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Abstract: Dry-type air-core shunt reactors are integral components in power transmission and dis-
tribution networks, designed to control reactive power and enhance system stability. However,
inter-turn short-circuit faults (ISCFs) are common occurrences in shunt reactors, which are caused
by various factors, including manufacturing defects, insulation degradation, or operational stresses.
At the early stage of the ISCFs, the current does not reach a sufficient level to activate the protective
equipment. These faults may lead to serious consequences, such as overheating, insulation break-
down, and even catastrophic failures, posing risks to the entire power system. Therefore, developing
an effective and reliable detection method for ISCFs at the early stage is paramount. In this paper,
a new method named the fault detection factor (FDF) based on equivalent resistance is presented
to detect the slight ISCFs in dry-type air-core shunt reactors considering insulation resistance. In
addition, the effect of noise signal existence in the monitoring process is taken into account. A moving
average filter is adopted to guarantee both the sensitivity and the reliability of the proposed method.
Ultimately, the simulation results of the FDF under different conditions are presented, which show
the effectiveness and potential of the proposed method in observing and monitoring slight ISCFs.

Keywords: dry-type air-core shunt reactors; inter-turn short-circuit fault; equivalent resistance;
high sensitivity

1. Introduction

The dry-type air-core reactor has advantages such as simple structure, good linearity,
and easy maintenance. It is widely used in power systems for reactive power compensation
and system voltage stabilization [1,2]. However, due to manufacturing defects, mechanical
damage, material aging, and arc breakdown, the reactor is prone to frequent failures [3,4].
Among various common faults, inter-turn short-circuit faults (ISCFs) account for the largest
proportion [5]. At the early stage of inter-turn short-circuit faults, the number of short-
circuited turns is small, and the current change in the reactor is small, causing overcurrent
protection to fail. However, when the internal circulating current between the coil turns due
to the inter-turn short circuit is too large, it can lead to excessively high local temperatures
in the coil, further damaging the inter-turn insulation. This, in turn, leads to more coil turns
near the short-circuit point experiencing short-circuit faults [6]. In severe cases, the local
high temperature generated by the short-circuit current will burn out the reactor, or even
cause a combustion accident, affecting the safe and stable operation of the power system.
Therefore, a highly sensitive detection method for ISCFs in dry-type air-core reactors is of
great significance for their stable operation.

The existing monitoring methods for inter-turn short-circuit faults in dry-type air-
core reactors mainly include the magnetic field monitoring method [7,8], temperature
monitoring method [9,10], vibration monitoring method [11,12], and electrical quantity
monitoring method using measured voltage and current.
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In detail, an online detection algorithm for turn-to-turn faults in iron core reactors was
proposed in [7], utilizing additional sensor coils to measure the leakage magnetic field. A
method for detecting ISCFs based on the spatial magnetic field distribution of dry-type air-
core reactors was proposed in [8]. This involved establishing functions using a curve-fitting
method to assess the degree of fault. However, the magnetic field monitoring method
requires the installation of induction coils at both ends of the reactor, it is complicated, and
the additional equipment can affect the normal operation of the reactor [13]. As for the
temperature monitoring method, [9] designed a system to monitor the condition of a reactor,
where several wireless temperature sensors were installed at the node needed to measure
the temperature. A new method for fitting the temperature field with a multi-component
normal distribution was proposed using temperature collected with an RFID chip [10].
The measured temperature was then compared with the ideal temperature to obtain the
operating state of the reactor. Nevertheless, at the early stages of ISCF, temperature rise
is relatively slow, and environmental factors have a significant impact on temperature
rise. Therefore, the sensitivity of the temperature monitoring method is low, and it cannot
promptly detect faults [14]. The vibration signal from an outer encapsulation of a reactor
was utilized for ISCF detection in [11]. Extracted features from the vibration signal were
employed to train a classification model. The identification and localization of ISCF rely
on detecting alterations in the vibration distribution characteristics on the surface of the
reactor in [12]; both methods in [11,12] require a laser Doppler vibrometer to measure the
vibration velocity of the reactor. A hierarchical neural network method was suggested for
locating inter-turn faults in [15]. This approach necessitated additional temperature sensors
and humidity sensors, as well as current and voltage sensors, depending on the number of
monitoring areas.

As for the electrical quantity monitoring method, the monitoring of ISCFs was sug-
gested through the resonance frequency shift of input impedance in [16]. An online
detection method for ISCFs of a shunt reactor utilizing an analysis grounded in impulse
coupling injection was introduced in [17,18], where the fault can be detected by monitoring
the frequency response characteristics of the injected pulse signal. However, additional
equipment to generate pulse signals is required. A monitoring method based on impedance
variation was proposed in [19,20]. A technique was introduced in [21] for monitoring
ISCFs in dry-type air-core reactors based on current distribution characteristics under
multiple-harmonic excitation. Ref. [22] presented a model simulating inter-turn faults in
shunt reactors with an electric circuit and introduced three algorithms—zero-sequence
reactance, negative-sequence reactance, and phase impedance—to detect inter-turn faults.
Ref. [23] introduced an online device for monitoring reactor short-circuit faults based on
the power angle. In the realm of techniques employing electrical parameters, many sim-
ulations and experiments focus on scenarios where one or a few turns of the reactor coil
are entirely shorted. This often overlooks the insulation resistance between turns when an
ISCF happens, a crucial factor that significantly impacts the detection algorithm, especially
when only a portion of the coil is locally shorted rather than the entire turn. At the initial
stage of an ISCF, the insulation material between coil turns is not completely damaged, and
the short-circuited coil turns only have partial contact. Therefore, there exists insulation
resistance [24–26].

At the early stage of an ISCF, due to the relatively small number of short-circuited
turns, the electrical parameters of the reactor, such as current, equivalent inductance,
and equivalent impedance, do not show significant changes. However, the increase in
equivalent resistance and active power is relatively noticeable [27–30]. Therefore, this
paper starts from the change patterns of equivalent resistance and active power at the early
stage of an ISCF in dry-type air-core reactors. It selects appropriate electrical quantities for
detection and proposes corresponding online monitoring methods. The transition from
the local short circuit to the global short circuit of coil turns is an accumulating process,
during which the insulation resistance is in a dynamically changing state. Therefore, the
magnitude of insulation resistance affects the effectiveness of fault detection methods. The
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adaptability of the proposed online detection method is verified through simulation under
different insulation resistance values.

In this paper, finite element analysis is used to simulate and calculate the electrical
parameters of the reactor when an ISCF occurs at different positions. At first, the position
with the least noticeable change in electrical parameters during the fault is determined
without considering insulation resistance. Based on this, the variation patterns in equivalent
resistance and active power with respect to insulation resistance are analyzed when the
ISCF occurs at this position. Then, an exponential function based on equivalent resistance
is constructed to achieve online detection of slight ISCFs in dry-type air-core reactors.
Furthermore, this paper analyzes and discuss the influence of noise signals on the sensitivity
and reliability of the proposed method. As this paper aims to propose a highly sensitive
online fault detection method for the early stages of ISCFs in dry-type air-core reactors,
all analyses and calculations in this paper are conducted under the condition that only
one-turn of the coil is shorted.

2. Materials and Methods
2.1. Equivalent Circuit

A dry-type air-core reactor usually consists of multiple encapsulates, and each en-
capsulate composes of multiple coils connected parallel. The equivalent circuit when
an inter-turn short-circuit fault (ISCF) occurs at the nth coil is shown in Figure 1. In the
figure, Ii, Ri, and Li represent the branch current, resistance, and self-inductance of the
ith coil, respectively; In+1, Rn+1, and Ln+1 represent the induced current, resistance, and
self-inductance of the short-circuit loop, respectively; R f represents the insulation resis-
tance; Mij represents the mutual inductance between the ith and jth coils; Mi(n+1) represents
the mutual inductance between the ith coil and the short-circuit loop; I represents the bus
current; and U represents the terminal voltage.
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Figure 1. The equivalent circuit for inter-turn short-circuit faults of dry-type air-core reactors. 
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Figure 1. The equivalent circuit for inter-turn short-circuit faults of dry-type air-core reactors.

The condition under which an ISCF occurs and R f ̸= 0 is defined as a local ISCF;
otherwise, it is defined as a global ISCF when R f = 0. Therefore, the following equation
can be obtained based on the Kirchhoff Voltage Law (KVL):

(R + jωM)I = U (1)

where
R = diag(R1, R2, · · · , Rn + Rf, Rn+1 + Rf) (2)
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M = [

L1 M12 · · · M1n M1(n+1)
M21 L2 · · · M2n M2(n+1)

...
...

. . .
...

...
Mn1 Mn2 · · · Ln Mn(n+1)

M(n+1)1 M(n+1)2 · · · M(n+1)n Ln+1

] (3)

I = [I1, I2, · · · , In, In+1]
T (4)

U = [U1, U2, · · · , Un, Un+1]
T (5)

where Un+1 = 0, which is the voltage of the shorted turn.

2.2. Inter-Turn Short-Circuit Fault When R f = 0

After a global ISCF occurs in a dry-type air-core reactor, the bus current and equivalent
inductance only change a little, while the equivalent resistance and active power increase
more obviously [27–30]. Therefore, in this paper, the equivalent resistance and active power
of the dry-type air-core reactor are selected for analysis.

The layers of the reactor are denoted as the 1st encapsulate, 2nd encapsulate... and
13th encapsulate, from the innermost to the outermost encapsulate. Since the dry-type
air-core reactor is axially symmetric, only the upper half section is considered for ISCFs.
The reactor is divided into 10 equal segments along the height, and a point is selected at
every 1/10 segment interval from the symmetrical position upwards as the fault height,
and 5 different fault positions are chosen to be investigated along the axial direction. The
distribution of fault heights is shown in Figure 2.
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2.2.1. ISCF Occurring in Different Coils within the Same Encapsulate

This paper takes a BKDCKL—20000/35 dry-type air-core reactor as an example, whose
specific parameters are shown in Table 1. Based on its geometric parameters and material
properties, a finite element simulation model is constructed for simulation calculations.
Through post-processing, equivalent circuit parameters (equivalent resistance, equivalent
reactance, and busbar current) during normal and fault operations of the reactor can
be obtained. This enables the determination of the active power consumed during the
operation of the reactor.

Table 1. The reactor parameters.

Parameters Value Parameters Value

Rated capacity (kVar) 20,000 Rated current (A) 989.7
Rated voltage (kV) 20.21 Height (mm) 1990

Number of encapsulates 13 Outer radius (mm) 2807.1
Number of coils 44 Equivalent reactance (Ω) 20.42

Rated frequency (Hz) 50 Equivalent resistance (Ω) 0.051
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Since there is more than one coil in each encapsulate, it is necessary to investigate
the difference in the referred electrical parameters among coils in the same encapsulate.
Thus, some simulations are carried out with finite element analysis (FEA). Due to the axial
symmetry of the physical model, the reactor is reduced to a 1/2 model to simplify the
analysis of the electromagnetic field within it. To compute the equivalent resistance and
active power, the bus current is required. A combination of 2D FEA and an electric circuit
is employed to calculate the bus current. An AC voltage source is applied to the electric
circuit, connected in series with the reactor. The coils within each encapsulate are connected
in parallel within the electric circuit. In addition, the infinite element domain boundary
is adopted to simulate the infinitely extended region around the reactor. Therefore, the
equivalent resistance and active power variation can be computed when the global ISCF
occurs and one turn of the coil is shorted at height 1 in the 1st, 3rd, and 11th encapsulates
of the dry-type air-core reactor. The variation in equivalent resistance and active power is
calculated, which is defined as the ratio of amplitude under the ISCF to this under normal
conditions; the results are shown in Table 1. As shown in Table 2, the equivalent resistance
and active power ratio for different coils are almost the same when the global ISCF occurs
at the same height in the same encapsulate. Therefore, the subsequent simulation results
and analyses in this paper only consider the scenario where the ISCF occurs in the first coil
within each encapsulate.

Table 2. The ratio of variables for a global inter-turn short-circuit fault at each winding at Height 1.

Encapsulate Coil Equivalent Resistance Ratio Active Power Ratio

1

1 15.982 16.176
2 16.117 16.317
3 16.260 16.463
4 16.394 16.600
5 16.535 16.744

3

1 26.506 27.299
2 26.693 27.499
3 26.878 27.695
4 27.077 27.905

11
1 53.580 60.194
2 53.485 60.078
3 53.420 59.988

2.2.2. ISCF Occurring in Different Encapsulates

The equivalent resistance ratio and the active power ratio of normal operation to
ISCFs occurring at different heights of the 1st coil of each encapsulation are shown in
Figures 3 and 4, respectively. As observed in the figures, both the equivalent resistance
and active power of the reactor exhibit an initial increase followed by a decrease as the
faulted encapsulate moves outward. The equivalent resistance and active power experience
significant increments in the presence of an ISCF, reaching up to 50 and 60 times the rated
values, respectively, without accounting for insulation resistance. Conversely, they decrease
as the fault height approaches the end. The closer to the end, the less noticeable the changes
in the investigated equivalent parameters. It can be seen that the changes in equivalent
resistance and active power are minimal when the ISCF occurs at Height 5 in the 1st
encapsulate. Therefore, this position is selected for further fault simulation analysis.
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2.3. Local Inter-Turn Short-Circuit Fault When R f ̸= 0

2.3.1. ISCF Detection Method

The authors of [26] proposed a highly sensitive ISCF detection method that takes
insulation resistance into account. It determines the operational status of the reactor by
using the amplitude of the power loss factor (PLF) during a fault. The calculation of PLF is
shown in (6)

PLF =
1
2

[(
Pac

act
Pac

N

)2
+

(
Ract

RN

)2
]

(6)

where Pac
act and Pac

N are the active power under an ISCF and under normal conditions,
respectively, and Ract and RN are the equivalent resistance under an ISCF and under
normal conditions, respectively.

The bus current under an ISCF and under normal conditions is defined as Isc and IN,
respectively. Then the active power under an ISCF and under normal conditions can be
expressed as

Pac
act = I2

scRact, (7)

Pac
N = I2

NRN, (8)

The investigated reactor consists of 44 coils in parallel, which is composed of hundreds
of turns. Therefore, the amplitude of the bus current remains almost unchanged under an
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ISCF, it makes Isc
IN

≈ 1. Therefore, PLF can be approximated as (9), which is approximately

equal to
(

Ract
RN

)2
, denoted as PLFA in (10).

PLF =
1
2

[(
Pac

act
Pac

N

)2
+

(
Ract

RN

)2
]
=

1
2

[(
Isc

IN

)4
+ 1

](
Ract

RN

)2

≈
(

Ract

RN

)2
(9)

PLFA =

(
Ract

RN

)2
(10)

According to (9) and (10), it can be observed that when the reactor is operating nor-
mally, both PLF and PLFA are equal to 1. However, after an ISCF occurs in the reactor,
the equivalent resistance increases, causing both parameters to be greater than 1. There-
fore, the operational status of the reactor can be determined based on the amplitudes of
these parameters.

Different insulation resistance values ( R f = 0.1 ∼ 100 Ω) were set at Height 5 in
the 1st encapsulate. Simulations were conducted to simulate a local ISCF under different
degrees of insulation damage. The variation curves of the equivalent resistance ratio,
active power ratio, PLF, and PLFA at different insulation resistances are shown in Figure 5.
As shown in the figure, with the development of the fault, as the insulation resistance
decreases, all four parameters increase. The curves of the equivalent resistance change ratio
and the active power change ratio overlap. PLF and PLFA are essentially equal, and both
are greater than the other two parameters, indicating higher sensitivity. However, at the
early stages of the fault, when the insulation resistance R f > 40 Ω, the amplitudes of the
above parameters tend to stabilize (equivalent resistance ratio ≈ active power ratio ≈ 1.028,
PLF ≈ PLFA ≈ 1.055). With an increase in insulation resistance, there is no significant
change. Therefore, it can be concluded that if an ISCF occurs at a height closer to the end of
the winding, at the early stages of insulation damage (R f > 40 Ω), the amplitudes of the
above parameters tend to approach 1, which may lead to misjudgment. Therefore, based
on PLF, this paper proposes a higher sensitivity method for ISCF detection in reactors.
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Replacing the exponent of the PLFA with variable a yields the fault detection factor
(FDF). The expression for the FDF is given by (11),

FDF =

(
Rsc

RN

)a
=

[
1 +

Rsc − RN

RN

]a
= (1 + XR)

a (11)

where XR = Rsc−RN
RN

.
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Expanding (11) using the Taylor series can be expressed as (12),

FDF = 1 + aXR + a(a−1)
2! X2

R + · · ·

+ a(a−1)···(a−n+1)
n! Xn

R + o
(
Xn

R
) (12)

According to (12), the value of the FDF increases with the increment in a with the
same XR. The results of the FDF varying with different insulation resistance, including
R f = 20 Ω, 40 Ω, and 60 Ω, are shown in Figure 6. It can be seen that the sensitivity of the
FDF to the local ISCF can be improved by increasing the value of a.
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Ref. [23] proposed a method to detect ISCFs using the power angle. When the in-
sulation resistance R f = 60 Ω, the power angle of the investigated reactor is 1.5687 rad,
while the power angle is 1.5688 rad when the reactor works normally. Thus, it is hard
to distinguish between the fault and normal conditions when the insulation resistance is
considered. A monitoring method based on impedance variation was proposed in [20], and
it presented that the equivalent resistance change was more obvious than the equivalent
reactance when an ISCF happened. However, the equivalent resistance only increased by
2.7% at the early stage of ISCF (R f = 60 Ω) for the investigated reactor. According to the
results in Figure 6, the proposed method has better sensitivity with a bigger exponent ‘a’.

2.3.2. The Impact of Noise Signals on Fault Detection Reliability

However, in the process of monitoring the reactor’s condition, the real-time collection
of its voltage and current signals is necessary to calculate the reactor’s equivalent resistance
during operation. The analog signals collected by voltage and current transformers require
further processing through signal conditioning circuits and AD converters to be converted
into digital signals, which are then sent to the host computer for calculation. Inevitably,
this process introduces noise signals, affecting the reliability of the detection method.

To mimic real-world conditions, white noise is introduced into the simulated data
of the reactor fault. The relationship between the reliability of the detection scheme
and the parameter ‘a’ is discussed. Since the corresponding fault factor also fluctuates
within a small range when the reactor is operating normally, a threshold value ∆F is
set. When FDF − 1 > ∆F, it indicates an inter-turn short-circuit fault in the reactor
operation. Conversely, it indicates normal operation. In the event of an inter-turn short
circuit, a significant change in the corresponding fault factor is expected to aid in fault
discrimination.

Under simulated normal operating conditions, the variation in the fault factor is shown
in Figure 7 for different values of the exponent ‘a’ ( a = 2 ∼ 10). Setting the fault at Height
5 in the first layer encapsulate and letting Rf = 100 Ω, the variation in the fault factor for
different values of the exponent ‘a’ in the fault state is shown in Figure 8.
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Figure 8. The fault factor curve with the variation in exponent a when the reactor is under an
inter-turn short-circuit fault condition.

Due to the presence of noise signals, as the value of ‘a’ increases, the fluctuation
amplitude of the fault factor FDF during the normal operation of the reactor also increases.
When the threshold value is set to ∆F = 0.05, there are intervals in the range of ‘a’ from 2
to 10 where the threshold is exceeded, indicating a possibility of misjudgment as a fault
operation. When ∆F = 0.1, intervals exceeding the threshold begin to appear at a = 5.
Additionally, the likelihood of misjudgment increases with an increase in ‘a’.

Correspondingly, during the operation of the reactor with an inter-turn short-circuit
fault, there is a possibility of misjudging it as normal operation within the range of ‘a’ from
2 to 10. Although the fluctuation amplitude of the FDF during reactor fault operation
increases with an increase in ‘a’, the average value also shifts upwards, thereby reducing
the likelihood of misjudgment.

From the aforementioned analysis of two reactors, it can be concluded that considering
noise in the signal, as ‘a’ increases, there is an increased likelihood of normal operation
being mistakenly identified as a fault, while the likelihood of a fault being mistakenly
identified as normal operation decreases.

3. Results

To ensure the reliability of fault detection while improving the sensitivity of the fault
factor, this paper proposes applying a moving average filter (MAF) to the calculated FDF.
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This is performed to reduce data fluctuations caused by noise signals, thereby minimizing
misjudgments. The expression for MAF is given by (13).

xt =
1
N ∑N−1

i=0 xt−i, (13)

where xt is the value of the time series at time t and N is the order of the MAF, representing
the number of data points included in the averaging window.

The simulation results with the MAF applied are shown in Figures 9 and 10. After
filtering, when the threshold values ∆F = 0.05 and ∆F = 0.1, within the range of ‘a’ from
2 to 10, the fault factor FDF − 1 under normal conditions is less than ∆F. This enables
the correct determination of the reactor’s operational status. During the operation of the
reactor with an inter-turn short-circuit fault, when the threshold value is ∆F = 0.05, the
correct determination of the reactor’s operational status is possible after a ≥ 4. When
∆F = 0.1, correct determination is possible after a ≥ 6. Additionally, with an increase in ‘a’,
the FDF during a fault operation deviates further from the FDF during normal operation.
Consequently, it becomes easier to determine the operational status of the reactor.
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To verify the effectiveness of the proposed method further, another reactor BKGKL-
20000/35 (namely, reactor II) is also simulated, whose specific parameters are shown in
Table 3. Under the simulated normal operating conditions, the variation in the fault factor
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is shown in Figure 11 for different values of the exponent ‘a’ (a = 2~10). Letting Rf = 100 Ω,
the variation in the fault factor for different values of the exponent ‘a’ in the fault state is
shown in Figure 12. A similar conclusion can be obtained as follows: when the threshold
value is ∆F = 0.05 and ∆F = 0.1, within the range of ‘a’ from 2 to 10, the fault factor
FDF − 1 under normal conditions is less than ∆F. This enables the correct determination of
the reactor’s operational status. During the operation of the reactor with an inter-turn short-
circuit fault, when the threshold value is ∆F = 0.05 and ∆F = 0.1, the correct determination
of the reactor’s operational status is possible after a ≥ 4. Additionally, with an increase in
‘a’, the FDF during a fault operation deviates further from the FDF during normal operation.
Consequently, it becomes easier to determine the operational status of the reactor.

Table 3. The reactor parameters of BKGKL-20000/35.

Parameters Value Parameter Value

Rated capacity (kVar) 20,000 Rated current (A) 989.7
Rated voltage (kV) 20.21 Height (mm) 2540

Number of encapsulates 14 Outer radius (mm) 3024
Number of coils 44 Equivalent reactance (Ω) 20.65

Rated frequency (Hz) 50 Equivalent resistance (Ω) 0.039

Energies 2024, 17, x FOR PEER REVIEW 11 of 14 
 

 

To verify the effectiveness of the proposed method further, another reactor BKGKL-

20000/35 (namely, reactor II) is also simulated, whose specific parameters are shown in 

Table 3. Under the simulated normal operating conditions, the variation in the fault factor 

is shown in Figure 11 for different values of the exponent ‘a’ (a = 2~10). Letting 𝑅f = 100Ω, 

the variation in the fault factor for different values of the exponent ‘a’ in the fault state is 

shown in Figure 12. A similar conclusion can be obtained as follows: when the threshold 

value is Δ𝐹 = 0.05  and Δ𝐹 = 0.1 , within the range of ‘a’ from 2 to 10, the fault factor 

𝐹𝐷𝐹 − 1 under normal conditions is less than ΔF. This enables the correct determination 

of the reactor’s operational status. During the operation of the reactor with an inter-turn 

short-circuit fault, when the threshold value is Δ𝐹 = 0.05 and Δ𝐹 = 0.1, the correct de-

termination of the reactor’s operational status is possible after a ≥ 4. Additionally, with 

an increase in ‘a’, the FDF during a fault operation deviates further from the FDF during 

normal operation. Consequently, it becomes easier to determine the operational status of 

the reactor. 

Table 3. The reactor parameters of BKGKL-20000/35. 

Parameters Value Parameter Value 

Rated capacity (kVar) 20,000 Rated current (A) 989.7 

Rated voltage (kV) 20.21 Height (mm) 2540 

Number of encapsulates  14 Outer radius (mm) 3024 

Number of coils 44 Equivalent reactance (Ω) 20.65 

Rated frequency (Hz) 50 Equivalent resistance (Ω) 0.039 

 

Figure 11. The fault factor curve handled by a moving average filter with the variation in exponent 

a when reactor II is under normal conditions. 

 

Figure 12. The fault factor curve handled by a moving average filter with the variation in exponent 

a when reactor II is under an inter-turn short-circuit fault condition. 

Figure 11. The fault factor curve handled by a moving average filter with the variation in exponent a
when reactor II is under normal conditions.

Energies 2024, 17, x FOR PEER REVIEW 11 of 14 
 

 

To verify the effectiveness of the proposed method further, another reactor BKGKL-

20000/35 (namely, reactor II) is also simulated, whose specific parameters are shown in 

Table 3. Under the simulated normal operating conditions, the variation in the fault factor 

is shown in Figure 11 for different values of the exponent ‘a’ (a = 2~10). Letting 𝑅f = 100Ω, 

the variation in the fault factor for different values of the exponent ‘a’ in the fault state is 

shown in Figure 12. A similar conclusion can be obtained as follows: when the threshold 

value is Δ𝐹 = 0.05  and Δ𝐹 = 0.1 , within the range of ‘a’ from 2 to 10, the fault factor 

𝐹𝐷𝐹 − 1 under normal conditions is less than ΔF. This enables the correct determination 

of the reactor’s operational status. During the operation of the reactor with an inter-turn 

short-circuit fault, when the threshold value is Δ𝐹 = 0.05 and Δ𝐹 = 0.1, the correct de-

termination of the reactor’s operational status is possible after a ≥ 4. Additionally, with 

an increase in ‘a’, the FDF during a fault operation deviates further from the FDF during 

normal operation. Consequently, it becomes easier to determine the operational status of 

the reactor. 

Table 3. The reactor parameters of BKGKL-20000/35. 

Parameters Value Parameter Value 

Rated capacity (kVar) 20,000 Rated current (A) 989.7 

Rated voltage (kV) 20.21 Height (mm) 2540 

Number of encapsulates  14 Outer radius (mm) 3024 

Number of coils 44 Equivalent reactance (Ω) 20.65 

Rated frequency (Hz) 50 Equivalent resistance (Ω) 0.039 

 

Figure 11. The fault factor curve handled by a moving average filter with the variation in exponent 

a when reactor II is under normal conditions. 

 

Figure 12. The fault factor curve handled by a moving average filter with the variation in exponent 

a when reactor II is under an inter-turn short-circuit fault condition. 
Figure 12. The fault factor curve handled by a moving average filter with the variation in exponent a
when reactor II is under an inter-turn short-circuit fault condition.

4. Conclusions

In this paper, a new approach to detect an ISCF at the early stage of a dry-type air-
core reactor is proposed, in which the FDF relies on equivalent resistance under normal
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conditions and working conditions is introduced. To consider the effect of the noise signal
measured during the condition monitoring, an MAF is adopted to improve the reliability
and robustness of the FDF. The simulation results accounting for local ISCFs at an early
stage highlight the promising potential of the proposed method, and the conclusions
are as follows:

(1) For different coils within the same encapsulate of dry-type air-core reactors, the
equivalent resistance and active power of a global ISCF at the same height show
almost no change. As the fault moves outside the encapsulate, both the equivalent
resistance and active power increase initially and then decrease. Moving from the
middle to the end of the fault height results in a decreasing trend.

(2) The equivalent resistance and active power experience significant increments in the
presence of an ISCF, reaching up to 50 and 60 times the rated values, respectively,
without accounting for insulation resistance.

(3) At the initial stage of a local ISCF with one turn, the insulation resistance is relatively
high, making it challenging to detect the fault. A larger exponent ‘a’ in the FDF has
better sensitivity in detecting ISCFs under the aforementioned condition without
considering the noise signal.

(4) The FDF applied with an MAF can improve the reliability of the proposed method by
reducing the fluctuation amplitude of the FDF to reduce the misjudgment likelihood
in ISCF detection while guaranteeing the sensitivity of the detection proposed method
when the signal noise in the monitoring system is considered.

This paper proposes a simple and sensitive way to detect ISCFs in dry-type air-core
shunt reactors. The disadvantage of this work is that it is limited to verifying the method at
a simulation level. The experimentation validation when the reactor is under an ISCF is a
work in progress, and it will be completed in our future work.
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