Thermal Studies of Lithium-Ion Cells: Ensuring Safe and Efficient Energy Storage
Abstract
:1. Introduction
2. The Influence of Temperature on Li-Ion Cells
2.1. Performance of Li-Ion Cells at Low Temperatures
2.2. Performance of Li-Ion Cells at High Temperatures
2.3. Generation of Heat in Li-Ion Cells
2.4. Thermal Runaway in Li-Ion Cells
2.5. Flammability of Li-Ion Cells
3. Materials and Methods
3.1. Materials
- (a)
- 1M LiPF6 (lithium hexafluorophosphate) in EC/DEC (ethylene carbonate: diethyl carbonate—1:1) and corn starch-based electrode—C (after carbonization).
- (b)
- 1M LiPF6 (lithium hexafluorophosphate) in EC/DMC/DEC (ethylene carbonate: dimethyl carbonate:diethyl carbonate—1:1:1) and corn starch-based electrode—C (after carbonization).
- (c)
- 1M LiPF6 (lithium hexafluorophosphate) in EC/DMC (ethylene carbonate: dimethyl carbonate—1:1) and corn starch in a concentration of 5% and corn starch-based electrode—C (after carbonization).
3.2. Methods
- Steady-state Technique. EIS is a steady-state technique, meaning it operates under conditions of constant amplitude and frequency. This stability allows for the in-depth analysis of electrochemical systems.
- Small Signal Analysis. EIS employs small amplitude signals, ensuring that the system remains in a linear regime. This allows for the extraction of detailed information about the system’s behavior without causing significant perturbations.
- Frequency Range. EIS covers a wide frequency range, typically from less than 1 Hz to more than 1 MHz. This broad spectrum enables the investigation of processes occurring at different time scales.
- Instrumentation. The technique utilizes specialized instrumentation known as a potentiostat/galvanostat, which controls the applied potential or current during the experiment. This ensures precise control over the electrochemical conditions.
- Battery Research: EIS is crucial for characterizing the electrochemical behavior of batteries, aiding in the optimization of battery materials and performance.
- Corrosion Studies: It is widely used to investigate the corrosion processes in metals and alloys, providing insights into protective coatings and corrosion inhibitors.
- Biosensors: EIS is employed in the development of biosensors for detecting specific biomolecules, offering high sensitivity and selectivity.
- Fuel Cells: Researchers use EIS to study and improve the efficiency of fuel cells by understanding the electrochemical processes involved.
4. Results
4.1. Investigation of Electrochemical Impedance Spectroscopy with Consideration of Temperature Variations for the Studied Systems
4.2. Thermodynamic Modeling of the Diffusion Process
4.3. The Relationship between Diffusion and Temperature Dependence
- Addition and removal of Li-ions: This involves the incorporation and extraction of Li-ions within the electrode material during the charge and discharge cycles.
- Transfer of charge during the addition and removal of Li-ion cells resulting from the reduction and oxidation of electrode materials: This refers to the movement of charge associated with the reduction and oxidation reactions occurring in electrode materials during the electrochemical process.
4.4. Challenges and Future Directions in Thermal Studies of Lithium-ion Batteries (LiBs)
- Complex Battery Designs—the ever-evolving landscape of LiB designs, including pouch, cylindrical, and prismatic configurations, presents challenges in standardizing thermal studies and ensuring consistent results across diverse formats.
- Multi-Physics Interaction—LiBs are subject to complex interplays of electrical, thermal, and mechanical phenomena. Understanding these multi-physics interactions and their effects on thermal behavior remains a significant challenge.
- High-Energy-Density Cells—next-generation LiBs aim for even higher energy density, which can exacerbate thermal management challenges. Developing efficient cooling and thermal mitigation strategies becomes increasingly critical.
- Safety Concerns—as LiBs push the boundaries of energy density, safety concerns related to thermal runaway events demand continuous research. Mitigating these risks through innovative thermal management solutions is an ongoing challenge.
- Aging and Degradation—thermal studies must account for the aging and degradation of LiBs over time. Identifying and quantifying the thermal effects on degradation mechanisms is crucial for extending battery lifespans.
4.5. Risks and Safety Concerns with Lithium-ion Batteries
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Lewis, G.N. The potential of lithium electrode. J. Am. Chem. Soc. 1913, 192, 1126–1127. [Google Scholar] [CrossRef]
- Whittingham, M.S. Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192, 1126–1127. [Google Scholar] [CrossRef]
- Touzain, P.; Ry, R. Insertion Compounds of Graphite with Improved Performances and Electrochemical Applications of Those Compounds. U.S. Patent 4,584,252, 22 April 1986. [Google Scholar]
- Winter, M.; Besenhard, J.O.; Spahr, M.E.; Novak, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1999, 10, 725–763. [Google Scholar] [CrossRef]
- Mizushima, K.J.P.C.; Jones, P.C.; Wiseman, P.J.; Goodenough, J.B. LixCoO2 (0 < x < 1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789. [Google Scholar]
- Tozawa, K.; Tozawa, T.N. Lithium Ion Rechargeable battery. Prog. Batter. Sol. Cells 1990, 9, 209. [Google Scholar]
- Ozawa, K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: The LiCoO2/C system. Solid State Ion. 1994, 69, 212–221. [Google Scholar] [CrossRef]
- Ehrlich, G.M. Lithium-ion batteries. In Handbook of Batteries; McGraw Hill: New York, NY, USA, 2002; pp. 35–53. [Google Scholar]
- Li, D.; Zhou, H. Two-phase transition of Li-intercalation compounds in Li-ion batteries. Mater. Today 2014, 17, 451–463. [Google Scholar] [CrossRef]
- Dong, X.; Chen, L.; Liu, J.; Haller, S.; Wang, Y.; Xia, Y. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2016, 2, e1501038. [Google Scholar] [CrossRef]
- Montanino, M.; Passerini, S.; Appetecchi, G.B. Electrolytes for rechargeable lithium batteries. In Rechargeable Lithium Batteries; Elsevier: Amsterdam, The Netherlands, 2015; pp. 73–116. [Google Scholar] [CrossRef]
- Mishra, A.; Mehta, A.; Basu, S.; Malode, S.J.; Shetti, N.P.; Shukla, S.S.; Nadagouda, M.N.; Aminabhavi, T.M. Electrode materials for lithium-ion batteries. Mater. Sci. Energy Technol. 2018, 1, 182–187. [Google Scholar] [CrossRef]
- Gnanaraj, J.S.; Zinigrad, E.; Asraf, L.; Gottlieb, H.E.; Sprecher, M.; Schmidt, M.; Geissler, W.; Aurbach, D. A detailed investigation of the thermal reactions of LiPF6 solution in organic carbonates using arc and dsc. J. Electrochem. Soc. 2003, 150, A1533. [Google Scholar] [CrossRef]
- Ouyang, D.; Chen, M.; Liu, J.; Wei, R.; Weng, J.; Wang, J. Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions. RSC Adv. 2018, 8, 33414–33424. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Aravindan, V.; Gnanaraj, J.; Lee, Y.-S.; Madhavi, S. LiMnPO4—A next generation cathode material for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 3518–3539. [Google Scholar] [CrossRef]
- Shaju, K.M.; Subba Rao, G.V.; Chowdari, B.V.R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim. Acta 2002, 48, 145–151. [Google Scholar] [CrossRef]
- Akimoto, J.; Gotoh, Y.; Oosawa, Y. Synthesis and Structure Refinement of LiCoO2 Single Crystals. J. Solid State Chem. 1998, 141, 298–302. [Google Scholar] [CrossRef]
- Madhu, C.; Garrett, J.; Manivannan, V. Synthesis and characterization of oxide cathode materials of the system (1-x-y) LiNiO2·xLi2MnO3·yLiCoO2. Ionics 2010, 16, 591–602. [Google Scholar] [CrossRef]
- Sun, Y.; Shiosaki, Y.; Xia, Y.; Noguchi, H. The preparation and electrochemical performance of solid solutions LiCoO2–Li2MnO3 as cathode materials for lithium ion batteries. J. Power Sources 2006, 159, 1353–1359. [Google Scholar] [CrossRef]
- Jiang, J.; Eberman, K.W.; Krause, L.J.; Dahn, J.R. Structure, Electrochemical Properties, and Thermal Stability Studies of Cathode Materials. J. Electrochem. Soc. 2005, 152, A1879–A1889. [Google Scholar] [CrossRef]
- Zhong, Q.; Bonakdarpour, A.; Zhang, M.; Gao, Y.; Dahn, J.R. Synthesis and Electrochemistry of LiNix Mn(2 − x)O4. J. Electrochem. Soc. 1997, 144, 205–213. [Google Scholar] [CrossRef]
- Laidler, K.J. The development of the Arrhenius equation. J. Chem. Educ. 1984, 61, 494. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, K.; Jow, T. Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte. J. Solid State Electrochem. 2003, 7, 147–151. [Google Scholar] [CrossRef]
- Nagpure, S.C.; Dinwiddie, R.; Babu, S.; Rizzoni, G.; Bhushan, B.; Frech, T.; Power, J. Thermal diffusivity study of aged Li-ion batteries using flash method. J. Power Sources 2010, 195, 872–876. [Google Scholar] [CrossRef]
- Nagasubramanian, G. Electrical characteristics of 18650 Li-ion cells at low temperatures. J. Appl. Electrochem. 2001, 31, 99–104. [Google Scholar] [CrossRef]
- Aris, A.M.; Shabani, B. An Experimental Study of a Lithium Ion Cell Operation at Low Temperature Conditions. J. Energy Procedia 2017, 110, 128–135. [Google Scholar] [CrossRef]
- Xiao, M.; Choe, S.Y. Theoretical and experimental analysis of heat generations of a pouch type LiMn2O4/carbon high power Li-polymer battery. J. Power Sources 2013, 241, 46–55. [Google Scholar] [CrossRef]
- Zhang, X. Thermal analysis of a cylindrical lithium-ion battery. J. Electrochim. Acta 2011, 56, 1246–1255. [Google Scholar] [CrossRef]
- Lu, W.; Prakash, J. In Situ Measurements of Heat Generation in a Li/Mesocarbon Microbead Half-Cell. J. Electrochem. Soc. 2003, 150, A262. [Google Scholar] [CrossRef]
- Fengab, X.; Ouyanga, M.; Liua, X.; Lua, L.; Xiaa, Y.; Heab, X. Thermal runaway mechanism of lithium ion battery for electric vehicles. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Finegan, D.P.; Scheel, M.; Robinson, J.B.; Tjaden, B.; Hunt, I.; Mason, T.J.; Millichamp, J.; Di Michiel, M.; Offer, G.J.; Hinds, G.; et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun. 2015, 6, 6924. [Google Scholar] [CrossRef]
- Mai, S.; Wessel, J.; Dimitrova, A.; Stich, M.; Ivanov, S.; Krischok, S.; Bund, A. Nanoscale Morphological Changes at Lithium Interface, Triggered by the Electrolyte Composition and Electrochemical Cycling. J. Chem. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- Grossi, M.; Riccò, B. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: A review. J. Sens. Sens. Syst. 2017, 6, 303–325. [Google Scholar] [CrossRef]
- Liao, L.; Zuo, P.; Ma, Y. Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries. J. Electrochim. Acta 2012, 60, 269–273. [Google Scholar] [CrossRef]
- Pigłowska, M.; Kurc, B.; Rymaniak, Ł. Starch as the flame retardant for electrolytes in lithium ion cells. Materials 2022, 15, 523. [Google Scholar] [CrossRef] [PubMed]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef] [PubMed]
- Scholz, F. Voltammetric techniques of analysis: The essentials. ChemTexts 2015, 1, 17. [Google Scholar] [CrossRef]
- Chagnes, A. Lithium Battery Technologies: Electrolytes. In Lithium Process Chemistry; Chagnes, A., Swiatowska, J., Eds.; Elsevier: Chicago, IL, USA, 2015. [Google Scholar]
- Suresh, P.; Shukla, A.; Munichandraiah, N. Temperature Dependence Studies of A.C. Impedance of Lithium-Ion Cells. J. Appl. Electrochem. 2002, 32, 267–273. [Google Scholar] [CrossRef]
- Swiderska-Mocek, A.; Jakobczyk, P.; Rudnicka, E.; Lewandowski, A. Flammability parameters of lithium-ion battery electrolytes. J. Mol. Liq. 2020, 318, 113986. [Google Scholar] [CrossRef]
- Pigłowska, M.; Kurc, B.; Rymaniak, Ł. Application of Carbonized Starches as Carbon Electrode Active Material Compared to Graphene Nanoplatelets-Based Anode in a Lithium-Ion Cell. Waste Biomass Valorization 2021, 12, 6403–6422. [Google Scholar] [CrossRef]
- Page, J.E. Recent Developments in Polarographic Analysis. Nature 1944, 154, 199–202. [Google Scholar] [CrossRef]
- Chauhan, C. Contemporary Voltammetric Techniques and Its Application to Pesticide Analysis: A Review. J. Mater. Today Proc. 2021, 37, 3231–3240. [Google Scholar] [CrossRef]
- Hess, S.; Wohlfahrt-Mehrens, M.; Wachtler, M. Flammability of Li-Ion Battery Electrolytes: Flash Point and Self-Extinguishing Time Measurements. J. Electrochem. Soc. 2015, 162, A3084–A3097. [Google Scholar] [CrossRef]
- Juszczak, L.; Witczak, M.; Ziêba, T.; Fortuna, T. Rheological Behaviour of Heated Potato Starch Dispersions. J. Int. Agrophys. 2012, 26, 381–386. [Google Scholar] [CrossRef]
- Ai, Y.; Jane, J.-L. Gelatinization and Rheological Properties of Starch. J. Starch Stärke 2015, 67, 213–224. [Google Scholar] [CrossRef]
- Haj-Kacem, R.; Ouerfelli, N.; Herráez, J.; Guettari, M.; Hamda, H.; Dallel, M. Contribution to Modeling the Viscosity Arrhenius Type Equation for Some Solvents by Statistical Correlations Analysis. Fluid Phase Equilib. 2014, 383, 11–20. [Google Scholar] [CrossRef]
- Duan, L.; Wang, L.; Inge, A.K.; Fischer, A.; Zou, X.; Sun, L. Insights into Ru-Based Molecular Water Oxidation Catalysts: Electronic and Noncovalent-Interaction Effects on Their Catalytic Activities. Inorg. Chem. 2013, 52, 7844–7852. [Google Scholar] [CrossRef] [PubMed]
- Dutton, P.L.; Munro, A.; Scrutton, N.S.; Sutcliffe, M. Introduction. Quantum Catalysis in Enzymes: Beyond the Transition State Theory Paradigm. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 1293–1294. [Google Scholar] [CrossRef]
- Dagger, T.; Rad, B.R.; Schappacher, F.M.; Winter, M. Comparative Performance Evaluation of Flame Retardant Additives for Lithium Ion Batteries—I. Safety, Chemical and Electrochemical Stabilities. Energy Technol. 2018, 6, 2011–2022. [Google Scholar] [CrossRef]
- Chawla, N.; Bharti, N.; Singh, S. Recent Advances in Non-Flammable Electrolytes for Safer Lithium-Ion Batteries. Batteries 2019, 5, 19. [Google Scholar] [CrossRef]
- Nakajima, T.; Hirobayashi, Y.; Takayanagi, Y.; Ohzawa, Y. Reactions of Metallic Li or LiC6 with Organic Solvents for Lithium Ion Battery. J. Power Sources 2013, 243, 581–584. [Google Scholar] [CrossRef]
- Wu, M.; Xu, B.; Ouyang, C. Physics of Electron and Lithium-Ion Transport in Electrode Materials for Li-ion Batteries. J. Chin. Phys. B 2015, 25, 018206. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Li, C.; Sun, X.; Liu, J.; Wang, K.; Ma, Y. High-Performance Lithium-Ion Capacitors Based on CoO-Graphene Composite Anode and Holey Carbon Nanolayer Cathode. ACS Sustain. Chem. Eng. 2019, 7, 11275–11283. [Google Scholar] [CrossRef]
- Delacourt, C.; Poizot, P.; Levasseur, S.; Masquelier, C. Size Effects on Carbon-Free LiFePO4 Powders: The Key to Superior Energy Density. J. Electrochem. Solid-State Lett. 2006, 9, A352. [Google Scholar] [CrossRef]
Sample | Temperature (°C) | б (Ω s−0.5) | DLi+ (cm2 s−1) | σLi+ (S cm−1) |
---|---|---|---|---|
EC/DMC/DEC | 25 | 2.41 | 6.73 × 10−8 | 1.94 × 10−5 |
30 | 2.33 | 8.04 × 10−8 | 3.35 × 10−5 | |
35 | 2.12 | 1.32 × 10−7 | 3.72 × 10−5 | |
40 | 2.03 | 1.62 × 10−7 | 4.78 × 10−5 | |
45 | 2.01 | 1.73 × 10−7 | 5.10 × 10−5 | |
50 | 1.79 | 2.38 × 10−7 | 6.35 × 10−5 |
Temperature (°C) | Rel (Ω) | RSEI (Ω) | Rct (Ω) | WLi+ |
---|---|---|---|---|
25 | 20.68 | 142.9 | 34.44·× 10−1 | 1.96·× 10−3 |
30 | 20.37 | 125.30 | 38.81·× 10−1 | 8.13·× 10−3 |
35 | 19.30 | 86.86 | 18.30·× 10−1 | 3.42·× 10−3 |
40 | 18.01 | 79.13 | 1.28·× 102 | 4.43·× 10−3 |
45 | 17.20 | 73.46 | 8.17·× 102 | 3.27·× 10−3 |
50 | 12.92 | 56.07 | 7.79·× 102 | 6.53·× 10−3 |
Temperature (°C) | Observation |
---|---|
20–80 | Heat-Wait Seek in ARC (Accelerating Rate Calorimetry) |
60–110 | SEI decomposition |
60–140 | Self-discharge of the cathode |
70–110 | Anode reaction consumption of Li in the anode |
120–230 | Anode reaction consumption of the active material |
120–150 | Melting of the separator |
150–220 | Micro inner short circuit; melting of the polyethylene separator |
230–255 | Separator breakup |
230–800 | Quick internal short circuit |
240–800 and above | Decomposition of the NMC cathode |
250–800 and above | An electrolyte decomposition |
250–800 and above | A binder decomposition |
450–800 and above | The temperature rises with the cooling of the ARC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurc, B.; Gross, X.; Rudnicka, E.; Rymaniak, Ł. Thermal Studies of Lithium-Ion Cells: Ensuring Safe and Efficient Energy Storage. Energies 2024, 17, 1993. https://doi.org/10.3390/en17091993
Kurc B, Gross X, Rudnicka E, Rymaniak Ł. Thermal Studies of Lithium-Ion Cells: Ensuring Safe and Efficient Energy Storage. Energies. 2024; 17(9):1993. https://doi.org/10.3390/en17091993
Chicago/Turabian StyleKurc, Beata, Xymena Gross, Ewelina Rudnicka, and Łukasz Rymaniak. 2024. "Thermal Studies of Lithium-Ion Cells: Ensuring Safe and Efficient Energy Storage" Energies 17, no. 9: 1993. https://doi.org/10.3390/en17091993
APA StyleKurc, B., Gross, X., Rudnicka, E., & Rymaniak, Ł. (2024). Thermal Studies of Lithium-Ion Cells: Ensuring Safe and Efficient Energy Storage. Energies, 17(9), 1993. https://doi.org/10.3390/en17091993