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Abstract: Accurately forecasting energy metrics is essential for efficiently managing renewable energy
generation. Given the high variability in load and renewable energy power output, this represents
a crucial area of research in order to pave the way for increased adoption of low-carbon energy
solutions. Whilst the impact of different neural network architectures and algorithmic approaches
has been researched extensively, the impact of utilising additional weather variables in forecasts have
received far less attention. This article demonstrates that weather variables can have a significant
influence on energy forecasting and presents methodologies for using these variables within a long
short-term memory (LSTM) architecture to achieve improvements in forecasting accuracy. Moreover,
we introduce the use of the seasonal components of the target time series, as exogenous variables,
that are also observed to increase accuracy. Load, solar and wind generation time series were forecast
one hour ahead using an LSTM architecture. Time series data were collected in five Spanish cities
and aggregated for analysis, alongside five exogenous weather variables, also recorded in Spain.
A variety of LSTM architectures and hyperparameters were investigated. By tuning exogenous
weather variables, a 33% decrease in mean squared error was observed for solar generation forecasting.
A 22% decrease in mean absolute squared error (MASE), compared to 24-h ahead forecasts made by
the Transmission Service Operator (TSO) in Spain, was also observed for solar generation. Compared
to using the target variable in isolation, utilising exogenous weather variables decreased MASE
by approximately 10%, 15% and 12% for load, solar and wind generation, respectively. By using
the seasonal component of the target variables as an exogenous variable itself, we demonstrated
decreases in MASE of 19%, 12% and 8% for load, solar and wind generation, respectively. These
results emphasise the significant benefits of incorporating weather and seasonal components into
energy-related time series forecasts.

Keywords: time series forecasting; exogenous variables; seasonal decomposition; LSTMs

1. Introduction

As the issue of climate change becomes ever more prominent, and the availability and
geopolitical difficulties of fossil fuels become exacerbated, the need for a greater level of
energy supply from renewable sources such as solar and wind is becoming a central global
concern. Analysis and forecasting of energy-related time series is therefore a crucial field
of research, with progress in this area representing a necessary step towards achieving
a sustainable future. Forecasting time series involves predicting future data points in a set
of temporally ordered values. Short-term forecasting, one hour ahead, was enacted as it
is utilised in many applications such as wind power management, electricity market pro-
cessing and load management [1]. As the field has advanced, statistical methods, classical
machine learning methods, and more recently, deep learning methods have been proposed.
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Within statistical methods, linear regression has shown reasonable results in short-
term forecasting [2], although autoregressive integrated moving average (ARIMA) [3] is
typically more suitable for energy-related forecasting since it does not assume a static
relationship between variables. Classical machine learning techniques such as XGBoost
have shown success for time series forecasting within the energy sector, and benefit from
low computational times and high interpretability [4].

Solutions involving neural networks (networks of interconnected, digital nodes) have
shown much promise in improving forecasting ability. For instance, neural networks
have demonstrated superior accuracy over ARIMA within this research domain [5,6].
It has also been shown that simple multi-layer neuron models can outperform classical
machine learning methods [7]. Even basic Artificial Neural Networks (ANNs), with a single
hidden layer, have yielded solar generation predictions accurate enough for microgrid
management [8]. It has been posited that statistical and classical machine learning methods
cannot deal with volatile energy-related data as well as ANNs [9]. We suggest that the
residual components of time series (less predictable noise in the data), which are likely to
increase in magnitude due to climate change, contribute to this theory.

Recurrent neural networks (RNNs), that utilise deep learning, with more complex and
layered neuron structures, have established a mechanism through which temporal relation-
ships can be captured in connectionist weight matrices [10]. Therefore, they are especially
relevant in time series forecasting. Hochreiter and Schmidhuber [11] proposed using long
short-term memory units (LSTMs) which significantly reduce exploding and vanishing
gradients that can be observed with conventional RNNs [12]. This issue involves individual
neuron weights becoming either too large or tending to zero, significantly reducing the abil-
ity of a neural network to generalise data. The excellent ability of LSTM-based architectures
to be selective and capture long-term dependencies has been demonstrated in hourly load,
solar power and wind speed forecasting [13–15]. The choice to utilise LSTM architectures
in this research was driven by their proven capacity for fast real-time forecasting ability.
Their inherent capability to process sequential information and make predictions with
minimal latency, using gating mechanisms and the ability to capture long-term temporal
dependencies, aligns with the operational demands of real-time energy forecasting.

Many studies on short-term energy forecasting have achieved excellent results, al-
though they did not utilise exogenous variables that could have improved forecast accuracy
and generalisability even further. An exogenous variable is a time series that runs over the
same time frame as the series being forecast, but its future values are not predicted. Rather,
it is fed into the neural network alongside the variable being forecast in the hope of allowing
the network to make more accurate predictions, adjusting its weight matrices in a more
optimum way. As climate change continues to make weather patterns less predictable, data
outliers will make time series forecasting more difficult [16]. This increases the need to
actively record and utilise weather variables to enable more accurate predictions.

Another interesting extension of work that focuses purely on the neural network itself
is the implementation of LSTM models that utilise seasonal decomposition for energy-
related forecasting [17]. Seasonal decomposition divides a time series into its constituent
components, which are usually: seasonal (recurring fluctuations), trend (overall directional
changes or shifts in data magnitude), and residual (the noise not accounted for by the
other components). This is indeed a highly promising area of research, with excellent
generalisability and accuracy being reported, which strengthened our position to use
LSTMs and conduct additional experimentation with seasonally decomposed components
as exogenous variables. Ref. [17] note that anomalous weather conditions can cause
degradation of forecasting accuracy, which further affirms our conviction to consider
solutions that involve these variables explicitly in model training and weight updates, as
exogenous variables.

Some recent progress has been realised, but comprehensive analysis of weather vari-
able impact has not matured as a field. It has been shown that load and temperature corre-
late strongly and that inputting temperature as an exogenous variable provides improved



Energies 2024, 17, 1827 3 of 23

accuracies [18,19]. This is due in part to the use of temperature-controlling appliances such
as air conditioning units and heaters, which increase load at more extreme temperatures.
Our expanded suite of exogenous variables builds on this work. Distinctions between
‘cloudy’ and ‘sunny’ have been made by Lim et al. [18] for solar power generation, and
whilst cloud cover is certainly a useful exogenous variable in this instance, research by
Wojtkiewicz et al. [20] has suggested that a greater range of variables could have improved
accuracies further. One-hour-ahead forecast errors were significantly reduced for solar
irradiance when variables such as temperature and humidity were introduced in this study,
even independently of cloud cover. This strengthened the case for investigating the impact
of these variables on solar power generation. Using temperature, humidity, air pressure
and other meteorological exogenous variables for one-hour-ahead wind speed forecasting
has shown very promising results compared to using wind speed in isolation [21]. This
study also used an LSTM architecture, giving clear motivation for investigating how these
variables influenced wind power generation forecasting.

Understanding the impact of a greater range of exogenous weather variables (tem-
perature, pressure, humidity, wind speed, rainfall in the last hour and cloud cover) on the
target variables: load, solar generation and wind generation forecasting would be highly
beneficial to the field, as the suite of exogenous variables used can have as much effect on
forecast accuracy as the model or algorithms used themselves.

This paper aims to demonstrate that additional data collection and the use of exoge-
nous variables are critical in accurate energy-related forecasting. Due to the current state of
the literature described, there is still a need for a thorough exploration of the effect of these
variables, specifically in energy-related time series forecasting. We have demonstrated
that exogenous weather variable use can improve accuracy metrics by up to 30%, which
provides clear justification for research in this area. This improved performance can assist
in energy management to provide improved forecasts, more informed energy bidding and
more efficient generation. Local authorities could also use greater forecasting accuracy to
meet energy targets. It is hoped that other researchers may also benefit if our methods are
combined with their own novel improvements. Contributions are summarised as follows:

1. Our results have shown that weather data, used as exogenous variables within
an LSTM framework, can have a significant positive impact on forecast accuracy
for electricity load, solar and wind generation. It has been shown that careful
consideration of a range of such variables is crucial for successful energy-related
forecasting operations.

2. Development of a framework for LSTM hyperparameter tuning for energy-related
forecasting.

3. Novel use of the seasonal component of a time series as a separate exogenous variable
has been demonstrated to have potential utility as a possible LSTM training aid, as
this improved accuracy metrics by a substantial margin.

The remainder of the paper is organised as follows. In Section 2, the proposed method-
ological framework is developed. The results of the LSTM hyperparameter and model
architecture optimisation are given in Section 3. Section 4 provides results for exogenous
weather variable analysis, giving evidence of the associated positive impact on forecast ac-
curacy. Section 5 presents results on using the seasonal component of a decomposed target
time series as an exogenous variable for that target series itself. Overall, the results demon-
strated increases forecast accuracies as a result of utilising exogenous variables, tuning
hyperparameters and altering model design. Section 6 closes with the final conclusions.

2. Proposed Methodology

In this section, we describe the datasets used, data preprocessing, the data flow, LSTM
architectures used, the seasonal decomposition process, evaluation metrics and initial
hyperparameter optimisation.
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2.1. Input Data

The dataset used contains hourly data, from 1 January 2015 00:00:00 to 31 Decem-
ber 2018 23:00:00, for energy generation, load and price, including separate fields for the
different types of energy generation, for example, gas, coal, nuclear and renewable gen-
eration [22]. This file also contains forecasts for energy consumption and pricing. The
forecasts are obtained from ENTSO-E, a public portal for transmission service operators
(TSOs) data [23]. Since ENTSO-E facilitates the exchange and collection of data between
TSOs, which record their data according to various compliances, the data collection process
is deemed reliable. Whilst market factors may have influenced data reported by TSOs, it is
not believed that this would have a significant impact on data integrity. An inescapable
level of bias is present in the data collected since it does not account for rurally populated
areas of Spain, although this omission provides greater evidence of the robustness of our
model. Further work with a greater range of data collection points would be expected to
improve forecast accuracies even further.

Hourly weather data over the same time period, for five different cities; Valencia,
Madrid, Bilbao, Barcelona and Seville were also used [24]. These cities provide a reasonable
cross-section of weather conditions across the major population centres of the country. The
weather data contained the variables: temperature, pressure, humidity, wind speed, rainfall
in the last hour and cloud cover. Weather data were aggregated for the five cities, based on
their population size, since it is reasonable to assert that weather conditions in Madrid, for
example, would have a greater influence on national electrical load figures. The weightings
were: Valencia—0.2, Madrid—0.3, Bilbao—0.1, Barcelona—0.3 and Seville—0.1. Changing
these weightings for further research would be facile and the allocation of weights is
not likely to have impacted the results significantly. Studies have been carried out in
order to find the optimum weighting of weather conditions from different geographical
locations [25]; however, this was not a primary concern of this work.

The proposed framework was used to forecast the load, solar generation and onshore
wind generation, i.e., these are our target variables. Exogenous weather variables studied
were: temperature, rainfall in the last hour, humidity, cloud cover and wind speed. Boxplots
of all target and exogenous variables are given in Appendix A Figure A1.

During data preprocessing, columns were checked for duplicates and null values.
These constituted less than 0.1% of values and were filled using linear interpolation, where
missing values were averaged between surrounding values. Since four years of data were
available, the data were split with a train:validation:test ratio of 2:1:1. This split was
carried out chronologically, with the first two years for training, the next year for validation,
and the final year for testing. By using this split, it was ensured that data leakage was
avoided as each model would only have access to the test data after completing training on
entirely different (train and validation) datasets. The training dataset was used to optimise
the model and the validation dataset was used to evaluate the accuracy and check for
overfitting during training. Data was normalised so that all variables had equal initial
weighting within the LSTM model. As part of the data preprocessing process, it was
ensured that all variable timestamps were aligned. The flow of data is shown below in
Figure 1.

The associated code for our research can be accessed at: https://github.com/tom-
shering/INM363_IP (accessed on 23 January 2024). This may also provide other researchers
with source code that can be used to cross-validate hyperparameters and variables for time
series forecasting with neural networks.

https://github.com/tom-shering/INM363_IP
https://github.com/tom-shering/INM363_IP
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2.2. LSTM Basics

LSTM blocks [11] (Figure 2) work by utilising three gates, which control the flow of
information from the memory cell, in the form of vectors, and each new input, to provide
an output, which in our research was a single predicted value for the next data point of
the target variable. The target and exogenous variables from each timestep were used to
forecast the target variable value in the next timestep. No future timesteps were accessed
by the model before they were forecast. The memory cell allows LSTM blocks to capture
long-term dependencies between data points in a time series, whilst also allowing incoming
information to influence output. The ability to comprehend all previous data, whilst also
deciding which information to retain, and which to forget, made LSTM architectures
appropriate for our research, where significant noise in variables such as wind generation
may not always assist the model in forecasting future values.

In Figure 2, Mt−1 represents the memory cell, a vector, at the previous time point; Mt
represents the updated memory cell; ht−1 represents the previous hidden state; and ht
represents the updated hidden state, which was passed to the next LSTM block, if available
(bottom right ht) or passed as an output to a decoder (top ht). By feeding exogenous
variables into this architecture, the hidden state was able to capture features of this data
and use it to more accurately forecast target variables. Xt represents the data input at time
t, which in our case was the next value in the time series being processed. Blue + signs
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indicate an additive combination of data. Sig. refers to the sigmoid function (Equation (1))
and tanh refers to the hyperbolic tangent function (Equation (2)).

σ(x) =
1

1 + e−x (1)

tanh(x) =
ex − e−x

ex + e−x (2)
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The three gates of the LSTM block, forget, input and output, are denoted in grey circles
as f, i and o, respectively, in Figure 2. Each gate involves a multiplicative operation that
determines the extent to which incoming data is utilised downstream. This allows the
model to take into account strong seasonal trends in variables such as solar generation
and temperature, and any less obvious trends, without overfitting irrelevant data that
naturally occurs in energy-related and environmental time series. Multiplication by 0
would represent a ‘closed’ gate, whereas a value of 1 would retain the full weighting of
all information passed through. The forget gate determined which information from the
previous hidden state should be erased. The input gate determined which information
should be added to the current state, with the sigmoid function (Equation (1)) resolving
which values to update and the tanh function (Equation (2)) creating a vector that is used
as a temporary memory state. The sigmoid-filtered input information and the updated
memory state were then combined at the output gate, which updated the hidden state.

The four biases shown in Figure 2 add to different data flows, in order to increase the
level of customisability of an LSTM block. The bf bias was added to the linear transforma-
tion at the forget gate, with a higher value resulting in less information being forgotten.
The input gate bias, bi, determined how much new information was added to the cell state;
the cell state bias, bc, influenced the weightings of candidate values being added to the
temporary cell state, and the output bias, bo, determined the extent to which the cell state
should be added to the hidden state.

2.3. Proposed LSTM Architectures and Initialisation

Two models, one more complex than the other, were used. This accounted for the
possibility that either simple models that do not over-extrapolate, or more complex mod-
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els that can capture a greater depth of relationship between data points, could perform
more successfully.

In order to test the impact of exogenous variables without adding unnecessary com-
plexity, we used the model given in Figure 3, which we refer to as Model 1. Testing
hyperparameters and increasing the number of layers in LSTM architectures at the same
time was found to often dramatically reduce performance.
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Figure 3. LSTM model 1.

The output from the LSTM block was passed through a linear neuron layer where
some neurons are deactivated based on a dropout probability (see Section 3). The output
from this layer was then passed through a decoder which converts the numerical output of
the dropout layer into a predicted value for the next value of the target variable.

In order to develop the more complex model that captures hierarchical features, which
we refer to as Model 2, we added more LSTM blocks. In this model, shown in Figure 4, data
flowed through three LSTM blocks sequentially, going through a linear dropout layer after
each block for regularisation. A decoder then converted the final output into a prediction
for the next value in the target time series. This allowed later blocks to capitalise on short-
term features apprehended by the earlier ones. Stacked LSTM models like this have been
shown to perform well at capturing complex data series [26,27]. Therefore, the LSTM model
shown in Figure 4 was used to establish whether a deeper model could provide greater
accuracy and generalisation. Since a variety of exogenous weather variables were used,
it was postulated that further neuron layers could capture a greater level of relationship
between these and the target variables like load.
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Xavier weight initialisation (Equation (3)) was used as it has been reported as working
well in similar applications by maintaining magnitudes of outputs in both directions [28].
A random value selected from a normal distribution, U[a,b], with a lower bound of ‘a’ and
an upper bound of ‘b’ was selected for each weight, where n represents the number of
connections feeding into each neuron.

weight = U
[
− 1√

n
,

1√
n

]
(3)



Energies 2024, 17, 1827 8 of 23

2.4. Seasonal Decomposition

Time series were seasonally decomposed using the ‘seasonal_decompose’ function,
from the ‘statsmodel’ library [29]. The seasonal component of this decomposition gave
a smooth, regularly fluctuating time series without noise, for each of the three target vari-
ables. Essentially, a new time series for each target variable was created, that corresponded
to the original in timesteps, but the values of which only contained the seasonal component.
These seasonal components were then fed into the Model 1 architecture (Figure 3) alongside
the target variable, in order to assist in model training.

2.5. Evaluation Metrics

Test loss provided a quantitative evaluation of the difference between forecast and
true values, using the unseen test data, and Mean Square Error Loss (MSE) was used as
the loss function (Equation (4)). The mean average was computed for the set of squared
differences between actual, yi, and predicted values, ŷi, for all data points used, the number
of which is given by N.

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (4)

Mean Average Scaled Error (MASE) and forecast bias were also used as evaluation
metrics. Forecast bias reflects whether a model over- or under-predicts in an unbalanced
fashion. This was useful to determine if the direction of predictions was skewed and was
important to include as this information was not captured by other metrics. A value close
to zero indicates a low bias.

MASE =
1
N ∑N

i=1|yi − ŷi|
1

N−1 ∑N
i=2|yi − yi−1|

(5)

MASE [30] (Equation (5)), is calculated as the mean absolute error of forecast values,
over the naïve forecast (each prediction taken as the previous value), excluding the first
value (hence i = 2), since there is nothing to compare this with. The absolute error is com-
puted by taking the absolute difference between the real and forecast values (numerator)
and the real value and previous values (denominator). N represents the total number of
data points in the time series; yi represents the true value of the data point, ŷi represents
the forecast value of the data point based on the model being tested, and yi−1 represents
the value of the previous data point.

MASE was used as it gives good interpretability and compares the success of the
model relative to fluctuations in the data itself. A value of 1 indicates that the model
performs as well as a naïve forecast, and as the value tends to 0, the relative advantage of
the model accuracy increases.

2.6. Initial Hyperparameter Optimisation

A selection of hyperparameters was initially optimised as follows. The given hyperpa-
rameter values were subsequently used for all experiments. These were not cross-validated
as a full model optimisation, with every possible combination tested, because it was beyond
the scope of the research.

− Optimiser weight decay = 1 × 10−6. This penalises large weights (the strength of the
signal that a neuron will pass on to the next neuron in the network) in the neural
network to avoid overfitting (when a model is unable to generalise to unseen data
because it has fitted too closely the training data).

− Batch size = 48. The number of data values in the time series processed before the
model updates neuron weights in training. A lower value could potentially give more
accurate predictions but the computational demand would increase. Furthermore,
a lower value can make the model more ‘short-sighted’ to daily fluctuations, hence
why a two-day period (48 h) was chosen.
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− The number of layers within an LSTM block = 2. Two layers within the LSTM block
allow the block to capture more dependencies between data points compared to one
layer. More layers led to a decrease in accuracy as the model likely overfitted.

− A total of 200 epochs, the number of complete passes through all training data, during
the training process, were used as this comfortably allowed convergence for training
and validation loss. Therefore, discrepancies between training forecasts and the true
values did not decrease further in a significant way after 200 passes.

3. Hyperparameter Cross-Validation and Model Evaluation

In this section, we provide the results from experimentation with different architectures
and hyperparameter combinations. All exogenous weather variables stated in Section 2.1
were used in this phase, alongside the target variables.

The four hyperparameters trialled to optimise LSTM performance were as follows:

− Hidden dimension size refers to the number of neuron units inside the hidden layer
of an LSTM unit. Hidden dimension size adjustment was important to test because it
helps to strike a balance between capturing enough information and not overfitting.

− Learning rate, which affects how quickly neuron weights are updated during training,
was selected as a key hyperparameter since the step size with which weights are
updated is fundamental to convergence speed and accuracy, giving it a significant
impact on performance. An optimal learning rate will provide a smooth progression
towards the minimum test loss.

− Dropout, the probability of a neuron in the dropout layer being deactivated temporar-
ily during model training, is an easily implementable regularisation technique. It
allows the model to better generalise by not relying heavily on any individual neuron
and its associated connections. A dropout probability of 0.5, for example, would mean
that 50% of neurons would be likely to be temporarily deactivated, forcing the model
to function with the remaining 50%.

− We experimented with three different optimisers: Adam, Root Mean Square Propaga-
tion (RMSProp) and Stochastic Gradient Descent (SGD), which are all commonly used
algorithms that determine exactly how weights are updated during training. Opti-
miser functions can have a significant impact on model performance and convergence
and depend greatly on other variables. As an example, the learning rate is a pivotal
determinant of success for models using an SGD optimiser. Therefore, we thought it
important to trial all possible hyperparameter combinations for each experiment.

The Adam optimiser is computationally efficient and utilises dynamic learning rate
adjustment for different parameters depending on their utility. It has been used extensively
by researchers in deep learning applications [31]. The Adam optimiser weight update
procedure (Equation (6)) utilises two moving averages for every weight in the neural
network; the first moment, m̂t, gives a smoothed estimate of the gradient, or direction of
weight change, and the second moment, v̂t, gives a smoothed estimate of the magnitude of
this gradient and is used with an exponent of 0.5 since it is a squared value. This allows vt to
capture the extent of gradient change independently of gradient direction. The mechanism
through which the learning rate, α, affects weight update speed can be observed here, as a
higher α would result in larger update magnitudes. This learning rate in itself is one of
the hyperparameters that were tested through cross-validation, as described. A very small
value, such as ε = 1 × 10−8, is added to the denominator to avoid division by zero. The
overall update quotient is subtracted from the original weight, wt, to give the new weight,
wt+1.

wt+1 = wt −
α · m̂t√
v̂t + ϵ

(6)

The weight updating process is almost the same for RMSProp [32] (Equation (7)) as for
Adam, which was partially developed from the former. Whereas Adam utilises a moving
average of the gradients, RMSProp uses the current gradient, dw, directly. RMSProp also
uses the learning rate, α, the moving average of squared gradients, vdw, and a small scalar
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value, ε, to update the current weight, wt, to give a new weight, wt+1. Success has been
shown with RMSProp in time series forecasting [33]. Furthermore, RMSProp is affected
more strongly by the weight change gradient compared to Adam, which introduces a
notable point of difference for testing different variations of the optimiser algorithm.

wt+1 = wt −
α · dw√
vdw + ϵ

(7)

SGD weight updates (Equation (8)) operate under a simpler mechanism than the
aforementioned optimiser algorithms and subtract the product of the learning rate, α,
and the gradient, gt, from the current weight, wt, to give a new weight, wt+1. We used
mini-batch SGD, which uses a small batch of consecutive data points, selected randomly, to
calculate the gradient, gt. This can aid the model to avoid local minima, which are optimum
weight values compared to nearby values but not the most optimal overall. SGD is simple
and efficient, and has been used by researchers copiously since its introduction [34].

wt+1 = wt − α · gt (8)

The intricate relationships between these hyperparameters meant that testing every
possible combination was vital to maximising the forecasting accuracy and reliability of
our LSTM models. Therefore, cross-validation was used to examine four hyperparameters,
in every possible configuration, as given below, giving a total of 34 = 81 experiments for
each model (Table 1).

Table 1. Variations tested for each cross-validated hyperparameter.

Hyperparameter Variation 1 Variation 2 Variation 3

Hidden Layer Dimension 100 200 400
Learning Rate 1.0 × 10−3 1.0 × 10−4 1.0 × 10−5

Dropout Probability 0.2 0.5 0.8
Optimiser Algorithm Adam RMSProp SGD

This section of work focussed on finding good forecasting methods for load, solar
generation and wind generation, in terms of both hyperparameter combination and LSTM
design and architecture. All five exogenous variables given in Section 2.1 were used during
these experiments. This meant that the LSTM neural network had six input dimensions
(one endogenous target variable and five exogenous weather variables), for the work given
in Section 3, and variable dimensions for other experiments. For every LSTM model and
hyperparameter combination, load, solar generation and wind generation were all forecast.

The following models were trialled for each hyperparameter cross-validation and
target variable forecasting:

− Model 1 (Model 1);
− Model 1 + bidirectional LSTM (Model 1, bi);
− Model 1 + gradient clipping (Model 1, gc);
− Model 1 + bidirectional LSTM + gradient clipping (Model 1, bi, gc);
− Model 1 + gradient clipping + 4 LSTM block layers (Model 1, gc, nl4);
− Model 2 (Model 2);
− Model 2 + bidirectional LSTM (Model 2, bi);
− Model 2 + gradient clipping (Model 2, gc);

Bidirectional LSTMs allow data from the past and present to be analysed, by training
the model in the backward direction as well as the forward, allowing more context to be
captured for predictions [35]. Good results have been observed for comparable one-hour-
ahead wind power forecasting using bidirectional LSTMs [36], as the effect of propagated
errors is reduced with this additional functionality. Gradient norm clipping with a cap of
|1| for gradients was used, as this technique has been shown to reduce negative impacts
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from exploding gradients [37]. Although the number of layers within the LSTM block was
found to be optimum with the number of layers = 2, it was believed that with gradient
clipping, the increased number of layers may be more likely to have a positive impact due
to avoiding exploding gradients that can hamper larger architectures, and so four layers
were used in some models. Our results show significant differences in accuracy between
architectures (Figure 5).

For load forecasting, the Model 2 architecture with bidirectional functionality and
an RMSProp optimiser gave the lowest MASE of 0.44 (Figure 5). Adding complexity,
whether in the number of layers within an LSTM block, or the number of blocks themselves,
decreased test loss and MASE, albeit with an increase in forecast bias. A greater diversity
of possible pathways through the neural network likely allowed multiple ‘perspectives’
to be used for predictions, and allowed for greater comprehension, in terms of the weight
matrices, of the data features. This includes more abstract data features that are only
available at higher levels of representation [38].

For solar and wind generation forecasting, the simpler Model 1 architecture (Figure 3)
yielded lower MASE of 0.38 and 0.84, respectively (Figure 5). This could be due to the
model overfitting the data, especially for less predictable wind fluctuations. Deeper models
can be difficult to train and the Model 2 architecture (Figure 4) may require larger amounts
of data to provide better accuracies.

Whilst learning rates of 1 × 10−3 and 1 × 10−4 gave lower test losses and MASE
values (Appendix A Table A1), it is noted that if training on a larger dataset, lower learning
rates may improve post-training weight matrices. Whilst dropout proportions of 0.8 were
tested, these did not capture sufficient information to benefit models. The non-adaptive
SGD optimiser was also not able to outperform adaptive optimisers that can negotiate the
gradient landscape better.

Forecast biases were small compared to the large values in the dataset, which is
promising. Care should be taken to consider these though, as they could have ramifications
for energy management. For example, underestimating load through a negative forecast
bias could lead to power shortages.
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4. Exogenous Variable Analysis

In this section we study the impact of individual exogenous variables, as well as
the effect of using no exogenous variables at all, to demonstrate the improvement in
accuracy metrics that these additional variables provide. In the foundational work set
out in Section 3, all five exogenous variables were used. However, it is important to
understand how these variables impact the forecasting of load, solar generation and wind
generation independently. It is possible that some variables may add unnecessary noise
without contributing to effective learning, whereas others may provide crucial cues for the
neural network.
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In the next stage of our investigation, hyperparameter combinations were still tested
through cross-validation; however, the SGD optimiser function, a learning rate of 1 × 10−5,
and a dropout rate of 0.8 was discontinued due to consistently low performance.

Model 1 was used, with no additional design features, to provide greater interpretabil-
ity of results and fewer contributing factors to dilute result findings. Using Model 1 also
meant less risk of more complex models conflating irrelevant patterns with important ones
and incorporating these into weight matrices.

As can be seen in Figure 6, all individual exogenous variables improved the MASE for
load forecasting, although when used as a full suite, this slightly degraded performance,
which could be attributed to conflicting residual components between the time series, or
simply a greater level of complexity. Adding temperature, in isolation, had a significant
impact. Many temperature control appliances have high power consumption, so this
is understandable.
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Rain and temperature, when used as single additional exogenous variables, signifi-
cantly decreased the MASE and test loss for solar generation (see Figure 7). It was surprising
that cloud cover did not reduce the MASE and test loss by a greater amount. It has been
shown that on cloudy days, solar generation forecasting typically decreases in accuracy,
and so despite having a large impact on generation, it is possible that noise from clouds is
difficult to correlate with solar generation fluctuations for the LSTM [39].

None of the individual exogenous variable combinations improved accuracy metrics
for wind power generation against the experiments detailed in Section 3. Wind speed in
isolation as an exogenous variable, or all-weather variables together, did produce lower
MASE values compared to forecasting wind generation as a target variable with no exoge-
nous variables, which is expected as wind speed correlates very strongly to wind power
generation. Wind power generation proved the most challenging to forecast, and it is
suggested that this is due to the weaker seasonal and cyclic components of this variable.

Overall, significant improvements were observed for several independent or combined
weather variables being added to the LSTM as exogenous variables.

The main highlights from this section of work, with comparisons being made against
the target variable being forecast in isolation, are as follows:

• ~10% reduction in MASE and a ~14% decrease in test loss when load was forecast with
an exogenous temperature variable (Appendix A Table A2).

• ~15% and ~12% reductions in MASE, ~30% and ~33% reduction in test loss, for
solar generation forecasting when paired with rainfall and temperature, respectively
(Appendix A Table A2).

• ~12% reductions in MASE, ~6% and ~9% reductions in test loss, for wind generation
combined with wind speed and all five variables, respectively (Appendix A Table A2).
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Figure 7. Forecast (orange) vs. true (blue) solar generation values, using the Model 1 LSTM and
rainfall as a single exogenous variable, over a 1000 h period, which was randomly sampled from the
test dataset, of length = 8760.

While it may seem obvious that a variable like wind speed would have an impact
on wind generation, for example, the important finding here is that the history of past
wind speeds, and the temporal patterns provided by this data in combination with past
wind generation amounts, provides additional context, less susceptible to outliers, to give
a greater level of forecasting accuracy than the wind generation itself. This same logic
applies to all other experiments in this section. It is suggested that by allowing the LSTM
to process weather conditions, within the hidden state, this increased context allowed more
accurate load or generation forecasting. Figure 7 illustrates, as an example, the efficacy of
our forecasting model.

5. Seasonal Decomposition as a Source of Exogenous LSTM Input

In this section, we present the results of our investigation using seasonally decomposed
components as exogenous variables.

Seasonal decomposition is an attractive forecasting tool for energy-related series. This
is because these data often show strong annual and daily cycles. It also includes subtle,
long-term linear trends. Seasonal decomposition methods often work well as part of an
ensemble, as they may not be able to forecast noise as effectively as other techniques. This
has been shown to be effective with load forecasting [40].

Target time series were decomposed, and the seasonal component was then used as an
exogenous variable for the LSTM, giving two inputs: the normalised target variable and the
normalised seasonal component of that target variable. We did not use any data from the
test dataset when training the model and the model was trained using the corresponding
seasonal component of the training dataset only. The results of these experiments (Figure 8)
were compared against the corresponding results for the target variable being forecast in
isolation with no exogenous variables.
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Figure 8. Forecasting each target variable without (grey) and with (blue) its seasonal component
used as an exogenous variable. MASE values (y-axis) for optimum hyperparameter combinations are
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and forecast bias values.

Comparisons against the target variable being forecast in isolation, for the target
variables forecast with their seasonal component as an exogenous variable are as follows
(see Appendix A Table A3):

• ~19% reduction in MASE and ~29% reduction in test loss for load forecasting.
• ~12% reduction in MASE and ~19% reduction in test loss for solar generation forecast-

ing.
• ~8% reduction in MASE and test loss for wind generation forecasting.
• ~12% reduction in MASE and a ~31% reduction in test loss for solar generation forecast

with the seasonal component and temperature, all normalised.

The results from these experiments indicate that using a seasonal component of a time
series alongside the target variable improves results dramatically. These improvements
are not wholly surprising, since capturing the seasonal component of a time series would
account for the greatest proportion of its absolute value.

Caution should be exercised when evaluating these findings though, since this method
is essentially feeding a component of the time series into itself again. On the other hand,
this method might find more niche applications in training neural networks on energy time
series data, almost like ‘training wheels’ on a bike, perhaps during only a subset of early
epochs. By using the seasonal component as an exogenous variable, it was hoped that this
reinforcement would guide gradient descent closer to the global minimum. Since uniformly
significant reductions in MASE and test loss were observed in all such experiments, it
is proposed that in this regard, the combination of seasonal decomposition and neural
network application was a success.

6. Conclusions

In this paper, we developed a framework for forecasting load, solar and wind gener-
ation using LSTM and five weather variables, i.e., temperature, rainfall, humidity, cloud
cover and wind speed. As part of the framework, we proposed a methodology for tuning
the LSTM design and hyperparameter optimisation. Adaptive optimiser functions (Adam,
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RMSProp) have been shown to be more effective at dealing with complex time series
compared to the non-adaptive SGD function. The importance of exogenous variable selec-
tion has been clearly highlighted within a time series forecasting landscape that perhaps
does not fully take advantage of such considerations. The temperature has been found
to have a significant impact on load; temperature and rainfall have been found to have
a significant impact on solar generation; and temperature and wind speed have been found
to have a significant impact on wind generation forecasting. It is proposed that the set
of temperature, rainfall, wind speed, humidity and cloud cover offer a promising suite
of exogenous variables that deserve further research. The use of seasonal components as
exogenous variables also yielded promising results, with reductions in MASE observed for
all three target variables.

The adoption of a three-block LSTM configuration with bidirectional functionality, as
opposed to a single block, reduced MASE by 24% for load forecasting. Using temperature
as an exogenous variable, as opposed to using the target variable in isolation for load
forecasting, decreased the MASE by 10%. Whilst not directly comparable to the TSO
forecasts, which were 24-h-ahead, our solar generation forecasts improved solar generation
forecasts from this company by up to 22%. The use of exogenous weather variables to
improve accuracy for solar generation decreased MSE test loss by up to 33% and MASE by
approximately 15%. The use of the seasonal component as an exogenous variable reduced
MASE for load, solar generation and wind generation by 19%, 12% and 8%, respectively.
These improvements represent a lower average error margin and forecasts that are closer
to the true values, which could provide several benefits to energy management operators
and researchers.

Further work on extending the future time period through which the model can fore-
cast, for example, a 24-h-ahead model, in one-hour increments, would be beneficial. Whilst
this is not within the primary scope of our research, it would lessen this current constraint.

It is recommended that further research is conducted on the subject of data generation
processes surrounding weather data, for use in energy-related time series forecasting.
The collection of regularly recorded, hourly data on a range of weather metrics in each
country, and the corresponding public access to this, could significantly improve time series
forecasting outcomes. The study of the impact of other environmental variables such as
solar zenith angle and air pressure would also add value to our research.

Furthermore, research into solely forecasting the residual component of a seasonally
decomposed target variable, such as load, solar or wind generation, and then combining this
forecast with algorithmically predicted seasonal and trend components, could yield even
higher accuracies, since neural networks like LSTMs excel at deciphering more complex
temporal patterns. Ding et al. [17] have shown that combining data decomposition and
LSTMs provides excellent generalisability of data, allowing accurate predictions. This
approach, combined with an explorative incorporation of exogenous weather variables,
could improve such models further.

It is suggested that the findings in this report provide indications that the techniques
investigated have the potential to significantly improve time series forecasting models
within this area of research. If certain findings in this report, such as the use of specific
exogenous variables with target variables, or using seasonal components as exogenous
variables, could be combined with refined LSTM models produced by other researchers,
the results could provide significant benefit to the research community and also the further
adoption of renewable energy in the world.
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Appendix A

Table A1. The best-performing hyperparameter suites for each model design, for each target variable.
Abbreviations or alternative nomenclature used: hd = number of units in the hidden dimension,
lr = learning rate, drop. = LSTM dropout probability, opt. = optimiser algorithm, test_loss = test
loss, mase = MASE, bias = forecast bias, 7.1 × 10−4 = 7.1 × 10−4 (for example), bi = bidirectional,
gc = gradient clipped, nl4 = number of layers in LSTM blocks increased from 2 to 4.

Target Variable: Load hd lr (10−3) Drop. Opt. Test Loss (10−3) MASE Bias (10−3)

Model 1 100 1 0.2 Adam 1.3 0.58 −0.75
Model 1, bi 100 1 0.2 RMSProp 1.0 0.5 −6.6
Model 1, gc 200 1 0.2 Adam 0.86 0.46 1.0
Model 1, bi, gc 100 1 0.5 Adam 1.2 0.53 −7.6
Model 1, gc, nl4 400 0.1 0.2 RMSProp 1.1 0.51 −3.5
Model 2 400 0.1 0.2 Adam 0.93 0.47 −1.3
Model 2, bi 200 1 0.2 Adam 0.84 0.44 −7.2
Model 2, gc 100 0.1 0.5 Adam 0.90 0.48 3.1
Target Variable: Solar Generation hd lr (10−3) drop. opt. Test loss (10−3) MASE bias (10−3)
Model 1 100 1 0.2 Adam 0.96 0.38 −1.8
Model 1, bi 400 0.1 0.2 RMSProp 1.0 0.44 −7.9
Model 1, gc 100 1 0.5 Adam 0.99 0.39 −2.6
Model 1, bi, gc 100 1 0.5 RMSProp 1.0 0.44 −12
Model 1, gc, nl4 200 0.1 0.2 RMSProp 0.96 0.4 −8.0
Model 2 400 0.1 0.2 Adam 0.84 0.39 7.1
Model 2, bi 100 0.1 0.2 RMSProp 1.4 0.49 −1.6
Model 2, gc 400 0.1 0.2 Adam 0.86 0.43 13
Target Variable: Wind Generation hd lr (10−3) Drop. Opt. Test Loss (10−3) MASE Bias (10−3)
Model 1 200 1 0.2 Adam 1.2 0.84 −0.47
Model 1, bi 200 0.1 0.8 RMSProp 1.3 0.95 0.55
Model 1, gc 400 0.01 0.5 Adam 1.3 0.96 0.051
Model 1, bi, gc 200 0.1 0.8 RMSProp 1.3 0.95 1.1
Model 1, gc, nl4 200 0.1 0.5 RMSProp 1.3 0.91 −1.5
Model 2 400 0.1 0.2 RMSProp 1.3 0.88 −1.7
Model 2, bi 100 0.1 0.2 RMSProp 1.3 1.03 −2.9
Model 2, gc 200 0.1 0.2 RMSProp 1.3 0.87 −0.20

Table A2. Different exogenous variable combinations, for all target variables, with corresponding
hyperparameters for the experiment with best MASE. For rows denoted with a ‘*’ symbol, the second
lowest MASE was chosen due to instability in validation loss over epochs for the hyperparameter
combination with the lowest MASE.

Target Variable: Load hd lr (10−3) Drop. Opt. Test Loss (10−3) MASE Bias (10−3)

Target only 200 1 0.5 RMSProp 1.2 0.57 2.8
Target and temperature 200 1 0.2 Adam 1.1 0.51 −0.55
Target and rainfall in last hour 200 1 0.2 RMSProp 1.2 0.55 −7.6
Target and humidity 200 1 0.2 RMSProp 1.2 0.54 −3.5
Target and cloud cover 200 1 0.5 RMSProp 1.2 0.54 −8.1
Target and wind speed 400 1 0.2 RMSProp 1.1 0.53 −7.0
Target and all exogenous variables 100 1 0.2 Adam 1.3 0.58 0.75
Target Variable: Solar Generation hd lr (10−3) Drop. Opt. Test Loss (10−3) MASE Bias (10−3)
Target only 400 1.0 0.5 RMSProp 1.2 0.41 −13
Target and temperature 100 1.0 0.2 Adam 0.80 0.36 1.9
Target and rainfall in last hour 200 0.10 0.2 Adam 0.89 0.35 1.7
Target and humidity 100 1.0 0.2 RMSProp 1.1 0.39 −13
Target and cloud cover 100 1.0 0.2 RMSProp 1.2 0.40 −14
Target and wind speed * 100 1.0 0.5 RMSProp 1.3 0.47 −12
Target and all exogenous variables 100 1.0 0.2 Adam 0.96 0.38 −1.8
Target and all exogenous variables
apart from wind 100 1.0 0.2 Adam 0.99 0.39 −4.9

Target with temperature and rainfall 100 1.0 0.2 Adam 0.93 0.38 −2.4
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Table A2. Cont.

Target Variable: Wind Generation hd lr (10−3) Drop. Opt. Test Loss (10−3) MASE Bias (10−3)

Target only 100 1 0.2 Adam 1.3 0.95 −7.7
Target and temperature 100 1 0.5 Adam 1.2 0.87 2.4
Target and rainfall in last hour 100 1 0.5 RMSProp 1.3 0.91 −5.9
Target and humidity * 200 1 0.2 Adam 1.3 0.96 −5.8
Target and cloud cover 200 1 0.2 RMSProp 1.4 0.97 −9.3
Target and wind speed 100 1 0.2 Adam 1.2 0.84 −4.3
Target and all exogenous variables 200 1 0.2 Adam 1.2 0.84 −0.47

Table A3. Experiments with the lowest MASE, using the seasonal component of the target variable as
an exogenous variable for the LSTM.

Input Variables hd lr (10−3) Drop. opt. Test loss (10−3) MASE Bias (10−3)

Load only 200 1 0.5 RMSProp 1.2 0.57 2.8
Load and seasonal component 200 1 0.2 Adam 0.85 0.46 7.2
Solar only 400 1 0.5 RMSProp 1.2 0.41 −13
Solar and seasonal component 200 0.1 0.2 Adam 0.97 0.36 0.12
Wind only 100 1 0.2 Adam 1.3 0.95 −7.7
Wind and seasonal component 100 1 0.2 Adam 1.2 0.87 −6.5
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Figure A1. Boxplot graphs showing the distribution of the three target variables; load, solar gener-
ation (generation solar) and wind generation (wind onshore), and the 5 exogenous weather varia-
bles used; temperature (avg_temp), humidity (avg_humidity), wind speed (avg_wind_speed), 

Figure A1. Boxplot graphs showing the distribution of the three target variables; load, solar generation
(generation solar) and wind generation (wind onshore), and the 5 exogenous weather variables used;
temperature (avg_temp), humidity (avg_humidity), wind speed (avg_wind_speed), rainfall in the
last hour (avg_rain_1 h) and cloud cover (avg_clouds_all). Black diamonds represent outliers.
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