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Abstract: Technical losses in electrical grids are inherent inefficiencies induced by the transmission
and distribution of electricity, resulting in energy losses that can reach up to 40% of the generated
energy. These losses pose significant challenges to grid operators regarding energy sustainability,
reliability, and economic viability. Distributed Energy Resources (DERs) offer promising solutions
to lower technical losses by decentralizing energy generation and consumption, reducing the need
for long-distance transmission and optimizing grid operation. Hence, estimating the impact of
DERs on grid technical losses becomes paramount for grid operators and planners. In response,
this article proposes the application of regression modeling and nonlinear curve fitting algorithms
to provide a more nuanced understanding and better characterize the intricate interplay between
DER deployment and technical losses. Through a comprehensive case study based on more than
1080 computer simulations, we demonstrate the effectiveness of our proposed dynamic polynomial
varying coefficient regression model in estimating the impact of DERs on technical losses within
electrical grids. The proposed model offers a simple and effective methodology that allows grid
operators to gain insights into the nonlinear dynamics of DER integration and make quicker and
more informed decisions regarding grid management strategies, infrastructure investments, and
policy interventions. Also, this research contributes to advancing the field of grid optimization by
offering a simple equation that enhances our ability and haste to assess and mitigate technical losses
in the context of an evolving energy landscape characterized by increasing DER adoption.

Keywords: technical losses; distributed energy resources; regression model; nonlinear curve fitting;
electric grid optimization

1. Introduction

In today’s constantly changing energy landscape, integrating distributed energy re-
sources (DERs) is gaining popularity as a vital approach to improving the power grid.
These DERs, including solar photovoltaic (PV) panels, wind turbines, battery energy stor-
age systems (BESSs), electrical vehicles (EVs), small power generators, and demand side
management (DSM), have the potential to transform the conventional concept of energy
generation and consumption. In recent years, DERs have emerged as critical components in
transforming traditional electric grids into modern, resilient, and sustainable systems. One
of the primary roles of DERs lies in enhancing grid resilience. By providing backup power
during outages or natural disasters, DERs contribute to the grid’s reliability [1]. These
resources can operate independently or in coordination with the main grid, mitigating
disruptions and ensuring uninterrupted electricity supply to consumers. Grid stability
is also bolstered by DERs, which provide ancillary services such as frequency regulation
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and voltage support [2]. Battery storage systems, in particular, can respond rapidly to
fluctuations in supply and demand, thereby maintaining grid stability and reliability [3].

Furthermore, DERs facilitate demand response programs, allowing consumers to
change their electricity usage in response to price signals or grid conditions [4]. This
flexibility helps balance supply and demand, reducing the need for peaker plants and
expensive infrastructure upgrades. With the rise of EVs, DERs play a pivotal role in
integrating EV charging infrastructure into the grid. Smart charging stations and vehicle-to-
grid (V2G) technology enable EV batteries to serve as distributed storage units, supporting
grid stability and enhancing overall energy management [5]. In addition, DERs are integral
to developing microgrids capable of operating equally in off-grid and on-grid modes.
Microgrids enhance energy resilience by providing reliable power to critical infrastructure
during emergencies or grid outages.

Last, DERs are crucial in managing peak electricity demand and alleviating grid
infrastructure strain [6]. Solar panels, wind turbines, and battery storage systems can
generate power during periods of high demand, reducing reliance on traditional power
plants and minimizing electricity costs for consumers. Integrating renewable energy sources
into the grid is another crucial function of DERs. With the increasing adoption of solar and
wind energy, distributed generation technologies enable the efficient utilization of these
intermittent resources. By generating electricity near where it is consumed, DERs reduce
transmission losses and enhance the overall efficiency of the grid. However, integrating
DERs into electrical grids presents opportunities and challenges; their full potential can
only be realized if they are properly managed and optimized.

Regarding power management, DER integration has matured using advanced control
techniques and accurate forecasting of renewable energy generation, load demand, and
market prices. Additionally, on the energy level, DER’s contribution is well remunerated
via in-place financing mechanisms such as net metering (NM), Feed-in-tariff (FiT), and
power purchase agreement (PPA). Yet, other contributions, such as reducing the electric
grid’s technical losses, remain less explored.

The operation of electric grids is inherently plagued by technical and nontechnical
losses (Table 1), which result in energy dissipation and reduce overall system efficiency [7].
Technical losses in the electric grid refer to the energy lost during transmission and dis-
tribution. These losses occur due to resistance in power lines, transformer inefficiencies,
and voltage drops. Technical losses lead to a waste of energy and result in increased costs
for energy companies and potential disruptions in electricity supply to end-users. By
understanding the causes and patterns of technical losses through data analysis, energy
companies can take targeted actions to reduce them. Methodologies used today to assess
the technical losses rely on simulation software [8,9], measurement and verification (M&V)
studies [10], load flow analysis modeling tools [11,12], and Distribution System State Esti-
mation (DSSE) [13–15]. However, despite their numerous advantages, these methodologies
can be computationally intensive and time-consuming and require specialized knowledge
and training to be used effectively. This is where regression models come into play, offering
a powerful tool to analyze historical data and identify factors that contribute to technical
losses. Regression models enable energy companies to make data-driven decisions and
implement strategies to improve grid efficiency.

This study introduces a dynamic polynomial regression equation with varying coeffi-
cients to evaluate the impact of Distributed Energy Resources (DERs) integration across
different points of the electric grid. The equation factors in DER power, the connected load,
and total impedance at the relevant bus, accurately estimating the reduction in technical
losses. This dynamic regression model offers a swift and straightforward approach to
assessing such reductions as an alternative to traditional methodologies. It boasts quicker
results, demands less computational power, and provides comparable precision to simula-
tion models, all without requiring specialized expertise.
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Table 1. Classification of electric grid losses.

Level 1 Level 2 Level 3 Components of Level 3

Losses

Technical
Losses

Fixed Losses Hysteresis losses
Eddy current losses

Variable Losses Ohmic losses

Nontechnical
Losses

Network Equipment
issues

Theft and fraud
Measurement errors

Network information
issues

Missing or unregistered connection points
Incorrect location or energization status of connection points

Incorrect information on measurement equipment

Energy data processing
issues

Estimation of unmetered consumptions
Estimation of consumptions between meter readings and calculations

Estimation of technical losses
Estimation of detected issues

Other energy data processing issues

This model holds promise for integration into optimization algorithms and resource
allocation strategies, facilitating efficient planning while minimizing technical losses. It can
also offer valuable insights into the efficacy of different control strategies. Furthermore,
it can aid in the development of targeted and cost-effective control mechanisms and help
identify inefficiencies within the grid.

By analyzing data on technical losses, energy companies can pinpoint specific areas or
factors contributing to these losses, enabling targeted actions to enhance grid resilience,
reduce costs, and improve overall operational efficiency.

In the first part of this paper, and within the literature review context, we define the
technical losses and the challenges and limitations of DER penetration level in electrical
grids and identify the existing methodologies and techniques used to calculate the technical
losses. In the Section 3, we introduce the methodology adopted to develop, train, and test
our proposed regression model, and in Section 4, we introduce the built model. Finally, in
Section 5, the testing results are presented, and an analysis of the accuracy and precision of
the proposed model is provided.

2. Literature Review

The integration of DER into electric grids has emerged as a critical strategy for enhanc-
ing grid resilience, sustainability, and efficiency, with publications that address their impact
on the grid dating back to the 1970s. The United States Public Utility Regulatory Policies Act
(PURPA) [16] encouraged the development of renewable energy and cogeneration facilities
by requiring electric utilities to purchase power from qualifying facilities, which included
certain types of small-scale, decentralized power generation. This provision effectively
incentivized the growth of customer-owned generation, as individuals or businesses could
install renewable energy systems and sell excess electricity to utilities at favorable rates.

However, the degree of integration of DERs into the electric grid, defined as the pene-
tration level, remains controversial. A higher DER integration diversifies the energy mix
and reduces dependence on fossil fuels. It also helps alleviate stress on the grid during peak
periods, reducing the need for costly infrastructure upgrades. However, an excessively high
level of DER penetration can pose challenges related to grid stability, voltage regulation,
frequency control, and power quality, requiring advanced grid management techniques
and infrastructure upgrades [17,18]. Hence, the penetration level of DERs is a key metric
used to assess the impact of DERs on the grid and to gauge the extent of their integration
into the overall energy system.

Various factors, including technological advancements, regulatory policies, market
dynamics, and consumer preferences, influence the penetration level of DERs. The term
“DER penetration level” is typically defined as the maximum power capacity of DERs
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relative to the total installed capacity within a given system. It measures the physical
presence of DERs in terms of their maximum potential power output rather than their
actual energy production. However, slight variations in how the concept is defined and
used may exist in different contexts.

In contrast to capacity penetration, the DER energy penetration’s definition considers
the actual energy output or contribution of DERs to the total energy consumed within a
specified timeframe (e.g., hourly, daily, annually). It reflects the dynamic nature of DERs’
energy generation or consumption patterns.

Additionally, there are two other definitions: DER market penetration and DER oper-
ational penetration. The DER market penetration perspective looks at DER technologies’
market share or adoption rate within a particular market or customer segment. It considers
factors such as the number of DER installations, customer participation in DER programs,
and the percentage of customers with DER assets. The DER operational penetration def-
inition focuses on the operational impact of DERs on the grid, including their influence
on grid stability, reliability, and power quality. It considers factors such as DERs’ ability
to provide grid support services, participate in demand response programs, and mitigate
grid constraints.

By nature, DERs are located closer to demand centers, hence contributing to reducing
electric grid losses by generating electricity closer to where it is consumed. This can mitigate
losses incurred during long-distance transmission from centralized power plants. Electric
grid technical losses, encompassing both transmission and distribution losses, represent a
significant challenge in operating and managing electrical grids worldwide. These losses,
arising from conductor resistance, transformer inefficiencies, and voltage drops, contribute
to energy wastage, reduced system efficiency, and increased operational costs. Effective
modeling of technical losses is essential for optimizing grid performance, enhancing energy
efficiency, and ensuring the reliability of the electricity supply [19,20]. This literature review
explores various modeling techniques employed to quantify and mitigate electric grid
technical losses, encompassing both traditional and advanced approaches.

Traditional methods for modeling electric grid technical losses include empirical for-
mulas, analytical models, and statistical regression approaches. Empirical formulas, such
as the I2R formula, estimate losses based on the product of current squared and resistance.
Analytical models, such as load flow analysis and network impedance methods [21,22],
provide a theoretical framework for calculating losses based on grid topology and oper-
ating conditions. Statistical regression approaches, including linear and multiple linear
regression, correlate technical losses with load demand, network configuration, and en-
vironmental variables. Nevertheless, recent advancements in modeling techniques have
expanded the scope and accuracy of electric grid loss estimation. These techniques include
machine learning algorithms, such as artificial neural networks (ANNs) [23], support vector
machines (SVMs) [24], and decision trees [25]. Machine learning models offer data-driven
approaches for predicting technical losses based on historical data and system parame-
ters. These models can capture nonlinear relationships and complex interactions among
variables, improving prediction accuracy. Comparably, optimization-based approaches,
including genetic algorithms [26], particle swarm optimization [27], and ant colony op-
timization [28], optimize grid configurations and operational parameters to minimize
technical losses by iteratively adjusting system parameters to achieve optimal performance
while considering constraints such as voltage limits and equipment ratings. Also, several
hybrid models combining multiple techniques exist [29]. A hybrid model may use ma-
chine learning for the initial prediction of technical losses and optimization algorithms for
fine-tuning system parameters to minimize losses further.

Different methods are also used to allocate the losses to each load connected to the
grid. The prorated methodology is a simple empirical method for the electric grid’s loss
allocation (pro rata, PR). This methodology aims to equally distribute the grid losses among
different components or sections of the distribution system based on their contribution to
the overall energy flow, regardless of network configuration and the distance between the
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generator and the load [30]. The PR approach is straightforward to implement; however, it
is unjust for loads located near generating sources. Hence, the distance-adjusted pro rata
(DAPR) method may be a more accurate option.

The DAPR considers the distance of the load to a root node and the power demand to
define the distance factors. Distance factors are calculated or assigned to each section of the
distribution system based on the length of the distribution lines. Longer lines generally
have higher losses due to increased resistance, so the distance factor represents the relative
contribution of each section to the total line length [31]. The DAPR technique incorporates
the distance factor but does not consider the nonlinearity of the power flow.

Another technique that is used is the incremental loss method. By using the lineariza-
tion in the Newton–Raphson method for solving the power flow, this method calculates
the incremental increase in losses caused by the addition of new components, such as trans-
formers, conductors, or other equipment, to the existing system [32–34]. By quantifying
these incremental losses, utilities and operators can assess the impact of new connections
on system efficiency, reliability, and performance. However, high X/R ratio networks
may involve complex interactions between resistive and reactive components, making
the application of the incremental losses method more challenging. In contrast, network
analysis approaches compute losses using the network’s impedance or admittance ma-
trix [35]. Methods under this category include the Z-bus method [36], the modified Y-bus
method [37], the branch-current decomposition method [38], and the succinct method [39].

On the other hand, the power tracing method tracks losses through branch power flow
and connected nodal injections. Some existing tracing methods use graph theory, as seen
in [40,41], while others utilize various algorithms [42–44]. Normalization is necessary if the
method yields an inaccurate estimate of total losses. A comprehensive overview of loss
allocation methods can be found in [45]. Additionally, for radial distribution systems with
multiple distributed generation points, article [46] discusses essential considerations such
as the characteristics of net generation nodes (power sources) and net load nodes (power
sinks), as well as the uncertainty of distributed generator output.

By strategically locating DERs at critical points along the distribution network, utilities
can optimize energy delivery, improve system efficiency, and enhance overall grid perfor-
mance. Optimizing the point of integration of DERs involves selecting the most suitable
location within the electrical distribution system to connect DER assets. This optimization
aims to maximize the benefits of DERs while minimizing potential negative impacts on
system reliability, stability, and performance. Several methods and considerations can
be employed to optimize the point of connection (PoC) of DERs. Ehsan and Yang [47]
provide an overview of various analytical techniques for optimal integration of DERs in
power distribution systems. It reviews a range of analytical methods, including linear
programming, nonlinear optimization, heuristic algorithms, metaheuristic algorithms,
and artificial-intelligence-based approaches such as genetic algorithms, particle swarm
optimization, and ant colony optimization.

Aryani et al. [48] explored the application of genetic algorithms (GAs) to optimize the
placement and sizing of DERs in electrical distribution systems, with the main objectives
of reducing power losses and improving voltage profiles within the distribution network.
Avchat and Mhetre [49] optimized the placement of distributed generation (DG) within
distribution networks to achieve loss reduction and voltage improvement objectives using
various optimization techniques such as heuristic algorithms, mathematical programming,
and evolutionary algorithms to determine the best locations for installing DG units. In the
article [50], the authors explore the use of Particle Swarm Optimization (PSO) to determine
DG’s optimal sizing and placement in distribution systems.

Thus, numerous case studies and applications demonstrate the effectiveness of model-
ing techniques for electric grid technical losses across different contexts and scales. These
studies encompass urban, rural, and remote grid environments, as well as diverse energy
sources and demand profiles. Researchers and practitioners have applied modeling tech-
niques to optimize grid design, improve energy efficiency, integrate renewable energy



Energies 2024, 17, 2053 6 of 28

sources, and improve grid resilience to interruptions and breakdowns. However, despite
significant progress, several challenges remain in modeling electric grid technical losses.
These challenges include data availability and quality, model complexity, computational
requirements, and uncertainty in future scenarios (e.g., demand growth and renewable
energy integration).

While simple regression models may not capture all nuances of grid losses’ estimation,
their simplicity, interpretability, and efficiency make them valuable tools for initial analysis
and as benchmarks for more complex models. Simple regression models often require fewer
computational resources, resulting in quicker training and deployment. This can benefit
tasks that demand quick predictions in real-time or near-real-time situations. Moreover,
simple regression models can be easily scaled to larger data sets and applied to different
regions or periods without significant adjustments. This scalability is valuable for analyzing
grid losses across diverse geographic areas.

Similarly, basic regression models serve as a benchmark for assessing the effectiveness
of more advanced models. By comparing the results of complex models to those of a
simple regression model, analysts can assess whether the additional complexity yields
significant improvements in accuracy. While dealing with limited data or noisy input
variables, complex models are at risk of overfitting. Simple regression models are less
susceptible to overfitting, reducing the risk of producing inaccurate estimations. Our
proposed model for estimating the technical loss reduction, considering the level of DER
penetration at a specific grid node as an independent variable, requires little computational
power. Hence, it allows high-frequency sampling, making it perfect for calculating energy
losses in real time, considering the fast-changing and intermittent nature of DERs.

Additionally, the proposed model can serve other grid management and optimization
algorithms, especially in managing virtual power plants (VPPs), and financially compen-
sates prosumers’ participation in distributed energy generation. Hence, instead of just
compensating prosumers for the energy injected back into the grid, our proposed model can
calculate the reduction in grid losses resulting from the prosumer’s DER connection to the
grid and financially remunerate him for the saved energy. Such a model might be beneficial
in increasing the viability of DER deployment in ecosystems where financial incentives,
like energy rates and technology prices, are insufficient to incentivize the end users.

3. Methodology

Regression models are statistical tools that analyze the relationship between a depen-
dent variable and one or more independent variables. In the context of energy systems,
regression models can be used to predict the performance of DERs based on various factors
such as weather conditions, electricity demand, and grid infrastructure.

The main idea is to develop a predictive model capable of calculating the total energy
losses in a grid using a DER’s penetration level connected to a specific bus as a predictor.

The DER penetration level X is defined in the following equation:

X =
PDER

Bus Load
× 100 (1)

A significant amount of data are required to build an accurate regression model
capable of estimating the impact of DER integration at any grid bus on that grid’s total
losses. For this purpose, using ETAP 12.6.0 simulation software, the IEEE-33 bus grid
model was used as a reference model to construct a baseline (grid details are provided in
Appendix A). The baseline construction methodology was based on the following steps:

– Simulate the baseline model without any DER integration, and calculate the total
losses of the reference grid model (IEEE-33 bus)

– Integrate a certain percentage of DER at a particular bus i, simulate the whole model,
and calculate the total grid losses. The total loss output value is then logged.

– Increase the DER penetration by a step of 5%, and repeat the simulation and calculation
process. Then, this step is repeated until 100% of DER integration at bus i is achieved.
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– This process is repeated until all busses in our reference model are simulated with
DER penetration levels ranging from 0% to 100% with a step of 5%.

Once the learning data are prepared, the regression model can be built. This involves
training the model using historical data and optimizing its parameters to minimize the
difference between the predicted and actual output. Various algorithms and techniques are
available for building regression models, such as ordinary least squares, gradient descent,
and machine learning algorithms like random forest and support vector regression. The
choice of algorithm depends on the problem’s complexity and data availability. In our
case, the least squares method was adopted to develop our regression model. This method
aims to minimize the sum of the squares of the differences between the observed and
predicted values, also known as residuals. So, the first step is to select a mathematical
model that describes the relationship between the independent variables (predictors) and
the dependent variable (outcome). For example, in simple linear regression, the model
could be represented as Y = β0 + β1X + ε, where Y is the dependent variable, X is the
independent variable, β0 and β1 are the coefficients, and ε is the error term. Then, we
implement the independent variable data set into the regression equation to generate
our predicted data set. Then, we use the gathered data in the observed data set from
the constructed baseline to test the precision of the regression model by calculating the
difference between the observed and predicted values for each data point. These differences
are called residuals. Afterward, we adjust the model coefficients to minimize the sum of
the squared residuals; hence, the term “least squares”. To assess how well the model fits
the data, we examine various metrics such as the following:

– Mean Squared Error (MSE): MSE calculates the average squared difference between
predicted and actual values. It penalizes significant errors more heavily than more
minor errors.

MSE =
1
n∑n

i=1

(
ŷi −

∼
y i

)2
(2)

where ŷi is the observed value,
∼
y i is the predicted value, and n is the number

of observations.
– Root Mean Squared Error (RMSE): RMSE is the square root of the MSE and represents

the average magnitude of the errors in the same units as the dependent variable.
– Mean Absolute Error (MAE): MAE calculates the average absolute difference between

the predicted and actual values, providing a measure of the average magnitude of
the errors.

MAE =
1
n∑n

i=1

∣∣∣ŷi −
∼
y i

∣∣∣ (3)

– The coefficient of determination measures the proportion of the variance in the depen-
dent variable explained by the model’s independent variables. It ranges from 0 to 1,
where a higher value indicates a better fit of the model to the data.

R2 = 1 −
∑n

i=1

(
ŷi −

∼
y i

)2

∑n
i=1(ŷi − yi)

2 (4)

where yi is the mean of the observed values.
– Mean Percentage Error (MPE): MPE measures the average percentage difference be-

tween the predicted and actual values, providing insights into the average directional
accuracy of the predictions.

– Mean Absolute Percentage Error (MAPE): MAPE calculates the average percentage
difference between the predicted and actual values, providing a measure of the overall
accuracy of the predictions relative to the observed values.

After the regression model is built, it is important to evaluate its performance to ensure
its accuracy and reliability. This can be carried out by comparing the predicted values with
the actual values and calculating various metrics such as mean squared error, root mean
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squared error, and coefficient of determination (R-squared). The performance evaluation
provides insights into the effectiveness of the regression model and helps identify any areas
for improvement. For this purpose, we decided to use a 14-bus grid model and the IEEE-10
bus model to test the accuracy of the proposed predictive model. Hence, 3 grid models
and 1080 simulation results were used to train and test our regression model, as detailed
in Figure 1.
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4. Model Building

The model was built using an Intel i7-7500U, 2.70 GHz, dual-core CPU with 16 GB
RAM, operating on Windows 10. The training and testing data were obtained by simulating
three grid models (14-bus grid model, IEEE-10 bus, and IEEE-33 bus models) using the
Electrical Transient Analyzer Program version 12.6.0 (ETAP), a software platform used to
design, simulate, analyze, control, optimize, and automate electrical power systems. Both
models gave practically the same results. The linear regression least square algorithm and
nonlinear curve fitting algorithm were programmed using MATLAB R2022a.

After testing various regression equations, we found that a second-degree polyno-
mial equation best fits the data sets from different buses with an acceptable coefficient of
determination (R2).

y = ax2
i + bxi + c (5)

where y is the estimated total technical loss in the electric grid, both variable and fixed as
detailed in Table 1, and xi is the DER penetration level at bus i, as defined in Equation (1).

However, it was remarkable that the leading coefficient (a) and the linear coefficient
(b) varied from bus to bus. In contrast, the constant coefficient (c) showed minor variations
and could be considered constant, as illustrated in Figure 2.

Hence, we needed to identify the independent variables that affect the variabilities of
coefficients a and b. It is well known that the load demand (L) directly influences active
power losses in the grid. Higher loads increase line currents, leading to higher resistive
losses in transmission and distribution lines. Similarly, the impedance of transmission lines
contributes to resistive losses as current flows through the conductors. Higher impedance
lines experience more significant losses due to increased resistance. Thus, we tried to find a
relation between the coefficients a and b from one side and the total impedance Z and load
L on the other.

The bus impedance z (in Ohm) is calculated using the resistance r and the reactance x
as follows:

z =
√

x2 + r2 (6)

The total impedance Z of a certain bus constitutes the sum of all the impedances from
the utility grid connection to that specific bus. It is defined as the sum of the impedances of
all the transmission lines and other components such as transformers, if applicable, that
directly connect the power source of the grid to the subject load.

Z = ∑ z (7)
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Figure 2. Regression equations of buses 2 to 5.

To clarify the total impedance formula, let us consider the total impedance for bus
20 of the IEEE-33 bus grid. In this case, the connection between the power source and bus
20 includes bus 0_1, bus 1_18, bus 18_19, and bus 19_20. Hence, Z20 = z1 + z18 + z19 + z20.

Therefore, we moved from a simple polynomial regression model into a dynamic
model with varying coefficients. A varying coefficient regression model is considered a
type of dynamic regression model. Dynamic regression models are considered when the
relationship between the dependent variable and the independent variables changes over
time or across different subsets of the data. Varying coefficient regression models fit this
definition because they allow the coefficients associated with the independent variables to
vary across observations or over time.

In a varying coefficient regression model, the coefficients are not fixed but are allowed
to change, which captures the dynamic nature of the relationship between the variables.
This flexibility enables the model to capture complex patterns and variations in the data that
traditional regression models with fixed coefficients may not adequately capture. Hence,
our objective was to find functions fa(L, Z) and fb(L, Z) that define the variabilities of the
leading coefficient (a) and the linear coefficient (b). So, our predictive progression model is
presented by Equation (8):

y = fa(Li, Zi).x2
i + fb(Li, Zi).xi + c (8)

The values of ai, bi, ci, Li and Zi of our training model (IEEE-33 bus) are shown
in Table 2.

At first, we tried to find a regression model that predicted the relation between the
initial regression model’s coefficients a and b and the Load (L) and total impedance (Z).
However, none of the regression models provided an acceptable coefficient of determi-
nation. Then, we decided to apply nonlinear curve fitting techniques since, as shown in
Figure 3, the relation between the coefficients (a and b) and the load and impedance is
nonlinear. A nonlinear curve fitting algorithm is a mathematical technique used to estimate
the parameters of a nonlinear model that describes the relationship between variables
in the data. Unlike linear regression, which assumes a linear relationship between the



Energies 2024, 17, 2053 10 of 28

independent and dependent variables, nonlinear curve fitting algorithms allow for more
complex relationships by fitting a nonlinear function to the data. These algorithms typ-
ically involve iteratively adjusting the parameters of the nonlinear model to minimize
the difference between the observed and predicted values, often using optimization tech-
niques such as gradient descent, Levenberg–Marquardt algorithm, genetic algorithms, or
simulated annealing.

Table 2. Values of a, b, c, L, and Z of the buses in the IEEE-33 bus model.

Bus a b c Z (Ohm) L (kW) Bus a b c Z (Ohm) L (kW)

2 0.000004 0.0107 211 0.4858 100 18 0.00008 0.1342 211 16.4247 90

3 0.000005 0.0231 211 1.0391 90 19 0.000009 0.0053 211 0.7125 90

4 0.00001 0.0433 211 1.4498 120 20 0.00001 0.0092 211 2.7373 90

5 0.000004 0.0282 211 1.8775 60 21 0.00001 0.0098 211 3.3670 90

6 0.000002 0.0424 211 2.9595 60 22 0.00001 0.0107 211 4.5422 90

7 0.00007 0.1513 211 3.6060 200 23 0.000008 0.0279 211 1.5856 90

8 0.0001 0.1948 211 5.7165 200 24 0.0002 0.1668 211 2.7298 420

9 0.000008 0.0639 211 6.9848 60 25 0.0003 0.1864 211 3.8675 420

10 0.00002 0.0707 211 8.2644 60 26 0.00003 0.0477 211 3.1873 60

11 0.000008 0.0548 211 8.4715 45 27 0.00004 0.0483 211 3.5063 60

12 0.00002 0.0727 211 8.8658 60 28 0.000008 0.0539 211 4.9181 60

13 0.00002 0.0793 211 10.7337 60 29 0.00005 0.1189 211 5.9847 120

14 0.00009 0.1631 211 11.6290 120 30 0.0002 0.2118 211 6.5542 200

15 0.00003 0.0835 211 12.4202 60 31 0.0001 0.1678 211 7.9054 150

16 0.00003 0.0855 211 13.3443 60 32 0.0002 0.2369 211 8.3822 210

17 0.00003 0.0863 211 15.4945 60 33 0.00003 0.0678 211 9.0126 60
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In our case, we used the Levenberg–Marquardt algorithm. It is an optimization
technique commonly used for fitting nonlinear least squares curves. The algorithm it-
eratively adjusts the model’s parameters to minimize the sum of squared differences
between the observed and predicted values. The Levenberg–Marquardt algorithm steps
are detailed hereafter:

1. Initialization: Start with initial guesses for the model’s parameters.



Energies 2024, 17, 2053 11 of 28

2. Compute the Jacobian Matrix: Calculate the Jacobian matrix, which contains the
partial derivatives of the model equations with respect to each parameter. This matrix
provides information about the sensitivity of the model to changes in the parameters.

Jij =
∂ri
∂pj

(9)

where p is the parameter vector, and r is the residual vector.
3. Compute the Approximate Hessian Matrix: The Hessian matrix represents

the second derivatives of the sum of squared residuals with respect to the parame-
ters. In Levenberg–Marquardt, an approximate Hessian matrix is computed using the
Jacobian matrix.

H = JT .J (10)

4. Update the Parameters: Adjust the model parameters using an iterative update rule
that considers both the gradient of the objective function (sum of squared residuals) and
the curvature of the objective function surface.

5. Control Step Size: The Levenberg–Marquardt algorithm uses a damping parameter,
typically denoted as λ (lambda), which controls the step size during each iteration. If the
step improves the fit, λ is decreased to allow larger steps. If the step worsens the fit, λ is
increased to take smaller steps.

λk+1 = λk ×
trace

(
JT , J

)
m × diag(JT .J)

(11)

where
λk is the damping parameter at the k-th iteration;
m is the number of observations (or residuals).
6. Convergence Criterion: Repeat steps 2–5 until a convergence criterion is met,

such as reaching a specified tolerance level for the change in the parameters or the
objective function.

The Levenberg–Marquardt algorithm was coded in Matlab as a function that tested
269 nonlinear equations (list of equations provided in Appendix B) to find the best nonlinear
equation that defines the relation between the initial regression model’s coefficients (a) and
(b) and the Load (L) and total impedance (Z). The function calculates the best curve-fitting
parameters for each nonlinear equation and the Chi-square (χ2) value. The Chi-square
(χ2) is a statistical measure used to evaluate the goodness of fit between observed data
and expected values based on a specific model. It is commonly employed in testing the
goodness-of-fit tests. The formula for the Chi-square (χ2) is given by Equation (12):

X2 = ∑
i

(Oi − Ei)
2

Ei
(12)

where
Oi = Observed frequency for category i
Ei = Expected frequency for category i
The complete process including the development of the linear regression models using

the least square method, as well as using the Levenberg–Marquardt nonlinear curve fitting
technique to define the relationship of the leading coefficient (a) and the linear coefficient
(b) with respect to the Load (L) and total impedance (Z) is illustrated in Figure 4.
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Using the IEEE-33 bus grid model as a learning model, we found the regression
equation that allows us to calculate the total grid losses as a function of the DER level
of integration at a specific grid node. The equation y = fa(Li, Zi).x2

i + fb(Li, Zi).xi + c, is
defined as follows:

fa(Li, Zi) =
Li

(0.64289 × 107 − 0.450559 × 106 × Zi)
(13)

fb(Li, Zi) = 1.472 × 10−4 × Zi × Li (14)

c = Initial losses o f the grid (15)

If Xi is defined as a percentage:

X =
PDER

Bus Load
(16)

Then, the regression model coefficients will be as follows:

fa(Li, Zi) =
Li

(642.896 − 45.0559 × Zi)
(17)
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fb(Li, Zi) = 0.001472 × Zi × Li (18)

The precision of the developed dynamic varying coefficient was tested by comparing
the predicted dependent variable outputs (generated by the regression model) to the
observed dependent variable values (generated by the simulations using ETAP 12.6.0).
The metrics in Section 3 were used to assess the model’s accuracy. Results are presented
in Table 3.

Table 3. Regression model testing results using IEEE-33 bus grid.

IEEE-33 Bus Model MSE RMSE MAE MAPE R2

Value 3.28 1.81 1.12 0.55 0.89
Recommendation <10 ~1

Additionally, we compared the performance of our dynamic varying coefficient re-
gression model with a baseline model, which was, in this case, the polynomial regression
model developed for each bus separately. The calculated coefficient of determinations for
each bus is presented in Figure 5, while the criteria for correlation intensity in regression
models according to R2 values is shown in Table 4.
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Table 4. Characterization of correlation intensity in regression models according to R2 values.

R2 Value Correlation Intensity

0.00 (N) null
(0.00–0.09) (L) low
(0.09–0.36) (M) moderate
(0.36–0.81) (H) high
(0.81–0.98) (VH) very high

1.00 (P) perfect

To obtain a more in-depth evaluation of the performance of the proposed dynamic
varying coefficient regression model, we decided to calculate the error distribution. The
error distribution can help identify any systematic biases in the predictive model. The
predictive model error distribution refers to the distribution of errors between the predicted
values generated by the model and the actual observed values in the data set. Under-
standing the error distribution provides insights into the performance and reliability of the
predictive model. Additionally, by analyzing the distribution of errors between predicted
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and actual values, you can understand the spread and variability of prediction errors, thus
providing insights into how well the model captures the underlying patterns in the data. A
good predictive model error distribution typically exhibits the following characteristics:

• Symmetry: The error distribution is approximately symmetric around zero, indicating
that the model is equally likely to overpredict and underpredict the target variable.
A symmetric error distribution suggests that the model is unbiased and does not
systematically overestimate or underestimate the outcomes.

• Normality: The error distribution closely follows a normal (Gaussian) distribution.
Normality implies that most prediction errors are minor, with fewer extreme errors. A
normal error distribution simplifies interpretation and analysis and is often assumed
by many statistical techniques.

• Constant Variance (Homoscedasticity): The variance of the errors remains relatively
constant across different levels of the predictor variables. Homoscedasticity indicates
that the model’s predictive performance is consistent across the entire range of the
data, and the spread of errors does not systematically change with the magnitude of
the predicted values.

• Zero Mean: The mean of the error distribution is close to zero, indicating that, on
average, the model predictions are accurate. A non-zero mean suggests systematic
bias in the model predictions, which should be investigated and corrected.

• No Outliers: The error distribution does not contain extreme outliers or anomalies.
Outliers may indicate data points with unusual characteristics or errors in the data
collection process. Identifying and addressing outliers is important for improving the
overall reliability and performance of the model.

• Low Dispersion: The dispersion of the error distribution is relatively low, indicating
that most prediction errors are concentrated around the mean. Low dispersion
suggests that the model provides consistent and precise predictions with little
error variability.

The error distribution of our predictive model is shown in Figure 6. The curvature of
the error distribution meets the criteria of a normal error distribution curve, as detailed here.
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5. Testing and Results Analysis

Following the learning phase, it is important to test the predicting model to evaluate
its performance and accuracy using a separate data set not used during the training process.
This process helps assess how well the model generalizes to new, unseen data and provides
insights into its predictive capabilities. Hence, to obtain a separate data set that was not
used during the regression model training, we used two grid models: IEEE-10 bus model
and a 14-bus grid model (grid models data are provided in Appendices C and D). The
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testing data were generated and processed the same way as the training data, using the
same simulation software, ETAP 12.6.0. Then, we used the trained regression model to
predict the dependent variable using the same independent variables as the testing data set.
And finally, we applied the same comparison criteria to assess the accuracy and precision
of our models. Both grid model results are, respectively, shown in Tables 5 and 6.

Table 5. Regression model testing results using IEEE-10 bus grid.

IEEE-10 Bus Model MSE RMSE MAE MAPE R2

Value 618.24 24.86 13.33 2.32 0.95
Recommendation <10 ~1

Table 6. Regression model testing results using 14-bus grid model.

14-Bus Grid Model MSE RMSE MAE MAPE R2

Value 970.55 31.15 21.89 2.24 0.95
Recommendation <10 ~1

The evaluation metrics indicate that the predictive model performs well, with
low error values and a high coefficient of determination (R2). Compared to a baseline
model using simple polynomial regression, the developed predictive model demon-
strates comparable performance, with slightly higher error metrics and lower R2 value
(Appendix C—Table A5).

While the developed predictive model demonstrates strong performance in predicting
the impact of a DER integration on the total technical losses of an electric grid, several
limitations should be acknowledged to provide a comprehensive understanding of its
capabilities and constraints. Firstly, the model’s predictive accuracy may be influenced by
the quality and representativeness of the training data. Hence, a larger data set for training
might help improve the predictivity of the model.

Additionally, the analysis of the predicted values across the three tested models
showed that the model tends to divert from the baseline model, thus resulting in higher
error when the load connected to the bus is high and the total impedance is high. This
divergence was less noticed once just one of these factors (high load or high total impedance)
was applicable. Lastly, the developed dynamic varying coefficient regression model was not
tested for radial topology. Additionally, the model was tested on a symmetrical balanced
load, considering a pure sine wave for voltage and current. Hence, further analysis is
required to test the validity of the proposed dynamic regression model for non-symmetrical
unbalanced loads. Therefore, while the predictive model offers valuable insights into the
impact of DER integration on the grid’s technical losses, it should be used judiciously to
make informed decisions in real-world scenarios. Ongoing refinement and validation of the
model are essential to address these limitations and enhance its robustness and applicability
in diverse contexts.

6. Conclusions

As the energy landscape continues to evolve, optimizing DERs and minimizing techni-
cal losses in the electric grid will play an increasingly crucial role. Regression models offer
a powerful tool for achieving these goals by analyzing vast amounts of data and predicting
the performance of DERs. By leveraging the power of predictive modeling, grid operators,
energy providers, and end consumers can unlock the true potential of DERs. This will lead
to a more sustainable and efficient energy system and pave the way for a greener and more
resilient future.

This article introduces a novel regression model for calculating technical losses in
electric power distribution systems. Developing accurate methods for estimating technical
losses is crucial for utilities to optimize their operations, enhance grid efficiency, and reduce
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financial losses. The regression model proposed in this study offers a data-driven approach
to estimate technical losses based on key system parameters and operational characteristics
such as DER integration level, line impedance, and active load connected to a certain
bus. One of the strengths of the proposed dynamic varying coefficient regression model is
its flexibility and simplicity, making it suitable for easy implementation in optimization
algorithms, control loops, or calculation models. The main advantage of such a model
is that it does not require considerable computational power or time and can be used
without unique technical expertise. Moreover, we have demonstrated the model’s ability
to accurately predict technical losses across various scenarios and operating conditions
through comprehensive data analysis and regression modeling techniques.

While the regression model shows promising results, it is essential to acknowledge its
limitations and areas for further improvement. Future research could focus on enhancing
the model’s predictive capabilities by training the model with a more extensive data set
and incorporating additional factors such as voltage levels, equipment conditions, and grid
modernization initiatives. Furthermore, validation studies in real-world utility settings are
valuable for assessing the model’s performance and practical utility.

Overall, the regression model presented in this article represents a significant advance-
ment in technical loss calculation in electric power distribution systems as a function of the
DER integration level. By providing utilities with a reliable tool for assessing the impact
of DER integration level on technical losses, the model contributes to the optimization
of grid operations, better selection of DER integration points for higher grid resilience
and efficiency, improved energy management, and, ultimately, the delivery of reliable and
cost-effective electricity to consumers. Continued research and collaboration in this area
will further advance our understanding of technical losses and support the development of
innovative solutions for a sustainable energy future.
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Appendix A. IEEE-33 Bus Grid Model Data
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Table A1. Buses resistance and reactance data.

Impedance Reference Connection x (Ohm) r (Ohm) Impedance z (Ohm)

Z1 Bus 0_1 0.0922 0.477 0.485829023

Z2 Bus 1_2 0.493 0.2511 0.553263238

Z3 Bus 2_3 0.366 0.1864 0.410732224

Z4 Bus 3_4 0.3811 0.1941 0.427682148

Z5 Bus 4_5 0.819 0.707 1.081947318

Z6 Bus 5_6 0.1872 0.6188 0.646496156

Z7 Bus 6_7 1.7114 1.2351 2.110535944

Z8 Bus 7_8 1.03 0.74 1.268266534

Z9 Bus 8_9 1.044 0.74 1.279662455

Z10 Bus 9_10 0.1966 0.065 0.207066559

Z11 Bus 10_11 0.3744 0.1238 0.394337165

Z12 Bus 11_12 1.468 1.155 1.867899623

Z13 Bus 12_13 0.5416 0.7129 0.895297141

Z14 Bus 13_14 0.591 0.526 0.791174443

Z15 Bus 14_15 0.7463 0.545 0.924115085

Z16 Bus 15_16 1.289 1.721 2.150200456

Z17 Bus 16_17 0.732 0.574 0.930215029

Z18 Bus 1_18 0.164 0.1565 0.226689766

Z19 Bus 18_19 1.5042 1.3554 2.02477821

Z20 Bus 19_20 0.4095 0.4784 0.629727568

Z21 Bus 20_21 0.7089 0.9373 1.175189559

Z22 Bus 2_22 0.4512 0.3083 0.546470795

Z23 Bus 22_23 0.898 0.7091 1.144214495

Z24 Bus 23_24 0.896 0.7011 1.137698207

Z25 Bus 5_25 0.203 0.1034 0.227816944

Z26 Bus 25_26 0.2842 0.1449 0.319007288

Z27 Bus 26_27 1.059 0.9337 1.411834512

Z28 Bus 27_28 0.8042 0.7006 1.066573017

Z29 Bus 28_29 0.5075 0.2585 0.56954236

Z30 Bus 29_30 0.9744 0.936 1.351129661

Z31 Bus 30_31 0.3105 0.3619 0.47684574

Z32 Bus 31_32 0.341 0.5302 0.63039118

Table A2. Buses load and total impedance values.

Bus Number Load (KW) Load (KVA) Total Impedance Z (Ohm)

1 100 117 0.4858

2 90 98.5 1.0391

3 120 144 1.4498

4 60 67.1 1.8775

5 60 63.2 2.9595
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Table A2. Cont.

Bus Number Load (KW) Load (KVA) Total Impedance Z (Ohm)

6 200 224 3.6060

7 200 224 5.7165

8 60 63.2 6.9848

9 60 63.2 8.2644

10 45 54.1 8.4715

11 60 69.5 8.8658

12 60 69.5 10.7337

13 120 144 11.6290

14 60 60.8 12.4202

15 60 63.2 13.3443

16 60 63.2 15.4945

17 90 98.5 16.4247

18 90 98.5 0.7125

19 90 98.5 2.7373

20 90 98.5 3.3670

21 90 98.5 4.5422

22 90 103 1.5856

23 420 465 2.7298

24 420 465 3.8675

25 60 65 3.1873

26 60 65 3.5063

27 60 63.2 4.9181

28 120 139 5.9847

29 200 632 6.5542

30 150 166 7.9054

31 210 233 8.3822

32 60 72.1 9.0126

Appendix B. Non Linear Fitting Equations

Ref. Equation Ref. Equation

1 Y = A*(X1ˆB)*X2ˆC 136 Y = (A+X2)/(B+C*X1ˆ2)+D*X1

2 Y = X1/(A+B*X2) 137 Y = A*X1ˆ(B*X2ˆC)+D*X1

3 Y = X2/(A+B*X1) 138 Y = A*X2ˆ(B*X1ˆC)+D*X1

4 Y = A*X1ˆ(B*X2) 139 Y = A*X1+B*X2+C*X1ˆ4

5 Y = A*X2ˆ(B*X1) 140 Y = A*X1+B*X1ˆ3+C*X2+D*X2ˆ3

6 Y = A*X1ˆ(B/X2) 141 Y = A*(X1ˆB)*LOG(X2+C)+D*X2

7 Y = A*X2ˆ(B/X1) 142 Y = A*(X2ˆB)*LOG(X1+C)+D*X2

8 Y = A*X1+B*X2ˆ2 143 Y = A/X1+B*EXP(C/X2)+D*X2

9 Y = A*X2+B*X1ˆ2 144 Y = A/X2+B*EXP(C/X1)+D*X2
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Table A2. Cont.

Ref. Equation Ref. Equation

10 Y = X1/(A+B*X2ˆ2) 145 Y = A/X1+B*EXP(C*X2)+D*X2

11 Y = X2/(A+B*X1ˆ2) 146 Y = A/X2+B*EXP(C*X1)+D*X2

12 Y = A*(BˆX1)*X2ˆC 147 Y = A*X1ˆ(B+C*X2)+D*X2

13 Y = A*(BˆX2)*X1ˆC 148 Y = A*X2ˆ(B+C*X1)+D*X2

14 Y = A*(X1*X2)ˆB 149 Y = A*X1ˆ(B+C/X2)+D*X2

15 Y = A*(X1/X2)ˆB 150 Y = A*X2ˆ(B+C/X1)+D*X2

16 Y = A*(X1/X2)ˆB+C 151 Y = A*X1ˆ(B+C*LOG(X2))+D*X2

17 Y = A*(Bˆ(1/X1))*X2ˆC 152 Y = A*X2ˆ(B+C*LOG(X1))+D*X2

18 Y = A*(Bˆ(1/X2))*X1ˆC 153 Y = A*X2ˆ(B+C/LOG(X1))+D*X2

19 Y = A+B/X1+C/X2ˆ2 154 Y = A*X1ˆ(B+C/LOG(X2))+D*X2

20 Y = A+B/X2+C/X1ˆ2 155 Y = A*EXP(B*X1+C*X2ˆ2)+D*X2

21 Y = A+B*X1+C/X2 156 Y = A*EXP(B*X2+C*X1ˆ2)+D*X2

22 Y = A+B*X2+C/X1 157 Y = A*EXP(B/X1+C*X2)+D*X2

23 Y = A*((X1/B)ˆC)*EXP(X2/B) 158 Y = A*EXP(B/X2+C*X1)+D*X2

24 Y = A*((X2/B)ˆC)*EXP(X1/B) 159 Y = (A+X1)/(B+C*X2)+D*X2

25 Y = A+B*X1+C*X2ˆ2 160 Y = (A+X2)/(B+C*X1)+D*X2

26 Y = A+B*X2+C*X1ˆ2 161 Y = (A+X1)/(B+C*X2ˆ2)+D*X2

27 Y = A*(X1ˆB)*X2ˆC+D 162 Y = (A+X2)/(B+C*X1ˆ2)+D*X2

28 Y = X1/(A+B*X2)+C 163 Y = A*X1ˆ(B*X2ˆC)+D*X2

29 Y = X2/(A+B*X1)+C 164 Y = A*X2ˆ(B*X1ˆC)+D*X2

30 Y = A*X1ˆ(B*X2)+C 165 Y = A*X1+B*X2+C*X2ˆ4

31 Y = A*X2ˆ(B*X1)+C 166 Y = A*X1+B/X1ˆ3+C*X2+D/X2ˆ3

32 Y = A*X1ˆ(B/X2)+C 167 Y = A*(X1ˆB)*LOG(X2+C)+D/X2

33 Y = A*X2ˆ(B/X1)+C 168 Y = A*(X2ˆB)*LOG(X1+C)+D/X2

34 Y = A*(Bˆ(1/X1))*X2ˆC+D 169 Y = A/X1+B*EXP(C/X2)+D/X2

35 Y = A*(Bˆ(1/X2))*X1ˆC+D 170 Y = A/X2+B*EXP(C/X1)+D/X2ˆ2

36 Y = X1/(A+B*X2ˆ2)+C 171 Y = A/X1+B*EXP(C*X2)+D/X2

37 Y = X2/(A+B*X1ˆ2)+C 172 Y = A/X2+B*EXP(C*X1)+D/X2ˆ2

38 Y = A*(BˆX1)*X2ˆC+D 173 Y = A*X1ˆ(B+C*X2)+D/X2

39 Y = A*(BˆX2)*X1ˆC+D 174 Y = A*X2ˆ(B+C*X1)+D/X2

40 Y = A*((X1/B)ˆC)*EXP(X2/B)+D 175 Y = A*X1ˆ(B+C/X2)+D/X2

41 Y = A*((X2/B)ˆC)*EXP(X1/B)+D 176 Y = A*X2ˆ(B+C/X1)+D/X2

42 Y = 1/(A+B*X1+C/X2) 177 Y = A*X1ˆ(B+C*LOG(X2))+D/X2

43 Y = 1/(A+B*X2+C/X1) 178 Y = A*X2ˆ(B+C*LOG(X1))+D/X2

44 Y = A+B*X1+C/X2ˆ2 179 Y = A*X2ˆ(B+C/LOG(X1))+D/X2

45 Y = A+B*X2+C/X1ˆ2 180 Y = A*X1ˆ(B+C/LOG(X2))+D/X2

46 Y = A*X1ˆ(B+C*X2) 181 Y = A*EXP(B*X1+C*X2ˆ2)+D/X2

47 Y = A*X2ˆ(B+C*X1) 182 Y = A*EXP(B*X2+C*X1ˆ2)+D/X2

48 Y = A*X1ˆ(B+C/X2) 183 Y = A*EXP(B/X1+C*X2)+D/X2

49 Y = A*X2ˆ(B+C/X1) 184 Y = A*EXP(B/X2+C*X1)+D/X2

50 Y = A*X1ˆ(B+C*LnX2) 185 Y = (A+X1)/(B+C*X2)+D/X2
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Table A2. Cont.

Ref. Equation Ref. Equation

51 Y = A*X2ˆ(B+C*LnX1) 186 Y = (A+X2)/(B+C*X1)+D/X2

52 Y = A*X2ˆ(B+C/LnX1) 187 Y = (A+X1)/(B+C*X2ˆ2)+D/X2

53 Y = A*X1ˆ(B+C/LnX2) 188 Y = (A+X2)/(B+C*X1ˆ2)+D/X2

54 Y = A*EXP(B*X1+C*X2ˆ2) 189 Y = A*X1ˆ(B*X2ˆC)+D/X2

55 Y = A*EXP(B*X2+C*X1ˆ2) 190 Y = A*X2ˆ(B*X1ˆC)+D/X2

56 Y = A*EXP(B/X1+C*X2) 191 Y = A*X1+B*X2+C/X2ˆ4

57 Y = A*EXP(B/X2+C*X1) 192 Y = A*X1+B/X1ˆ2+C*X2+D/X2ˆ2

58 Y = (A+X1)/(B+C*X2) 193 Y = A*(X1ˆB)*LOG(X2+C)+D/X1

59 Y = (A+X2)/(B+C*X1) 194 Y = A*(X2ˆB)*LOG(X1+C)+D/X1

60 Y = (A+X1)/(B+C*X2ˆ2) 195 Y = A/X1+B*EXP(C/X2)+D/X1ˆ2

61 Y = (A+X2)/(B+C*X1ˆ2) 196 Y = A/X2+B*EXP(C/X1)+D/X1

62 Y = A*EXP(B*X1)+C*EXP(D*X2) 197 Y = A/X1+B*EXP(C*X2)+D/X1ˆ2

63 Y = A*(EXP(B*X1)-EXP(C*X2)) 198 Y = A/X2+B*EXP(C*X1)+D/X1

64 Y = A*X1ˆB+C*X2ˆD 199 Y = A*X1ˆ(B+C*X2)+D/X1

65 Y = A*X1ˆB+C*EXP(D*X2) 200 Y = A*X2ˆ(B+C*X1)+D/X1

66 Y = A*X2ˆB+C*EXP(D*X1) 201 Y = A*X1ˆ(B+C/X2)+D/X1

67 Y = A*(X1ˆB)*(C-X2)ˆD 202 Y = A*X2ˆ(B+C/X1)+D/X1

68 Y = A*(X2ˆB)*(C-X1)ˆD 203 Y = A*X1ˆ(B+C*LOG(X2))+D/X1

69 Y = (A+B*X1ˆC)/(D+X2ˆC) 204 Y = A*X2ˆ(B+C*LOG(X1))+D/X1

70 Y = (A+B*X2ˆC)/(D+X1ˆC) 205 Y = A*X2ˆ(B+C/LOG(X1))+D/X1

71 Y = (A+B*X1)/(1+C*X2+D*X2ˆ2) 206 Y = A*X1ˆ(B+C/LOG(X2))+D/X1

72 Y = (A+B*X2)/(1+C*X1+D*X1ˆ2) 207 Y = A*EXP(B*X1+C*X2ˆ2)+D/X1

73 Y = A*X1ˆ(B*X2ˆC) 208 Y = A*EXP(B*X2+C*X1ˆ2)+D/X1

74 Y = A*X2ˆ(B*X1ˆC) 209 Y = A*EXP(B/X1+C*X2)+D/X1

75 Y = X1/(A+B*X2+C*SQ 210 Y = A*EXP(B/X2+C*X1)+D/X1

76 Y = X2/(A+B*X1+C*SQ 211 Y = (A+X1)/(B+C*X2)+D/X1

77 Y = A*X1ˆB+C*EXP(D/X2) 212 Y = (A+X2)/(B+C*X1)+D/X1

78 Y = A*X2ˆB+C*EXP(D/X1) 213 Y = (A+X1)/(B+C*X2ˆ2)+D/X1

79 Y = A*X2ˆ2+B*X2+C*X1+D 214 Y = (A+X2)/(B+C*X1ˆ2)+D/X1

80 Y = A*X1ˆ2+B*X1+C*X2+D 215 Y = A*X1ˆ(B*X2ˆC)+D/X1

81 Y = A*X1ˆ3+B*X1ˆ2+C*X1+D*X2 216 Y = A*X2ˆ(B*X1ˆC)+D/X1

82 Y = A*X2ˆ3+B*X2ˆ2+C*X2+D*X1 217 Y = A*X1+B*X2+C/X1ˆ4

83 Y = EXP(A+B/X1+C*LOG(X2)) 218 Y = A*X1+B/X1ˆ3+C*X2+D*Ln(X2)ˆ3

84 Y = EXP(A+B/X2+C*LOG(X1)) 219 Y = A*(X1ˆB)*LOG(X2+C)+D*Ln(X2)

85 Y = EXP(A+B/X1+C*LOG(X2))+D 220 Y = A*(X2ˆB)*LOG(X1+C)+D*Ln(X2)

86 Y = EXP(A+B/X2+C*LOG(X1))+D 221 Y = A/X1+B*EXP(C/X2)+D*Ln(X2)

87 Y = A*(X1ˆB)*LOG(X2+C) 222 Y = A/X2+B*EXP(C/X1)+D*Ln(X2)ˆ2

88 Y = A*(X2ˆB)*LOG(X1+C) 223 Y = A/X1+B*EXP(C*X2)+D*Ln(X2)

89 Y = A*(X1ˆB)*LOG(X2+C)+D 224 Y = A/X2+B*EXP(C*X1)+D*Ln(X2)ˆ2

90 Y = A*(X2ˆB)*LOG(X1+C)+D 225 Y = A*X1ˆ(B+C*X2)+D*Ln(X2)

91 Y = A/X1+B*EXP(C/X2)+D 226 Y = A*X2ˆ(B+C*X1)+D*Ln(X2)
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Ref. Equation Ref. Equation

92 Y = A/X2+B*EXP(C/X1)+D 227 Y = A*X1ˆ(B+C/X2)+D*Ln(X2)

93 Y = A/X1+B*EXP(C*X2)+D 228 Y = A*X2ˆ(B+C/X1)+D*Ln(X2)

94 Y = A/X2+B*EXP(C*X1)+D 229 Y = A*X1ˆ(B+C*LOG(X2))+D*Ln(X2)

95 Y = A*X1ˆ(B+C*X2)+D 230 Y = A*X2ˆ(B+C*LOG(X1))+D*Ln(X2)

96 Y = A*X2ˆ(B+C*X1)+D 231 Y = A*X2ˆ(B+C/LOG(X1))+D*Ln(X2)

97 Y = A*X1ˆ(B+C/X2)+D 232 Y = A*X1ˆ(B+C/LOG(X2))+D*Ln(X2)

98 Y = A*X2ˆ(B+C/X1)+D 233 Y = A*EXP(B*X1+C*X2ˆ2)+D*Ln(X2)

99 Y = A*X1ˆ(B+C*LOG(X2))+D 234 Y = A*EXP(B*X2+C*X1ˆ2)+D*Ln(X2)

100 Y = A*X2ˆ(B+C*LOG(X1))+D 235 Y = A*EXP(B/X1+C*X2)+D*Ln(X2)

101 Y = A*X2ˆ(B+C/LOG(X1))+D 236 Y = A*EXP(B/X2+C*X1)+D*Ln(X2)

102 Y = A*X1ˆ(B+C/LOG(X2))+D 237 Y = (A+X1)/(B+C*X2)+D*Ln(X2)

103 Y = A*EXP(B*X1+C*X2ˆ2)+D 238 Y = (A+X2)/(B+C*X1)+D*Ln(X2)

104 Y = A*EXP(B*X2+C*X1ˆ2)+D 239 Y = (A+X1)/(B+C*X2ˆ2)+D*Ln(X2)

105 Y = A*EXP(B/X1+C*X2)+D 240 Y = (A+X2)/(B+C*X1ˆ2)+D*Ln(X2)

106 Y = A*EXP(B/X2+C*X1)+D 241 Y = A*X1ˆ(B*X2ˆC)+D*Ln(X2)

107 Y = (A+X1)/(B+C*X2)+D 242 Y = A*X2ˆ(B*X1ˆC)+D*Ln(X2)

108 Y = (A+X2)/(B+C*X1)+D 243 Y = A*X1+B*X2+C*Ln(X2)ˆ4

109 Y = (A+X1)/(B+C*X2ˆ2)+D 244 Y = A*X1+B/X1ˆ2+C*X2+D*Ln(X2)ˆ2

110 Y = (A+X2)/(B+C*X1ˆ2)+D 245 Y = A*(X1ˆB)*LOG(X2+C)+D*Ln(X1)

111 Y = A*X1ˆ(B*X2ˆC)+D 246 Y = A*(X2ˆB)*LOG(X1+C)+D*Ln(X1)

112 Y = A*X2ˆ(B*X1ˆC)+D 247 Y = A/X1+B*EXP(C/X2)+D*Ln(X1)ˆ2

113 Y = A*X1+B*X2+C 248 Y = A/X2+B*EXP(C/X1)+D*Ln(X1)

114 Y = A*X1+B*X1ˆ2+C*X2+D*X2ˆ2 249 Y = A/X1+B*EXP(C*X2)+D*Ln(X1)ˆ2

115 Y = A*(X1ˆB)*LOG(X2+C)+D*X1 250 Y = A/X2+B*EXP(C*X1)+D*Ln(X1)

116 Y = A*(X2ˆB)*LOG(X1+C)+D*X1 251 Y = A*X1ˆ(B+C*X2)+D*Ln(X1)

117 Y = A/X1+B*EXP(C/X2)+D*X1 252 Y = A*X2ˆ(B+C*X1)+D*Ln(X1)

118 Y = A/X2+B*EXP(C/X1)+D*X1 253 Y = A*X1ˆ(B+C/X2)+D*Ln(X1)

119 Y = A/X1+B*EXP(C*X2)+D*X1 254 Y = A*X2ˆ(B+C/X1)+D*Ln(X1)

120 Y = A/X2+B*EXP(C*X1)+D*X1 255 Y = A*X1ˆ(B+C*LOG(X2))+D*Ln(X1)

121 Y = A*X1ˆ(B+C*X2)+D*X1 256 Y = A*X2ˆ(B+C*LOG(X1))+D*Ln(X1)

122 Y = A*X2ˆ(B+C*X1)+D*X1 257 Y = A*X2ˆ(B+C/LOG(X1))+D*Ln(X1)

123 Y = A*X1ˆ(B+C/X2)+D*X1 258 Y = A*X1ˆ(B+C/LOG(X2))+D*Ln(X1)

124 Y = A*X2ˆ(B+C/X1)+D*X1 259 Y = A*EXP(B*X1+C*X2ˆ2)+D*Ln(X1)

125 Y = A*X1ˆ(B+C*LOG(X2))+D*X1 260 Y = A*EXP(B*X2+C*X1ˆ2)+D*Ln(X1)

126 Y = A*X2ˆ(B+C*LOG(X1))+D*X1 261 Y = A*EXP(B/X1+C*X2)+D*Ln(X1)

127 Y = A*X2ˆ(B+C/LOG(X1))+D*X1 262 Y = A*EXP(B/X2+C*X1)+D*Ln(X1)

128 Y = A*X1ˆ(B+C/LOG(X2))+D*X1 263 Y = (A+X1)/(B+C*X2)+D*Ln(X1)

129 Y = A*EXP(B*X1+C*X2ˆ2)+D*X1 264 Y = (A+X2)/(B+C*X1)+D*Ln(X1)

130 Y = A*EXP(B*X2+C*X1ˆ2)+D*X1 265 Y = (A+X1)/(B+C*X2ˆ2)+D*Ln(X1)

131 Y = A*EXP(B/X1+C*X2)+D*X1 266 Y = (A+X2)/(B+C*X1ˆ2)+D*Ln(X1)

132 Y = A*EXP(B/X2+C*X1)+D*X1 267 Y = A*X1ˆ(B*X2ˆC)+D*Ln(X1)
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133 Y = (A+X1)/(B+C*X2)+D*X1 268 Y = A*X2ˆ(B*X1ˆC)+D*Ln(X1)

134 Y = (A+X2)/(B+C*X1)+D*X1 269 Y = A*X1+B*X2+C*Ln(X1)ˆ4

135 Y = (A+X1)/(B+C*X2ˆ2)+D*X1

Appendix C. The 14-Bus Grid Model Data
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Bus 5_6 Z5 1.531 1.622 2.230436056

Bus 6_7 Z6 0.9 0.78 1.190965994

Bus 7_8 Z7 2.2 1.05 2.437724349

Bus 8_9 Z8 4.52 2.1 4.984014446

Bus 9_10 Z9 5.5 3 6.264982043

Bus 4_11 Z10 0.54 0.92 1.066770828

Bus 11_12 Z11 1.29 1.06 1.66964068

Bus 9_13 Z12 0.93 0.8 1.226743657

Bus 13_14 Z13 2.1 1 2.32594067
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Table A4. Buses load and total impedance values.

Bus Reference Load (KVA) Load (KW) Total Impedance Z (Ohm)

2 1077 1000 0.430725179

3 901 850 0.494229588

4 1456 1400 1.882114198

5 1562 1200 2.808350194

6 1643 1530 5.03878625

7 788 780 6.229752245

8 1052 1050 8.667476593

9 712 700 13.65149104

10 1434 1420 19.91647308

11 636 550 2.948885027

12 1063 1020 4.618525706

13 873 800 14.8782347

14 761 635 17.20417537

Table A5. Regression equation coefficients and coefficient of determination (CoD).

R2 a b c

Bus 2 0.999773182 2.35 × 10−5 −0.06599 1116.619
Bus 3 0.999812644 1.91 × 10−5 −0.06524 1116.616
Bus 4 0.999998579 0.000353 −0.6958 1116.585
Bus 5 0.999999199 0.000479 −0.93365 1116.58
Bus 6 0.999999694 0.001858 −2.07243 1116.599
Bus 7 0.999953147 0.000752 −1.27143 1116.459
Bus 8 0.999999724 0.002145 −2.37369 1116.556
Bus 9 0.999991109 0.001346 −2.27562 1117.953

Bus 10 0.999993147 0.012075 −5.53086 1115.824
Bus 11 0.998644071 7.86 × 10−5 −0.29256 1116.588
Bus 12 0.998644071 0.001013 −0.67768 1117.429
Bus 13 0.999999455 0.002947 −2.77489 1116.533
Bus 14 0.999999423 0.002144 −2.25015 1116.548
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Table A6. Buses resistance and reactance data.

Bus Impedance Reference X (Ohm) R (Ohm) Z (Ohm)

Bus 1_2 Z1 0.1233 0.4127 0.430725

Bus 2_3 Z2 0.014 0.6057 0.605862

Bus 3_4 Z3 0.7463 1.205 1.417388

Bus 4_5 Z4 0.6984 0.6084 0.926236

Bus 5_6 Z5 1.9831 1.7276 2.630074

Bus 6_7 Z6 0.9053 0.7886 1.200607

Bus 7_8 Z7 2.0552 1.164 2.361936

Bus 8_9 Z8 4.7943 2.716 5.51017

Bus 9_10 Z9 5.3434 3.0264 6.14093
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Table A7. Buses load and total impedance values.

Bus Reference Load (KW) Load (KVA) Total Impedance Z (Ohm)

2 1840 1897 0.4307

3 980 1037 0.6059

4 1790 1845 1.4174

5 1598 2437 0.9262

6 1610 1718 2.6301

7 750 788 1.2006

8 1150 1152 2.3619

9 980 989 5.5102

10 1640 1652 6.1409
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