occurs from the fact that historically, bids
were submitted in auction through sealed envelopes. In the descending bid auction, the
auctioneer sets the price at a higher level initially and then buyers submit lower bids that
match their capacity until the winning bidder is found. The ascending bid auction starts at
a lower price defined by the seller, which then gradually increases as buyers submit higher
bids [90].

Auctions can be further categorised into single-sided and double-sided auctions.
Single-sided auctions involve a single buyer and multiple sellers (reverse auction) or a
single seller and multiple buyers (forward auction). On the other hand, double-sided
auctions involve multiple sellers and multiple buyers, where both sellers and buyers
submit bids [92]. Double auction mechanisms are widely used to model the P2P energy
trading markets. Natural ordering is used to determine the buyers and sellers who will be
participating in the trading process based on the breakeven index [93]. Then, the auctioneer
determines the market clearing price using a number of mechanisms, including average,
Vickrey–Clarke–Groves (VCG) mechanism, trade reduction or McAfee’s mechanism. In the
average mechanism, the bid prices of buyers and sellers are averaged, while each buyer
pays the lowest equilibrium price and each seller receives the highest equilibrium price
in VCG mechanism [94]. The trade reduction mechanism allows buyers to pay the buyer
bid at breakeven index, whereas sellers receive the seller bid at the breakeven index [95].
McAfee’s mechanism [96] can be considered a hybrid between the average and trade
reduction mechanisms. If the buyer bid at breakeven is higher than the seller bid, then the
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market clearing is based on the average mechanism. Otherwise, market clearing follows
the trade reduction mechanism.

Double-sided auctions can be of different types, such as continuous double auction,
periodic double auction, k-double auction, and distributed double auction. Continuous
double auction refers to the case when the participants can submit as many bids as they
like during a certain trading period [97]. Such auctions are very popularly used in P2P
energy trading applications. For example, the authors in [98] designed a continuous double
auction market while considering utilisation fees as functions of electrical distances and
trading losses for taking into account network constraints. Periodic double auction allows
the bidding only during a specified market clearing period [99]. A periodic double auction-
based bidding strategy was implemented in [100], which forecasts clearing prices for
different time periods and perform Monte Carlo tree search to design the bids for multiple
time periods. In k-double auction, the market clearing price is determined from the range
between the highest seller bid and lowest buyer bid so that no seller/buyer will have to
receive/pay less/more than their bids [101]. A multi-k double auction mechanism for P2P
energy trading was designed in [102] and compared with benchmark auction mechanisms
in terms of the flexibility of the participants. Distributed double auction allows any of
the market participants to act as the auctioneer and manage the bidding mechanism in a
distributed manner [103]. A decentralised double auction mechanism was designed in [104]
that takes into account the flocking behaviour of the birds to decentralise the double auction
process for improved convergence of P2P energy trading among neighbourhoods. The
different types of auction mechanisms are illustrated in Figure 2.

Auctions

Single-round Multi-round

First-price sealed 
bid

Second-price sealed 
bid

Descending bid Ascending bid

Single-sided Double-sided

Forward Reverse

Continuous 
double auction

Periodic double 
auction

K- double
auction

Distributed 
double auction

Figure 2. Different types of auction mechanisms.

4.4. Machine Learning Approaches

Very recently, machine learning (ML)-based approaches have been integrated for
managing P2P energy trading [7]. One of the most popular choices for ML models in
P2P energy trading involves reinforcement learning (RL). RL models are based on the
concept of incentives and penalties so that certain actions are associated with incentives,
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whereas other actions cause penalties. The correlation of these actions is reinforced through
the learning model, which aims to converge within a suitable time frame. In [105], the
P2P energy trading is modelled as a partially observable Markov decision process (MDP),
and reinforcement learning is applied in a decentralised manner for optimising trading
strategies. A deep RL model integrating deep neural networks with RL was developed
in [106], which considers separate RL models for individual household clusters and assigns
incentives for P2P energy trading, whereas the households are penalised based on their
contribution to the overall peak demand. The high-dimensionality problem that often arises
from RL models is addressed with mean-field RL, which uses mean-field approximation
to improve the training performance. The authors in [107] applied a decentralised MDP
to model the randomness in user behaviour and solved the double auction-based P2P
energy trading problem through mean-field RL. To ensure that private information of
individual households is not shared with the central control or aggregator, distributed
learning frameworks such as federated learning (FL) are introduced. In this essence, FL
is integrated with RL as a federated reinforcement learning to optimise the energy and
carbon trading jointly [108].

A prediction-integration strategy optimisation model was investigated in [52], which
maps the correlation between prosumer bids and market clearing prices to predict the
market behaviour. Apart from optimising the incentive or market models for P2P energy
trading, the ML models are also widely used in predicting the behaviours of generation
sources as well as the demand patterns. The authors in [109] considered a number of
ML models such as support vector, regression trees, and neural networks to predict solar
and wind generation while considering the variability in weather data for improved
planning of the P2P energy trading. On the other hand, an uncertainty set was constructed
for renewable generation sources in [110] by extracting probability distributions using a
weighted kernel density estimation approach. Given that P2P energy trading decisions
are strongly correlated with human behaviour attributes, it is important to predict the
sentiment of the prosumers for improving the effectiveness of the overall system. To
address this, the authors in [111] integrated the convolutional neural network to extract
information from text for classifying the sentiment data and then implemented long short-
term memory (LSTM) model to predict how much energy will be traded. Cyber attacks
such as false data injection attacks can bring significant threats to the effectiveness of P2P
energy trading models by enabling the attacker to obtain peer energy for free. To mitigate
such issues, the ML-based classification model such as k-means clustering was adopted
in [112] to separate out the attack data from legitimate data.

5. Challenges in P2P Energy Trading

Though P2P energy trading opens up new markets for prosumers and creates oppor-
tunities for new services in the electricity distribution network, there are certain challenges
which hinder the uptake of such models in the electricity market. The following section
elaborates some of these challenges:

Appropriate P2P energy trading platforms:
There are a number of existing P2P energy trading platforms such as Powerledger and

Ethereum, based on blockchain technologies. However, the effectiveness of such platforms
largely depends on the scale of the application, and they can have high computational com-
plexity and costs associated with them [113]. Moreover, such platforms can be application
specific and may not be easily transferred across different applications. The privacy and
security of the participants will become the most crucial features of such platforms and
need due consideration [9]. It will also be important to handle data quality issues such as
missing data, resulting in incomplete information about the market.

Consideration of network constraints:
The existing research on P2P energy trading often assumes an ideal market and does

not factor in the constraints imposed by the electricity utility networks. There will be
certain limitations based on required voltage levels and power flow, which in turn will
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limit the possible energy trading. To satisfy these constraints, the market strategy needs
to be designed in such a way that can prevent transactions which violate the constraints.
These network constraints can also be integrated with pricing mechanisms to transform the
P2P market models more organically [1]. Moreover, it will be important to understand how
the P2P trading models interact with existing wholesale energy markets and how they can
influence the physical network constraints [27].

Appropriate optimisation algorithms:
Though there has been significant research in various optimisation algorithms focusing

on the application of P2P energy trading, the suitability of a certain algorithm for a specific
energy trading optimisation problem is often not very clear. State-of-the-art optimisation
methods assume that complete information is available for all market participants along
with accurate forecasts of energy generation and demand [114]. However, this will not
be feasible in a practical setting, and forecasting errors as well as imperfect prosumer
behaviour can be reasonably expected. Though machine learning-based methods can
be useful by enabling a large number of possible choices and rewards, the computation
complexity will be quite high and appear as an expensive alternative. Thus, new methods
that can leverage benefits from both approaches will be required and need to be adapted
for the specific P2P energy trading problem requirements [7].

Appropriate market models:
Existing research has explored different market models for P2P energy trading, which

include centralised as well as full P2P energy trading approaches. Though centralised
approaches would be simpler to implement, they cannot ensure reliability and scalability.
On the other hand, full P2P approaches will have higher reliability but will be expensive
to implement. Distributed P2P energy trading can achieve a trade-off between the two,
but such schemes need to be further investigated for different applications, such as the
incorporation of ancillary services and demand response. To identify the suitability of
different P2P market models, market stability under different price mechanisms should
also be investigated [113].

Bid generation mechanisms:
Though there have been vast discussions on how prosumer bids are evaluated in

the P2P market models under various auction mechanisms, the bid generation processes
at the prosumer end are often neglected. This is a critical parameter that influences the
effectiveness of P2P energy trading models and should be investigated in detail. The bids
generated from prosumers should reflect the user preferences and factor in the generation
and demand forecasts [37]. The generated bids may also depend on how users prioritise
the peers involved in the trading model, such as preferred community groups. Moreover,
the imperfections in the bidding mechanisms resulting from uncertainty in user behaviour
need to be incorporated, given that users can change their mind and offer a smaller amount
of energy for the P2P market [1].

6. Future Directions

Despite a number of challenges that can impede the integration of P2P energy trading
technologies in power system networks, there are potential research directions that can
strengthen the confidence of the utility operators to incorporate such disruptive technolo-
gies. The following discussion elaborates on some of the future research directions aligned
with P2P energy trading mechanisms:

New optimisation models:
As outlined in the previous section, a suitable optimisation framework is essential for

enhancing the effectiveness of P2P energy trading markets [7]. In this essence, optimisation
models should explore the trade-off between sellers’ and buyers’ incentives as well as
uncertainty in user behaviour to leave sufficient room for adjusting the day-ahead optimal
solutions. To improve the scalability, efficient solution mechanisms need to be developed
that cater to the specific needs of P2P energy trading applications. The integration of
machine learning models and evolutionary algorithms with state-of-the-art mathematical
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optimisation frameworks can help overcome the aforementioned challenges by improving
computational efficiency.

New policy development:
The existing energy market policies are developed for utility-scale electricity networks

and need to undergo significant policy reforms before these can be applied to the P2P
energy networks [113]. The tariff structure needs to be reformed to adapt with the unique
features of P2P energy trading models, which can show high variability due to variations
in renewable energy generation and diversity in electricity consumption patterns. There
should be appropriate regulations to control prosumers’ behaviour so that they cannot
manipulate the state of the P2P energy market by sudden changes in their energy trading
decisions. It is also important to engage the electricity utilities in the market structure to
incentivise their participation in the promotion and advancement of this new technology.

Enabling scalability and flexibility:
The existing P2P energy trading models have often been investigated in terms of fixed

number of users and parameters [1]. Thus, the scalability of such models needs to be
enhanced to cater to increasing number of users [42]. This will allow the existing models to
transform from proof-of-concept to market-ready commercial prototypes. The existing P2P
energy market models are often not flexible enough to adapt to changing market conditions,
which can be quite common for a renewable-rich environment. Thus, new models need to
be developed which take into account dynamic variations in market conditions. Moreover,
the P2P energy trading evaluation prototypes need to be designed in such a way that these
evaluations are repeatable and yield consistent outcomes.

Interaction between retail and P2P energy markets:
Given that P2P energy trading can result into the formation of new energy market,

its interaction with existing retail market should be an important consideration [9]. P2P
energy markets can act as a competitor of the retail market, enabling the development of
competitive price models. Retailers may need to update their operational strategies with
the evolution of P2P energy markets, which can enhance the value of energy services and
products for end users. The fact that the presence of P2P energy markets can defer the
requirements of new investments on energy network assets should be taken into account
for developing a new tariff structure with a co-existing P2P energy market.

New business models for P2P energy markets:
Existing research on P2P energy markets often consider that such markets can ben-

efit only the individual consumers/prosumers [9]. However, there is an opportunity for
retailers and utilities to participate in the P2P markets by adopting the role of an intermedi-
ary or aggregator. This can help improve the scale of the P2P markets and motivate the
formation of new business models for electricity retailers. There should be an appropri-
ate consideration of user preferences, and users should have the ability to choose their
preferred retailer.

7. Conclusions

A detailed review of different aspects associated with P2P energy trading has been
explored throughout this paper. In particular, different P2P market architectures such as full,
community-based, and hybrid P2P have been discussed along with relevant considerations
of different market settlement mechanisms. Different price formation strategies such as
auction-based, negotiation-based, system-determined, and equilibrium-based mechanisms
have been discussed and compared. Moreover, different bidding strategies with and
without prior knowledge of the market have been described. The paper also discussed a
number of relevant P2P energy trading platforms and projects across different countries
throughout the world, such as Brooklyn microgrid, Piclo, Pebbles, and Sonnen Community.
These platforms mostly rely on blockchain technologies and may need further research for
more computational efficient models to enable large-scale integration.

There has been a detailed discussion on different game theoretic models, mathematical
optimisation algorithms, and machine learning-based solutions for managing P2P energy
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trading. The comparison between different types of games, such as cooperative and non-
cooperative games, has been elaborated. Similarly, a number of optimisation models such
as MILP, convex programming, SOCP and non-convex optimisation have been investigated
and compared. Different types of auction models such as single-round, multiple round,
and single and double auction methods have been discussed. In addition, different types
of market clearing mechanisms such as average, trade reduction, VCG, and McAfee’s
mechanisms have been critically reviewed. Moreover, the application of ML models such
as different types of RL algorithms for setting up the reward mechanisms in P2P energy
trading has been explored.

Despite the technological advances, the P2P energy trading model is still in its initial
phases due to a number of challenges. This study elaborated a number of such key chal-
lenges, which include the lack of appropriate market models, implementation platforms,
optimisation and bidding mechanisms, and the incorporation of network constraints. To
address these challenges, future research should consider developing new technologies that
can enable scalability and flexibility for P2P energy markets with enhanced participation of
the retail utility sector. Similarly, there need to be policy reforms to accommodate the new
business model associated with P2P energy trading.
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53. Guerrero, J.; Chapman, A.C.; Verbič, G. Decentralized P2P Energy Trading Under Network Constraints in a Low-Voltage Network.
IEEE Trans. Smart Grid 2019, 10, 5163–5173. [CrossRef]

54. Wang, J.; Wang, Q.; Zhou, N.; Chi, Y. A novel electricity transaction mode of microgrids based on blockchain and continuous
double auction. Energies 2017, 10, 1971. [CrossRef]

55. Zang, H.; Kim, J. Reinforcement learning based peer-to-peer energy trade management using community energy storage in local
energy market. Energies 2021, 14, 4131. [CrossRef]

56. Lin, J.; Pipattanasomporn, M.; Rahman, S. Comparative analysis of auction mechanisms and bidding strategies for P2P solar
transactive energy markets. Appl. Energy 2019, 255, 113687. [CrossRef]

57. Piclo Flex. Piclo. Available online: https://picloflex.com/ (accessed on 27 November 2023).
58. Zhang, C.; Wu, J.; Long, C.; Cheng, M. Review of Existing Peer-to-Peer Energy Trading Projects. Energy Procedia 2017, 105, 2563–2568.

[CrossRef]
59. Brandherm, B.; Baus, J.; Frey, J. Peer energy cloud–civil marketplace for trading renewable energies. In Proceedings of the 2012

Eighth International Conference on Intelligent Environments, Guanajuato, Mexico, 26–29 June 2012; pp. 375–378.
60. Pebbles. Peer to Peer Energy Trading Based on Blockchain Infrastructure. Available online: https://pebbles-projekt.de/en/

(accessed on 27 November 2023).
61. Lichtblick. Now for the Solar System with Storage for More Independence. Available online: https://www.lichtblick.de/

zuhause/solar/ (accessed on 27 November 2023).
62. Jemma Green, P.N.; Forse, N. RENeW Nexus: Enabling Resilient, Low Cost & Localised Electricity Markets through Blockchain

P2P & VPP Trading. 2020. Available online: https://assets.website-files.com/5fc9b61246966c23f17d2601/607e724f8dfb1a2d592
8bbc0_renew-nexus-project-report.pdf (accessed on 27 November 2023).

63. Enapter. Solar-Battery-Hydrogen Microgrid. Available online: https://www.enapter.com/application/solar-battery-hydrogen-
microgrid#21491 (accessed on 27 November 2023).

64. Danmarks Tekniske Universitet (DTU). The Energy Collective. 2016. Available online: https://energiforskning.dk/en/node/15
513 (accessed on 27 November 2023).

65. Verma, P.; O’Regan, B.; Hayes, B.; Thakur, S.; Breslin, J.G. EnerPort: Irish Blockchain project for peer- to-peer energy trading.
Energy Inform. 2018, 1, 14. [CrossRef]

66. Partz, H. Japan’s Kanto Region to Track Surplus Solar Energy with Power Ledger. 2019. Available online: https://cointelegraph.
com/news/japans-kanto-region-to-track-surplus-solar-energy-with-power-ledger (accessed on 27 November 2023).

67. NRGcoin. What is NRGcoin? 2023. Available online: https://nrgcoin.org/about/ (accessed on 27 November 2023).
68. SEDA. Malaysia’s 1st Pilot Run of Peer-to-Peer (P2P) Energy Trading. 2020. Available online: https://www.seda.gov.my/

malaysias-1st-pilot-run-of-peer-to-peer-p2p-energy-trading/ (accessed on 27 November 2023).
69. Gunarathna, C.L.; Yang, R.J.; Jayasuriya, S.; Wang, K. Reviewing global peer-to-peer distributed renewable energy trading

projects. Energy Res. Soc. Sci. 2022, 89, 102655. [CrossRef]
70. microgrid, B. Brooklyn Microgrid. Available online: https://www.brooklyn.energy/about (accessed on 27 November 2023).
71. Powerledger. Uttar Pradesh Power Corporation Limited Launches First P2P Solar Power Trading in South Asia. 2020. Available

online: https://www.powerledger.io/media/uttar-pradesh-power-corporation-limited-launches-first-p2p-solar-power-trading-
in-south-asia (accessed on 27 November 2023).
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