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Abstract: The highly temporal variability of the hydrological response in Mediterranean areas affects
the operation of hydropower systems, especially in run-of-river (RoR) plants located in mountainous
areas. Here, the water flow regime strongly determines failure, defined as no operating days due to
inflows below the minimum operating flow. A Bayesian dynamics stochastic model was developed
with statistical modeling of both rainfall as the forcing agent and water inflows to the plants as the
dependent variable using two approaches—parametric adjustments and non-parametric methods.
Failure frequency analysis and its related operationality, along with their uncertainty associated with
different time scales, were performed through 250 Monte Carlo stochastic replications of a 20-year
period of daily rainfall. Finally, a scenario analysis was performed, including the effects of 3 and
30 days of water storage in a plant loading chamber to minimize the plant’s dependence on the river’s
flow. The approach was applied to a mini-hydropower RoR plant in Poqueira (Southern Spain),
located in a semi-arid Mediterranean alpine area. The results reveal that the influence of snow had
greater operationality in the spring months when snowmelt was outstanding, with a 25% probability
of having fewer than 2 days of failure in May and April, as opposed to 12 days in the winter months.
Moreover, the effect of water storage was greater between June and November, when rainfall events
are scarce, and snowmelt has almost finished with operationality levels of 0.04–0.74 for 15 days
of failure without storage, which increased to 0.1–0.87 with 3 days of storage. The methodology
proposed constitutes a simple and useful tool to assess uncertainty in the operationality of RoR plants
in Mediterranean mountainous areas where rainfall constitutes the main source of uncertainty in
river flows.

Keywords: Run-of-River (RoR) hydropower plant; river flow; energy production; operationality;
failure; uncertainty; WiMMed

1. Introduction

Hydropower is one of the cheapest renewable energy sources that can be generated
without toxic waste [1,2] and has very low operation and maintenance costs [2,3]. Of the
total renewable energy production in Europe, the majority was generated from hydropower,
accounting for 425.8 TWh [4]. Most hydropower plants in use today are traditional or con-
ventional hydropower plants designed with a dam, a lake, a penstock, and a powerhouse.
In contrast, non-conventional hydropower plants, such as run-of-river (RoR) power plants,
constitute a more environmentally friendly option [1,2,5]. In RoR plants, a fraction of the
stream flow is diverted through penstocks to a powerhouse and then returned to the stream.
The reservoir is frequently absent, or it is a tiny pond or chamber.

The contribution of small hydropower plants (SHPs) to the worldwide electrical
capacity is at a more similar scale to the other renewable energy sources (1–2% of the total
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capacity) [3]. Europe is the market leader in small-scale hydropower technology, with
Spain, Italy, France, Germany, and Sweden being the main producers [3]. Small SHPs
and, among them, RoR plants are especially useful thanks to their low administrative and
executive costs and short construction time compared to projects with storage reservoirs of
a similar power capacity [5].

The operation of hydroelectric power plants is subject to different conditioning factors,
including the hydraulic conditions of the riverbed, the specific operating conditions of the
plant’s instrumentation, and certain restrictions, such as compliance with the environmental
flow regime established in the corresponding legislation. One of the main drawbacks of
RoR plants is the high degree of uncertainty of the available river flows upstream of the
plant owing to meteorological fluctuations, resulting in an unpredictable power generation
capacity [5,6], which is even more prevalent in the current climate change scenario [2,7,8].

Some of the main energy infrastructures affected by climate change are hydropower
plants located in snow-covered mountainous areas, where climate change is expected to
result in a later and shorter snow season and less snow coverage [8,9]. Mountains are
considered “water towers” since they provide water for both ecosystems and anthropogenic
demands in downstream areas [10]. In Mediterranean mountains with both alpine and semi-
arid conditions, the variability in the climate enhances the complexity of the hydrological
regime. These areas have particularly extreme conditions, in which the high variability
in the annual and seasonal climate regimes is usually propagated and amplified by the
river flow [10]. Moreover, the highly variable snowpacks, in both time and space, and
the presence of several accumulation and melting cycles during the snow season lead
to a strong seasonality of the streamflow response in headwater catchments [11]. Thus,
RoR plants in Mediterranean mountains operate with even more irregular production
subject to the run-of-river flow, which depends on the highly variable forcing agents of the
rainfall–runoff processes and snow cover dynamics. Consequently, these plants often have
to cease operation when the flow drops below the turbine operating level or rises above the
maximum allowed by the turbines, thus affecting power generation and, therefore, plant
performance [2].

RoR systems are subject to several uncertainties in both operation and manage-
ment [12]. Thus, the challenge of the operation of RoR hydroelectric plants for water
resource managers is to quantify how much water will be available for power generation.
Especially in the Mediterranean snow-dominated mountains where river flows follow a
strong seasonal pattern with significant interannual variability, having a seasonal forecast-
ing system with limited uncertainty and sufficient reliability for decision-making would be
a very useful tool for their seasonal and annual planning and would reduce opportunity
costs due to the lack of such a forecast.

Thus, the main objective of this study was to obtain a simple and versatile stochastic
flow-forecasting structure from the significant forcing agents that allow for anticipating
the regime of river inflows to run-of-river hydroelectric power plants and the number of
days of failure for operational purposes at time scales of interest in hydrological planning.
In addition, the effect of possible storage in a load chamber was included to optimize the
operation of the chamber by minimizing the run-of-river power plant’s dependence on
the river flow. The most critical component of river flows in Mediterranean areas are low
flow periods because of the mild winter temperatures in combination with long, dry, sunny
periods [13]. Thus, the minimum regime as the most limiting variable in the operation of
power plants constitutes the basis of this study.

Stochastic models are often applied in hydrology to generate different samples of
meteorological and hydrological data that are equally likely with respect to the observed
series [14,15]. The stochastic forecasting structure developed in this study is based on
scientific knowledge of rainfall–runoff processes and a rigorous analysis of the stochastic
relationships of their main descriptor variables. Therefore, the main forcing agents that
determine the increase in humidity in the contributing basin were first identified. Secondly,
an analysis was carried out to identify the significant relationships between the forcing
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agents and the target variables at the different temporal scales established. Then, a Bayesian
analysis of the probability of occurrence of the inflow rates was made based on the an-
tecedent hydrological conditions. Finally, a scenario analysis was performed to assess the
effect of using a small storage chamber to optimize the management of hydroelectric power
RoR plants with maximum use of the natural fluvial contributions in the study area.

2. Materials and Methods
2.1. Study Site and Data Sources

The study site was the Poqueira system in Sierra Nevada (37◦ N; −3.3◦ W), which is
a national park and biosphere reserve located in a mountainous area in southern Spain,
where the presence of snow has a great effect on the hydrology of the downstream areas [8].
The contributing basin to the hydropower plants has an area of 38.4 km2, with an average
slope of 23◦ and an elevation ranging from 3453 m a.s.l. to 449 m a.s.l., with a mean value
of 2161 m a.s.l. There is great variability in the precipitation regime due to the interaction
of both the alpine and Mediterranean climates of the region, with the accumulated annual
precipitation rate reaching 1200 mm in wet years and 220 mm in dry years within the
period of 1961–2015 [2]. Above 2500 m a.s.l., the presence of snow is persistent, although it
is commonly found at altitudes above 1000 m a.s.l. from November to May, with a very
heterogeneous spatial distribution of the snow cover [2,11].

Three consecutive RoR hydroelectric plants, HP1, HP2, and HP3 (Figure 1), belong-
ing to an important Spanish company in the energy sector and with a capacity between
10 and 12 MW, are located in the basin [2]. The hydroelectric plant located at the highest
altitude is Poqueira (HP1), which is supplied from a load chamber located at 2100 m a.s.l.
The operation of this system is as follows: the turbined flow in the upstream plant (HP1) is
carried through a pipeline that connects the load chambers to the next plant (HP2). In the
same way, from the latter, it reaches the HP3 plant. For the study of the operation of these
mini power plants in a concatenated series, only the case of HP1 has been analyzed since
the turbine flow in this plant determines the operation of the other two plants downstream.
For this reason, ecological flow restrictions must be applied to the HP1 plant since it is the
first one in the series. The minimum ecological flow established in the Basin Hydrological
Plan to be supplied from the HP1 plant is 0.35 m3/s, as a constant flow throughout the
year [2]. Therefore, the minimum operating flow of HP1 is the sum of the minimum turbine
flow and the minimum ecological flow established (Table 1).
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Table 1. HP1 characteristics.

Characteristic Value

Generation capacity 14.4 MW
Net jump 570 m

Nominal turbine flow 2.5 m3/s

This hydroelectric power plant has a low-capacity load chamber that can be used to
slightly compensate for the effect of a significant decrease in the inflow to the plant. Its low
storage capacity means that it can be considered a RoR plant.

Regarding meteorology, the available daily data (precipitation, temperature, solar
radiation, humidity, and windspeed) belong to different meteorological networks in the
area (Red Guadalfeo, SAIH Guadalquivir, RIA-JA) [2,16–18]. Daily flow series at the basin
outlet are available from the SAIH (automatic hydrological information system) of the
Andalusian internal basins between 1998 and 2015.

For the hydrological characterization of the contributing basin to HP1, a series of
hydrometeorological data of sufficient length were required to collect different scenarios
of extreme flow events, both dry periods and floods, as well as periods of average flow
in the basin. In general, data series of at least 20 years are required to obtain meaningful
estimations from fluvial regimes in which periodicities in flow have an important bear-
ing [19,20]. Given that the available data series have some gaps and due to the need to use
cumulative values distributed over the contributing basin to the HP1 hydroelectric power
plant, a hydrological simulation was carried out in the basin for the period from December
1998 to August 2019 with the WiMMed (Water Integrated Management in Mediterranean
Environments) model, a physically based and fully distributed hydrological model [21].
The use of the WiMMed model is justified as it was conceived considering the particularities
that exist in Mediterranean areas in terms of the large spatial and temporal variability in
the variables and parameters that determine the rainfall–runoff processes, with special
consideration of drying processes. In fact, the WiMMed model is already calibrated and
validated in numerous Mediterranean basins [22]. The WiMMed model performs hourly
calculations of the energy and water balance on a gridded representation of the terrain,
providing input data to circulate both the surface and sub-surface flows throughout the
basin area to the selected outlets.

In previous studies [13,21,23], the model was calibrated in the contributing basin where
the headwater watershed that contributes to HP1 is located. The accuracy of distributed
precipitation estimation is one of the most significant factors when reproducing the fluvial
regime in semiarid regions [13,24,25]. More information regarding the datasets used
to implement the model on the study site can be found in the literature [2,13,16,21,23].
The results of the hydrological simulation and the measured flows in the period from 1998
to 2015 with available measurements are shown in Figure 2. The correlation coefficient
between the daily series of measured and simulated flows is 0.79, so it is considered that
the simulation correctly represents the hydrological dynamics of the basin.

Following the hydrological simulation performed using the WiMMed model, daily
maps with a 30 × 30 m cell size resolution were generated for rainfall, snowfall, snow
water equivalent, snowmelt, and evaposublimation. Table 2 presents the mean, maximum,
minimum, and standard deviation values of the mean daily river flow (Q), accumulated
rainfall (R), snow water equivalent (SWE), and snowmelt (SWM) in the contributing basin
to the HP1 power plant at the annual and monthly scales. The mean spatial annual values
were computed as the aggregation of the daily values for each water year (from September
to August for the latitude of the study site). The strong hydrological variability typically
found in semiarid Mediterranean mountainous areas [13,26] can be appreciated at the
study site, where there are monthly maximum flow values (Q) of up to 4.8 m3/s in January
and 0.59 m3/s in August. The interannual variability is also evident, with extreme values
(maximum and minimum) that sometimes exceed by one order of magnitude the mean
values of most of the variables.
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Figure 2. Results of hydrological simulation and measured river flow at study site.

Table 2. Mean, maximum, minimum, and standard deviation values of the mean daily river flow (Q),
accumulated rainfall (R), snow water equivalent (SWE), and snowmelt (SWM) in the contributing
basin to the HP1 power plant at the annual and monthly scales.

Annual Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

R (mm)
Mean 874.7 45.5 103 121.5 129.4 80.1 105.3 115.8 96.3 55.1 12.5 2.1 8.2
Max 1804.5 104 266.5 280.3 684.5 271.3 384 397.6 192.4 184.5 45.6 9.6 35.9
Min 485.6 0.55 18.8 18.9 0.98 4.9 0 22.6 4.1 5.8 0 0 0
S. D. 318.3 33.1 73 82.3 167.6 68.2 83.4 90.2 51.1 53.6 12.4 3 10.4

Q (m3/s)
Mean 0.7 0.13 0.28 0.61 0.85 0.9 0.78 1.06 1.1 1.15 0.75 0.34 0.16
Max 2.0 0.35 0.92 3.5 2.9 4.8 3.3 3.7 2.4 2.6 2.7 1.4 0.59
Min 0.3 0.03 0.08 0.10 0.08 0.11 0.19 0.28 0.35 0.31 0.12 0.06 0.03
S. D. 0.5 0.08 0.23 0.78 0.78 1.05 0.69 0.83 0.60 0.69 0.69 0.33 0.14

SWE (mm)
Mean 10,392 0.39 22.2 408.1 1154.7 1640.2 1854.8 2434.3 1784.3 938.2 147.9 6.9 0.07
Max 42,029 7.7 94.4 2036 3889 6399 7886 10581 8506 5509 1352 121.9 1.4
Min 1497.7 0 0 4.9 54.8 28.3 103.3 63.9 213.1 4.24 0 0 0
S. D. 10,143 1.71 30.2 500 1076.7 1766.2 1955.1 2554.4 2021.3 1405.2 316.3 27.13 0.31

SWM (mm)
Mean 263.8 0.25 4.3 17.6 30.4 25.6 29.4 49 54.5 39.1 12.7 0.9 0.02
Max 638.1 4.3 12.1 46.3 116.9 64.9 83 110.4 102.6 114.6 87.7 16.1 0.3
Min 92.6 0 0.05 1.3 0.92 2.8 2.3 5.2 9.4 1.1 0 0 0
S. D. 125.1 1 4.4 16.5 28.2 15 19.6 28.2 26 33.7 22.8 3.6 0.07

2.2. Methodological Framework

In order to carry out the stochastic analysis, first the dependency structure between the
forcing agents and the objective variables related to plant operationality was obtained at the
annual and monthly scales to select the most influential forcing variables. Then, a Bayesian
dynamics forecast of the water inflows to the plant was computed with the application
of the Monte Carlo technique together with statistical modeling of the objective variables
using two approaches—parametric adjustments and non-parametric methods. Parametric
methods refer to the parametric relationships between the forcing agents and the target
variables, such as polynomials, exponentials, or potential adjustments. In contrast, non-
parametric methods assume that the data do not have a particular statistical distribution
and, thus, are based on the use of the empirical cumulative distribution functions of the
variables. Using the probability distribution functions of inflows to the plant and the
variable number of days of failure at the corresponding time scale, the probability of the
plant’s operationality was then computed.
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Finally, an assessment of the operationality of the hydropower plant was performed
with the analysis of several scenarios, including the hydropower plant operation rules and
varying levels of water stored in the loading chamber.

2.2.1. Dependency Structure among Variables

First, the forcing agents and target variables were identified at the annual and monthly
scales since these are the time scales of interest in the operation of hydroelectric power
plants. Forcing agents are the variables that determine the increase in humidity in the
basin that supplies the hydroelectric plants. Since this is an area influenced by a high
mountain climate, in addition to rainfall, the presence of snow strongly determines the
hydrological dynamics of the contributing basin [11,16]. Therefore, rainfall, snowfall, snow
water equivalent, snowmelt, and evaposublimation were identified as possible forcing
agents for the dependence analysis.

In terms of target variables, operationality has been defined in the scope of this study
as the probability of being able to produce energy in the hydroelectric plant in 20 years.
Operationality is, therefore, the complement of the probability of failure [13], with failure
being defined as the day on which there is no energy production due to the flow being
lower than the minimum operating flow. Therefore, the number of days on which the
plant did not operate due to a circulating flow lower than the minimum operating flow
was generated from the data series of daily flows available. The relationship between the
two variables was then analyzed in order to quantify the probability of failure based on the
mean daily flow. Thus, the final target variables are the mean daily flow (Qmean) and the
number of days of failure (Nfailure) at the annual and monthly scales.

Based on the 20-year series of the variables considered, classical descriptive analysis
techniques were applied by means of adjustments and analysis of the correlation coefficients
between the series of forcing agents and target variables at different time scales—annual
and monthly. The adjustments made between the variables were parametric relationships
of the first-, second-, and third-degree polynomials, exponentials, and potentials. Due to
space limitations in the Results section, only the best correlations obtained from all the
parametric adjustments made for each variable are shown. However, all the parametric fits
can be made available upon request to the authors.

Finally, the best parametric adjustments obtained for each time scale were selected.

2.2.2. Bayesian Dynamics Forecast of Water Inputs and Analysis of Operationality

In order to generate predictions of the target variables, the mean daily flow, and the
number of days of failure, along with their associated uncertainty, the simulation of the forcing
agent by Monte Carlo was combined with two approaches or methods—parametric and
non-parametric. Figure 3 shows the calculation sequence with rainfall (R) as the forcing agent.

The parametric method (PM) is based on the parametric relationship between the
forcing agent (e.g., rainfall or snowfall) and the target variable generated in the previous
section. This method starts with the cumulative distribution function (cdf) of the forcing
agent accumulated at the corresponding time scale and continues with the following
calculation sequence, which shows rainfall as an example of the forcing agent (Figure 3):

1. A total of 250 sets of 20-year series of equally probable rainfall were obtained with
Monte Carlo using the cdf of the available rainfall data series.

2. The mean daily flow was calculated from the best parametric fit with the accumulated
rainfall; thus, the forecast was included in the calculation.

3. The number of days of failure was calculated from its best parametric relationship
with the mean daily flow (Appendix A).

Regarding the non-parametric method (NPM), techniques already used in various
areas of Europe were applied [13,22]. In this case, we started directly from the cumulative
distribution functions of the rainfall, the mean daily flow, and the number of days of
failure at the annual and monthly scales. Each of these functions was divided into 6 parts,
considering the criterion that in each of these sections there should be at least 3 data points
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of the average flow or number of days of failure. Then, the cdf of each of the partitions of the
different cumulative distribution functions was developed. Based on these developments,
the calculation sequence of the non-parametric method was as follows (Figure 3):

1. A total of 250 sets of 20-year series of equally probable monthly rainfall were obtained
with Monte Carlo using the distribution of the available monthly rainfall data series.

2. The obtained rainfall values were used to generate 250 repetitions of the 20-year
mean daily flow data series, applying quantile mapping to the distribution functions
generated in the partitions of the distribution functions of the measured data series,
as this procedure is analogous to generating 250 repetitions of a series of number of
days of failure.
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Monte Carlo. In red, the empirical cdf obtained from the observed data.
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Finally, the operationality of the hydropower plants was analyzed in terms of the com-
plementary probability associated with the occurrence of failure based on the flow regime.
To accomplish this analysis, the cdf of the target variables (the mean daily flow and the
number of days of failure at the annual and monthly scales) was intercepted at the y-axis at
the corresponding quartiles of 1, 2, and 3. Thus, it is possible to know with a 25, 50, or 75%
probability whether the number of days of failure per year or month does not exceed a certain
value above which the production of hydroelectric energy becomes unfeasible.

2.2.3. Scenario Analysis

Once the forecast of the number of days of failure for a given month is known, it is
useful to know the effect of possible storage in a small load chamber to maximize the use
of the incoming natural fluvial contributions.

The variable that determines the failure in the operation of a plant is a mean daily
flow lower than the minimum daily operation flow, assigning to the variable Nfailure the
failure or not in the operation of the plant. Scenario analysis was performed with a variable
storage volume, which was null in case it did not exist, in order to simulate the operation
of the plant as a pure RoR plant.

The number of days of failure was calculated on a daily scale from the available flow
data series. Thus, the variable Nfailure was assigned the value of failure or not, not only
depending on the availability of the flow provided but also taking into account the volume
stored in the load chamber, if any. Then, the number of days of failure as a measure of
operationality was aggregated at the corresponding time scale. Three were analyzed: no
storage in the load chamber, which is equivalent to pure RoR plants, and a small load
chamber volume equivalent to 3 days, which is the capacity of the chambers in other RoR
plants in the area with similar characteristics (i.e., power generation capacity). Also, for
comparison with traditional hydropower plants with larger storage systems, a chamber
volume equivalent to 30 days is shown. This last value, oversized for the characteristics of
the plant under study, is shown only for visual effect in order to clearly elucidate the effect
of storage.

Figure 4 shows the flow chart of the plant operation calculation:

1. It is checked whether the incoming flow is equal to or higher than the minimum
turbined flow to operate the plant.

• If it is equal to or higher, a new volume of available water in the water chamber
is calculated, which is equal to the existing volume plus that which exceeds the
incoming flow on the day after the release. The day is assigned as a non-failure
in the operation of the plant.

• If it is lower or null, it is checked to see whether the incoming flow can be
supplemented with the stored volume available in the load chamber.

- If it can be supplemented, the new volume of the load chamber is calculated
after extracting the required volume. The day is assigned as a non-failure in
the plant’s operation.

- If it cannot be supplemented, the day is assigned as a failure in the plant’s
operation.

2. The calculation continues until the 20-year series is complete.
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3. Results and Discussion
3.1. Dependency Structure between Variables
3.1.1. Annual Scale

At an annual scale, a good linear relationship was observed between the maximum
annual daily flow (Qmax) and the mean annual daily flow (Qmean) (Table 3), with an R2 value
of 0.82. Regarding the relationship of the maximum annual daily flow with the average
annual rainfall (R) and maximum annual daily rainfall (Rmax), lower linear correlations were
observed, with R2 values of 0.8 and 0.52, respectively. The low correlation in this latter analysis
can be explained by the snow influence in the area, which determined that the day with the
maximum daily flow was not the same as the day with the maximum daily rainfall.

Table 3. R2 of the linear correlations among the following variables: Qmean (mean annual daily
river flow), Qmax (maximum annual daily river flow), R (annual rainfall), ES (annual evaposubli-
mation), S (annual snowfall), SWM (annual snowmelt), SWE (annual snow water equivalent), and
Nfailure (annual number of days of failure). Values over 0.6 are in bold.

Nfailure Qmean Qmax R Rmax S R − ES SWM SWE

Nfailure 1 0.63 0.33 0.65 0.19 0.36 0.64 0.38 0.41
Qmean 0.63 1.00 0.82 0.98 0.41 0.67 0.97 0.75 0.72
Qmax 0.33 0.82 1.00 0.80 0.52 0.43 0.82 0.51 0.51

R 0.65 0.98 0.80 1.00 0.41 0.67 0.99 0.74 0.72
Rmax 0.19 0.41 0.52 0.41 1.00 0.15 0.43 0.19 0.34

S 0.36 0.67 0.43 0.67 0.15 1.00 0.58 0.98 0.81
R − ES 0.64 0.97 0.82 0.99 0.43 0.58 1.00 0.67 0.66
SWM 0.38 0.75 0.51 0.74 0.19 0.98 0.67 1.00 0.85
SWE 0.41 0.72 0.51 0.72 0.34 0.81 0.66 0.85 1.00
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The best correlations at the annual scale were found between the annual mean daily
flow and the average annual rainfall (R), reaching an R2 of 0.98, and the average rainfall
minus the evaposublimation flux (R − ES) (Table 3), since it represents the net precipitation
that directly contributes to runoff generation. Regarding the correlation between the
annual mean daily flow and the snow-related variables, average snowfall (S), average snow
water equivalent (SWE), and average snowmelt (SWM), slightly lower linear correlation
coefficients were obtained. oscillating between 0.67 and 0.75, with the highest correlation
being with snowmelt (0.75). These lower values were due to the highly variable snowpack
with the presence of several accumulation and melting cycles during the snow season, as
well as a non-negligible evaposublimation flux [11].

Regarding the annual number of days of failure (Nfailure), the best correlations were
found with both the mean annual daily flow and the annual rainfall, obtaining R2 values of
0.63 and 0.65, respectively.

3.1.2. Monthly Scale

At a monthly scale, not only the linear correlation was considered but also the
quadratic and exponential correlation, following previous studies that have flow-related
variables [27,28] and use rainfall as the independent variable to better capture the non-linear
effects of the hydrological water balance at shorter time scales. In addition, correlation with
the value of some variables in the antecedent month was included in the analysis in order
to analyze a possible monthly lag effect in the circulating flow.

Table 4 shows the correlation coefficients obtained between the monthly mean daily
flow variable and the rest of the variables identified at a monthly scale for the best adjust-
ments obtained for the sake of greater conciseness of the manuscript. However, the values
obtained for all the adjustments per month carried out in this study can be made available
upon request to the authors.

Table 4. Best correlation coefficients of the monthly mean daily flow with the variables analyzed.
Values over 0.6 are in bold.

September October November December January February March April May June July August

Nfailure 0.05 0.9 0.88 0.89 0.86 0.91 0.91 0.87 0.91 0.94 0.93 0.77
Qm_max 0.74 0.9 0.94 0.98 0.99 0.97 0.99 0.94 0.95 0.99 0.99 1

Rm 0.35 0.84 0.36 0.54 0.65 0.72 0.73 0.02 0.46 0.25 0.75 0.06
Rm_prev 0.05 0.35 0.72 0.5 0.92 0.77 0.59 0.74 0.16 0.38 0.36 0.71
Rm_max 0.07 0.76 0.03 0.48 0.44 0.49 0.41 0.22 0.34 0.46 0.73 0.36

Rm_max_prev 0.01 0.7 0.55 0.26 0.87 0.51 0.38 0.43 0.34 0.35 0.57 0.69
Rm −
ESm

0.35 0.84 0.37 0.54 0.55 0.72 0.68 0.03 0.45 0.24 0.75 0.56

Sm 0.24 0.47 0.07 0.51 0.35 0.76 0.46 0.02 0.38 0.39 -- --
Sm_prev -- 0.29 0.83 0.05 0.89 0.49 0.62 0.7 0.39 0.39 0.5 --
SWMm 0.27 0.28 0.4 0.49 0.7 0.67 0.51 0.62 0.75 0.91 0.65 --
SWEm 0.02 0.49 0.16 0.45 0.9 0.9 0.89 0.79 0.71 0.9 0.61 --

Analogously to the annual scale, a good correlation was again observed between the maxi-
mum monthly daily flow and the mean monthly flow, with R2 values between 0.74 and 1 (Table 4).

Regarding the monthly rainfall (Rm), good correlations were observed in the months
of October, January, February, March, and July, with correlation coefficients between
0.65 and 0.84. When the same analysis was performed with the rainfall in the previous
month (Rm_prev), the highest correlation coefficients were found in January, February, April,
and November, with even higher R2 values between 0.72 and 0.92.

As for the monthly snowfall (Sm), there was a good correlation only in the month
of February (0.76, Table 4), reaching higher values in the months of November, January,
March, and April with the snowfall of the previous month (Sm_prev). Finally, with respect
to the monthly snow water equivalent (SWEm) and the snowmelt (SWMm), the correlation
coefficient values were higher than 0.51 in the months from January to July, exceeding 0.62
in most months (Table 4).

At the monthly scale, the correlation between the monthly number of days of failure
(Nfailure) and the monthly mean river flow (Qm mean) reached R2 values of over 0.77 in most
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months (Table 4), exceeding 0.86 in most cases. Thus, the number of days of failure can be
reproduced once the required forecasts of monthly river flows are available.

As already pointed out by previous studies at the study site [11], the peculiar snow
dynamics result in the seasonality of the streamflow response in this headwater catchment.
These results confirm this statement as the highest correlations with respect to the mean
monthly flow occurred in the winter months, with monthly rainfall improving, in some
cases, the correlation with respect to the rainfall of the previous month. In contrast, in the
spring and summer months, the best correlations were obtained with the snowmelt and
snow water equivalent. Despite being clear that the precipitation and snow depths impacted
the monthly river flow, their effect was not instantaneous. Thus, this non-instantaneous
time relationship needs to be considered, as already applied in previous studies [29], when
looking for the best forcing variable at the monthly scale.

Considering that the main source of uncertainty in the flow regime in Mediterranean
watersheds is due to variability in the occurrence of meteorological agents (mainly rain-
fall) [30], a more detailed analysis of lag times in the influence of rainfall accumulated in
the antecedent months on the river flows was carried out. This analysis helped to solve
the low correlation values obtained between the monthly mean flow and the monthly
rainfall (Table 4) in certain months (e.g., December, May, and June). Thus, Table 5 shows the
best correlations found for the monthly mean flow with one or several antecedent months
of accumulated rainfall, as appropriate. The correlation coefficients in the table refer to
the first-, second-, and third-degree polynomial adjustments, exponential adjustments,
and potential adjustments in the case of December. The parametric expressions of these
adjustments can be found in Table A1 in Appendix A. Correlation coefficients higher than
0.7 were reached in all months, and thus, these adjustments were used to reproduce the
monthly river flow dynamics once the required forecasts of monthly rainfall were available.
It can also be observed how, in most months, better correlations were obtained than those
resulting from considering the current month or only a lag of one month (Table 4). The only
exception is September, when no good correlation was found, neither with the rainfall in
September nor extending the analysis to the rainfall of previous periods accumulated at
various time scales, which is in accordance with previous studies in the basin encompassing
the study area [13].

Table 5. Best correlation coefficients between accumulated rainfall and mean monthly river flow.

River Flow Forecast Forecasting from Rainfall of R2

January December 0.92
February December and January 0.91

March February and March 0.83
April February to April 0.80
May February to May 0.71
June February to June 0.80
July February to June 0.80

August February to June 0.82
September September 0.33

October September and October 0.83
November October and November 0.94
December November and December 0.78

Two trends can be observed that group the forecast into three blocks. From October to
December, the highest correlation was obtained between the rainfall of the previous month
and that of the current month, i.e., the October flow was obtained with the accumulated
rainfall of September and October, and in the same way, with November and December.
In these months, the flow was mainly produced directly by the occurrence of rainfall–runoff
events, mainly in liquid form, which explains this correlation between the previous month
and the current month.
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In the months of January and February, the occurrence of solid rainfall events or
snowfall begins to be more frequent, so water accumulates in the snow layer and the
proportion of direct runoff decreases, introducing a certain lag time in terms of river flows.
Therefore, it was observed that the rainfall of the current month did not improve the average
daily flow forecast for that month. Thus, the flow of January correlates to a greater extent
with the rainfall of December, while the flow of February correlates with the accumulated
rainfall of December and January.

The third block corresponds to the months from March to August, where snowmelt is
the main variable describing the average daily flow in this period. In this case, starting with
the February rainfall, the rainfall of the current month was accumulated until June. That is,
the river flow in March was obtained from the accumulated rainfall of February and March;
that of April was obtained from the accumulated rainfall of February, March, and April; and
so on, until June. July and August were included in this block because their flow is related
to the accumulated rainfall from February to June. Again, the role of accumulated water
as snow may explain these correlations. Snowmelt begins in spring around the month of
March and extends until the months of May-June, according to the hydrometeorological
dynamics of the year [11,16], so the rainfall that occurs in these months, together with
that of the previous months in which part of it would have accumulated as snow in Sierra
Nevada, determines the runoff of the current month. In the case of July and August, there
is little or no rainfall in these months, so the average flow in these months is due to the
rainfall accumulated in the previous months.

In the case of the target variable number of days of failure (Nfailure), parametric
adjustments were also obtained with the mean river flow variable (Qmean), given that, from
the results shown in Table 4, there was a good correlation between these variables in most
months. In this case, the effect of the lag time influence of the river flow on the number of
days of failure was not observed, so the parametric adjustments were made with the mean
river flow of the same month as the target forecast. The parametric expressions of these
adjustments can be found in Table A2 in Appendix A.

3.2. Bayesian Dynamics Forecast of Inflows to the Plant
3.2.1. Mean Daily Flow and Number of Days of Failure

In Figure 5, the cdf of both the parametric and non-parametric methods is shown
for the target variables Qmean and Nfailure. The empirical cdf of each variable obtained
from observed data is represented in red. With both methods, the distribution of the
mean river flow was reproduced using the 250 replications, with greater dispersion in
the case of the non-parametric method, where, for instance, for 1 m3/s of the mean river
flow, the probability was between 0.63 and 0.95 using the parametric method and between
0.4 and 0.95 using the non-parametric method (Figure 5).

In the case of the target variable, the number of days of failure, the parametric method
properly reproduced the shape of the empirical cdf. In contrast, the non-parametric method
clearly overestimated the value of this variable; that is, this method gave lower probabilities
for a higher number of days of failure than what actually occurred, and the stochastic
replications did not encompass the empirical cdf distribution of the variable.

A comparison of the basic statistics of both the observed and simulated series is pre-
sented in Table 6. The quantiles of the simulated series are of the same order of magnitude
as the observed series, notably for the parametric method (e.g., 0.48 m3/s for the 50th
percentile of the mean annual daily river flow). For the number of days of failure, the non-
parametric method adequately reproduced the extremes of the distribution (e.g., 71 days
for the fifth percentile and 310 days for the 90th percentile), although this method overesti-
mated the value of the variable for the 50th percentile (267 days instead of 179 days in the
observed series).
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Figure 5. Cumulative distribution functions (cdf) of the mean annual daily river flow and the number
of days of failure in the parametric and non-parametric methods. In red, the empirical cdf obtained
from the observed data.

Table 6. The 5th, 50th, and 90th percentiles (F5, F50, F90) of the observed and simulated mean annual
river flow (Qmean, Qpmean, and Qnpmean m3/s) and number of days of failure (Nfailure, Npfailure, and
Nnpfailure days), using the parametric and non-parametric methods. The statistics of the simulated
series represent the average over the 250 replicates generated for each variable.

Percentile Qmean Qpmean Qnpmean Nfailure Npfailure Nnpfailure

F5 0.26 0.004 0.056 79 88 71
F50 0.48 0.48 0.51 179 210 267
F90 1.26 1.15 1.48 303 325 310

Regarding the monthly scale, in most months, both methods properly reproduced the
shape of the empirical distribution functions of the mean monthly daily flow (Figures 6 and 7),
except in September, when the non-parametric method (Figure 7) encompassed the shape
of the empirical distribution function. However, a greater dispersion was observed in the
monthly daily flow predictions made using the non-parametric method in all the remaining
months (Figure 7), being greater in September, October, December, and May.

Similarly, for the variable number of days of failure, the parametric method (Figure 8)
best reproduced the shape of the empirical distribution function than the non-parametric
method (Figure 9), with the worst fits being those for September and January. In all cases
(Figures 8 and 9), the dispersion was greater for this variable, with a tendency to assign
lower probabilities to higher failure values, i.e., to more days of failure in the month, in the
same way as at the annual scale, especially in the months from November to June.
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3.2.2. Operationality Assessment

In the decision-making support process, the distribution functions of quartiles 1, 2, and 3
were obtained for both the mean daily river flow and the number of days of failure at the
annual and monthly scales. At the annual scale (Figure 10), with both methods, the probability
of having an annual mean river flow of 0.45 m3/s is 25%, whereas the probability of having an
annual mean river flow of 0.73 m3/s is 50%, with the greatest difference between the methods
found in the case of quartile 3 (75% probability). Regarding the variable number of days
of failure, as shown in Figure 10, with the non-parametric method, a tendency to assign a
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higher number of days of failure to the three quartiles was observed. Unlike with the mean
daily river flow, great differences between the methods were found in the cases of quartiles 1
and 2, whereas the results obtained with both approaches are practically the same for a 75%
probability.
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At the monthly scale and with respect to the mean monthly daily river flow (Figure 11),
the results reveal that both methods show similar tendencies in terms of the distribution
of quartiles 1 and 2 in all months, with some greater differences in the 75th percentile,
especially in the months of October and December and from January to April.
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Regarding the number of days of failure (Figure 12), the results show that higher oper-
ationality occurs in the snowmelt season between April and May, with a 25% probability
of having fewer than 1 and 2 days of failure, respectively (Figure 12), according to the
parametric method, which increases to 5–12 days with a 75% probability. In the winter
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months (December to March), there is a 25% probability of having fewer than 12 days of
failure (Figure 12). These results again reveal the influence of snowmelt, along with its
effect on the increase in flow rates in the spring months and, thus, fewer days of failure.
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3.3. Scenario Analysis

Figure 13 shows the distribution functions of the number of days of failure at the
annual scale for the different storage scenarios. Obviously, there is a shift in the cdf toward
the left (lower number of days of failure) of the stochastic cdf with a higher volume stored,
and thus, higher frequencies for a lower number of days of failure when the storage is
included can be observed, being more pronounced in the case of 30 days of storage. Thus,
with a 90% probability, the number of days of failure in the scenario without storage ranges
between 239 and 354 days. However, in the scenario with 3 days of storage, 0 days of
failure were reached in one of the simulations, although it can be considered that with a
90% probability, the range decreases to between 226 and 350 days of annual failure. Finally,
for the scenario with 30 days of storage, the range of the number of days of failure changes
from 151 to 350 days, i.e., the lower limit of this interval significantly decreased.

At the monthly time scale (Figure 14), the same trend was observed, with the effect of
the water storage being greater in the months between June and November, when there
are very few rainfall events and the snowmelt has almost finished. Thus, the effect of
the decrease in the flow regime is compensated by the storage in the loading chamber.
As an example, for this scale, in July, the range of probabilities for 15 days of failure is
between 0.036 and 0.76 if there is no storage, between 0.1 and 0.76 in the scenario of 3 days
of storage, and increasing to between 0.25 and 0.87 for the scenario of higher storage. This
variation in percentages is greater in the month of November, where the probability of
15 days of plant operation failure is between 0.04 and 0.74 when there is no storage, between
0.1 and 0.87 when there are 3 days of storage, and increasing to between 0.25 and 0.9 for
the case of 30 days of storage.
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4. Discussion

The operation of run-of-river plants in Mediterranean mountainous basins is highly
sensitive to the natural inflows to the plants. The challenge of snow-dominated Mediter-
ranean mountainous RoR plants is the strong seasonality and interannual variability of river
flows, as well as the input data availability to implement other existing data-demanding
forecasting tools. Thus, this study proposes a new simple seasonal forecasting system that
integrates the dynamic effect of the precipitation regime as a valuable tool for decision-
making and action plans for strongly heterogeneous Mediterranean watersheds, where
the straightforward application of other existing tools is not feasible nowadays due to the
limitations of the input data requirements.

A seasonal forecasting system with limited uncertainty and sufficient reliability for
decision-making means an improvement in their seasonal and annual planning, as well as
a reduction in opportunity costs due to the lack of such a forecast.

First, significant forcing agents that allow for anticipating the regime of river inflows
to RoR hydroelectric power plants need to be identified at each temporal scale. The best
correlations were found between the mean daily flow and the average rainfall at the annual
scale. At the monthly scale, different lag times in the influence of rainfall accumulated in
the antecedent months had to be considered to capture its non-instantaneous impact on
the river flows. These variable monthly lag times corresponded to the three main types
of monthly river flows that mainly depend on rainfall (September–December), snowfall
(January–February) and snowmelt (March–August), respectively. As for the monthly
number of days of failure, an effect of the lag time influence of rivers was not observed, so
the mean river flow of the same month can be considered the target forecast.

The results of this study are conditioned by the quality of the input data and the
goodness of the calibration obtained with the model used to generate the distributed maps
of the hydrometeorological variables analyzed, as well as the flow data series. Furthermore,
the parametric approach is based on the best fits obtained among the variables, which
introduces additional uncertainty associated with them.

The best statistical forecasts of the target variables were obtained with the parametric
method in this case study. However, the non-parametric approach constitutes a very
interesting option as a first evaluation as well as when parametric adjustments among
variables with a high correlation are not available for the study site.

Despite the limitations stated above, our results allow for implementing a simple
methodology to evaluate the operationality of the plant with natural inflows. The study of
the operation of hydroelectric plants at annual and monthly scales allows for the inclusion
of forecast precipitation and flow data generated by the European Centre for Medium-
Range Weather Forecasts (ECMWF), available through the Copernicus Climate Change
Service (C3S) [31–33]. With these data, the simple forecasting system presented here allows
for performing a monthly forecast of the operationality and the number of days of failure
of run-of-river hydroelectric plants six months ahead. Thus, the potential impact on water
resource management and renewable energy generation is straightforward. The application
of this approach in any other RoR plant only requires the proper identification of the forcing
variable or target forecasts at each temporal scale of interest and parametric adjustments if
the parametric approach is the chosen option. Nevertheless, the uncertainty of the forecasts
will depend on the length and quality of the available hydrometeorological data series.

Previous studies have assessed the impact of changes in hydrometeorological condi-
tions on various aspects of electrical power and energy systems (e.g., electricity generation,
electricity consumption, etc.) [34]. Making energy infrastructures resilient to climate change
requires dedicated policies and sophisticated decision-making measures to build adap-
tive capacity [35]. In this context, the proposed methodology constitutes a useful tool to
assess uncertainty in the operationality of RoR plants and can be supported by forecast
information through climate services [36,37]. The development of decision support tools
for water management in hydroelectric plants is determined to minimize the impact of the
variability in the flow regime in the medium and long term in the case of RoR hydroelectric
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plants. In these plants, the availability of water storage is limited or non-existent, so this
type of tool makes it possible to limit the uncertainty associated with the production of the
hydroelectric plant on a monthly and seasonal scale, at least six months in advance. Thus,
this methodology can assist hydropower systems as the managers can plan the production
of the plant at the beginning of the calendar year until the end of the snowmelt, as well as
maintenance shutdowns of the plants during months of lower productivity.

5. Conclusions

A Bayesian dynamics stochastic model was developed in this study based on the simula-
tion of rainfall with Monte Carlo at the annual and monthly scales, combining two methods—
parametric and non-parametric. The best statistical forecasts of the target variables, the mean
daily river flow and the number of days of failure, were obtained with the parametric method
based on the best adjustments at each temporal scale considered. The results show a greater
dispersion in the variable number of days of failure, with a tendency to assign lower probabil-
ities to higher failure values. The operationality assessment performed showed the influence
of snowmelt and its effect on the increase in flow rates in the spring months, with a 25%
probability of having 1 and 2 days of failure in April and May, respectively, while in the winter
months, this probability of 25% corresponds to having fewer than 12 days of failure and close
to 30 days of failure in the remaining months.

A scenario analysis was carried out with the inclusion of water storage in the load
chamber of hydroelectric plants and assessing its effect on the variable number of days
of failure as a measure of the plant’s operationality. The results show the expected
trends: the higher the load chamber considered, the higher the operationality level, and
239 to 151 annual days of failure without storage and with 30 days of storage, respectively,
with a 90% probability. Regarding the monthly scale, the effect of water storage is greater
in the months between June and November, with an operationality level of 0.04–0.74 for
15 days of failure without storage in November and of 0.25–0.9 with 30 days of storage.
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Appendix A

Tables A1 and A2 show, respectively the fits and correlation coefficients (R2) at annual
and monthly scale, between the mean river flow (Qmean) and rainfall (R), and between the
number of days of failure (Nfailure) and the mean river flow (Qmean).
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Table A1. Fits and correlation coefficients (R2) between mean river flow (Qmean) at annual and
monthly scale and rainfall (R).

River Flow Forecast Forecasting from Rainfall of Relationship R2

Annual Annual Qmean = 0.0014·R − 0.57 0.99

January December Qmean = 7.70e−6·R2 + 1.07e−3·R + 0.40 0.92
February December and January Qmean = 3.14e−3·R + 0.13 0.91

March February and March Qmean = 0.353·e−0.0042·R 0.83
April February to April Qmean = −7.40e−8·R3 + 8.29e−5·R2 − 0.024·R + 2.74 0.80
May February to May Qmean = −6.56e−8·R3 + 8.05e−5·R2 − 0.026·R + 3.11 0.71
June February to June Qmean = 7.97e−6·R2 − 0.0025·R + 0.40 0.80
July February to June Qmean = 2.39e−8·R3 − 2.68e−5·R2 + 0.011·R − 1.31 0.80

August February to June Qmean = 7.25e−9·R3 − 7.66e−6·R2 + 0.0032·R − 0.37 0.82
September September Qmean = −1.64e−6·R3 + 2.37e−4·R2 − 0.0075·R + 0.14 0.33

October September and October Qmean = 0.092e0.00626·R + 7.52e−17·e0.1112·R 0.83
November October and November Qmean = 0.107e0.00567·R + 7.29e−6·e0.0277·R 0.94
December November and December Qmean = 0.0015·R1.142 0.78

The variable number of days of failure acts as a discrete variable in its extreme values,
given by the limits of turbine operation in the hydroelectric plant. Therefore, to prepare
the parametric adjustments for this variable, the same limits have been respected as for the
turbine. That is, when the flow variable on the corresponding scale gives a value lower than
the minimum turbine speed, the maximum value of the corresponding scale is assigned to the
variable number of days of failure. Similarly, the flow value in the river flow above which
there is no operational failure in the hydroelectric plant at the scale considered has been
identified. Between these values, a parametric adjustment has been made for each month.

Table A2. Fits and correlation coefficients (R2) between number of days of failure (Nfailure) and mean
river flow (Qmean) at annual or monthly scale. The forecasting river flow month is the same than the
forecast target month for Nfailure.

Nfailure Forecast Forecasting from River Flow of Relationship R2

Annual mean Annual mean N f ailure = 162.82·Q2
mean − 467.64·Qmean + 414.07 0.89

January January N f ailure = 700.1·e−8.201·Qmean 0.95
February February N f ailure = 211.5·e−6.123·Qmean 0.93

March March N f ailure = 326.3·e−5.923·Qmean 0.91
April April N f ailure = −0.81·e−0.87·Qmean + 170.8·e−5·Qmean 0.88
May May N f ailure = 148.6·e−4.49·Q 0.86
June June N f ailure = −5.52·Q3

mean + 36.48·Q2
mean − 74.47·Qmean + 44.99 0.93

July July N f ailure = 86.52·Q3
mean − 164.9·Q2

mean + 42.47·Qmean + 28.53 0.98
August August N f ailure = −220.9·Q3

mean + 71.35·Q2
mean − 4.79·Qmean + 31.04 0.99

September September -- --
October October N f ailure = 178.5·Q3

mean − 251.7·Q2
mean + 69.02·Qmean + 26.04 0.97

November November N f ailure = −5.35·Q3
mean + 35.83·Q2

mean − 71.45·Qmean + 41.14 0.89
December December N f ailure = −11.34·Q3

mean + 61.55·Q2
mean − 97.95·Qmean + 47.86 0.84
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