A Generalized Empirical Model for Velocity Deficit and Turbulent Intensity in Tidal Turbine Wake Accounting for the Effect of Rotor-Diameter-to-Depth Ratio
Abstract
:1. Introduction
2. Analytical Modelling
2.1. Velocity Deficit Models
2.1.1. Jensen Model
2.1.2. Bastankhah and Porté–Agel Model
2.1.3. Lam and Chen Model
2.1.4. Lo Brutto Model
2.2. Turbulence Intensity Model
3. Methodology
3.1. Numerical Method
Case Set-Up
3.2. Empirical Method
4. Results
4.1. Added Turbulent Intensity Model
4.2. Velocity Deficit Model
Velocity Deficit Wake Radius
5. Discussions
5.1. Effect of the Channel Depth
5.2. Effect of the Rotor Diameter to Depth (DH) Ratio
5.3. Effect of Ambient Turbulence
5.4. Effect of Thrust Coefficient
6. Conclusions
- The ADM underestimates the velocity deficit and turbulence intensity in the near wake; howver, it provides acceptable results in the far wake.
- For a given DH ratio, the center-line velocity deficit and turbulence intensity are identical irrespective of the turbine diameter.
- The bottom and surface effect can affect the wake when the rotor-diameter-to-depth ratio is high.
- 4.
- The TST wake is not affected by the channel depth but rather by the rotor-diameter-to-depth ratio.
- 5.
- The DH ratio affects the wake expansion due to the limited depth in shallow water causing compression in the mean shear layer in the vertical direction
- 6.
- Increasing ambient turbulence facilitates wake recovery due to the enhanced mixing process.
- 7.
- A simple empirical model is developed to estimate the velocity deficit and turbulence intensity in the far wake of TST in realistic tidal stream conditions.
- 8.
- The model is validated with TST experiments with reasonable results in the far wake region.
- 9.
- The wake of the tidal turbine is affected by the inflow turbulence, the rotor-diameter-to-depth ratio, and the thrust coefficient.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADM | Actuator Disk Model |
ALM | Actuator Line Model |
BEM | Blade Element Model |
CFD | Computational Fluid Dynamic |
CPD | Cells Per Diameter |
DH | Diameter to depth |
FS | Free Surface |
MS | Mid-Surface |
TST | Tidal Stream Turbine |
Appendix A. Wake Radius
References
- Boshell, F.; Hecke, J.; Salgado, A. Innovation Outlook: Ocean Energy Technologies; IRENA: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- Neary, V.S.; Haas, K.A.; Colby, J.A. Marine Energy Classification Systems: Tools for Resource Assessment and Design; Sandia National Lab: Albuquerque, NM, USA, 2019; p. 11. [Google Scholar]
- Stallard, T.; Collings, R.; Feng, T.; Whelan, J. Interactions between tidal turbine wakes: Experimental study of a group of three-bladed rotors. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120159. [Google Scholar] [CrossRef]
- Thiébaut, M.; Filipot, J.F.; Maisondieu, C.; Damblans, G.; Jochum, C.; Kilcher, L.F.; Guillou, S. Characterization of the vertical evolution of the three-dimensional turbulence for fatigue design of tidal turbines. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190495. [Google Scholar] [CrossRef]
- Gunawan, B.; Neary, V.S.; Colby, J. Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York. Renew. Energy 2014, 71, 509–517. [Google Scholar] [CrossRef]
- Li, Y.; Colby, J.A.; Kelley, N.; Thresher, R.; Jonkman, B.; Hughes, S. Inflow Measurement in a Tidal Strait for Deploying Tidal Current Turbines: Lessons, Opportunities and Challenges. In Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, 6–11 June 2010; Volume 3, pp. 569–576. [Google Scholar] [CrossRef]
- Thomson, J.; Polagye, B.; Durgesh, V.; Richmond, M.C. Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA. IEEE J. Ocean. Eng. 2012, 37, 363–374. [Google Scholar] [CrossRef]
- Milne, I.A.; Sharma, R.N.; Flay, R.G.J.; Bickerton, S. Characteristics of the turbulence in the flow at a tidal stream power site. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120196. [Google Scholar] [CrossRef]
- MacEnri, J.; Reed, M.; Thiringer, T. Influence of tidal parameters on SeaGen flicker performance. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120247. [Google Scholar] [CrossRef]
- Sellar, B.; Wakelam, G.; Sutherland, D.; Ingram, D.; Venugopal, V. Characterisation of Tidal Flows at the European Marine Energy Centre in the Absence of Ocean Waves. Energies 2018, 11, 176. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Jeong, H.; Tran, H.H.; Park, J.S.; Yang, C. Energy capture evaluation of tidal current turbines arrays in Uldolmok strait, South Korea. Ocean Eng. 2020, 195, 106675. [Google Scholar] [CrossRef]
- Wang, T.; Yang, Z. A Tidal Hydrodynamic Model for Cook Inlet, Alaska, to Support Tidal Energy Resource Characterization. J. Mar. Sci. Eng. 2020, 8, 254. [Google Scholar] [CrossRef]
- Perez, L.; Cossu, R.; Grinham, A.; Penesis, I. Seasonality of turbulence characteristics and wave-current interaction in two prospective tidal energy sites. Renew. Energy 2021, 178, 1322–1336. [Google Scholar] [CrossRef]
- Togneri, M.; Masters, I. Micrositing variability and mean flow scaling for marine turbulence in Ramsey Sound. J. Ocean Eng. Mar. Energy 2016, 2, 35–46. [Google Scholar] [CrossRef]
- Mercier, P.; Guillou, S.S. Spatial and temporal variations of the flow characteristics at a tidal stream power site: A high-resolution numerical study. Energy Convers. Manag. 2022, 269, 116123. [Google Scholar] [CrossRef]
- Guillou, N.; Neill, S.P.; Robins, P.E. Characterising the tidal stream power resource around France using a high-resolution harmonic database. Renew. Energy 2018, 123, 706–718. [Google Scholar] [CrossRef]
- EMEC. Tidal Clients: EMEC: European Marine Energy Centre; EMEC: Stromness, UK, 2022. [Google Scholar]
- OpenHydro. OpenHydro Alderney |Tethys. 2019. Available online: https://tethys.pnnl.gov/project-sites/openhydro-alderney (accessed on 11 July 2022).
- TIGER-intereg. Le Raz Blanchard Demonstration Site. 2022. Available online: https://interregtiger.com/expanding-the-marine-energy-market/%20development-sites-and-procurement/le-raz-blanchard/ (accessed on 18 May 2022).
- Turnock, S.R.; Phillips, A.B.; Banks, J.; Nicholls-Lee, R. Modelling tidal current turbine wakes using a coupled RANS-BEMT approach as a tool for analysing power capture of arrays of turbines. Ocean Eng. 2011, 38, 1300–1307. [Google Scholar] [CrossRef]
- Walker, S.R.J.; Thies, P.R. Failure and Reliability Growth in Tidal Stream Turbine Deployments; EU: Maastricht, The Netherlands, 2021; p. 7. [Google Scholar]
- Bahaj, A.S.; Myers, L.E.; Thomson, M.D.; Jorge, N. Characterising the wake of horizontal axis marine current turbines. In Proceedings of the 7th European Wave and Tidal Energy Conference, Porto, Portugal, 11–13 September 2007; p. 10. [Google Scholar]
- Stallard, T.; Feng, T.; Stansby, P. Experimental study of the mean wake of a tidal stream rotor in a shallow turbulent flow. J. Fluids Struct. 2015, 54, 235–246. [Google Scholar] [CrossRef]
- Mycek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivoalen, E. Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine. Renew. Energy 2014, 66, 729–746. [Google Scholar] [CrossRef]
- Blackmore, T.; Batten, W.M.J.; Bahaj, A.S. Influence of turbulence on the wake of a marine current turbine simulator. Proc. R. Soc. A Math. Phys. Eng. Sci. 2014, 470, 20140331. [Google Scholar] [CrossRef]
- Ebdon, T.; Allmark, M.J.; O’Doherty, D.M.; Mason-Jones, A.; O’Doherty, T.; Germain, G.; Gaurier, B. The impact of turbulence and turbine operating condition on the wakes of tidal turbines. Renew. Energy 2021, 165, 96–116. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, B.; Sun, J.; Guo, J.; Wu, W. Hydrodynamic effects of the ratio of rotor diameter to water depth: An experimental study. Renew. Energy 2019, 136, 331–341. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zheng, J.; Zhang, J.; Zheng, Y.; Zang, W.; Lin, X.; Fernandez-Rodriguez, E. Experimental investigation into effects of boundary proximity and blockage on horizontal-axis tidal turbine wake. Ocean Eng. 2021, 225, 108829. [Google Scholar] [CrossRef]
- Ahmed, U.; Apsley, D.D.; Afgan, I.; Stallard, T.; Stansby, P.K. Fluctuating loads on a tidal turbine due to velocity shear and turbulence: Comparison of CFD with field data. Renew. Energy 2017, 112, 235–246. [Google Scholar] [CrossRef]
- Jump, E.; Macleod, A.; Wills, T. Review of tidal turbine wake modelling methods. Int. Mar. Energy J. 2020, 3, 91–100. [Google Scholar] [CrossRef]
- Thiébot, J.; Djama Dirieh, N.; Guillou, S.; Guillou, N. The Efficiency of a Fence of Tidal Turbines in the Alderney Race: Comparison between Analytical and Numerical Models. Energies 2021, 14, 892. [Google Scholar] [CrossRef]
- Mycek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivoalen, E. Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines. Renew. Energy 2014, 68, 876–892. [Google Scholar] [CrossRef]
- Bai, G.; Li, J.; Fan, P.; Li, G. Numerical investigations of the effects of different arrays on power extractions of horizontal axis tidal current turbines. Renew. Energy 2013, 53, 180–186. [Google Scholar] [CrossRef]
- Lo Brutto, O.A.; Nguyen, V.T.; Guillou, S.S.; Thiébot, J.; Gualous, H. Tidal farm analysis using an analytical model for the flow velocity prediction in the wake of a tidal turbine with small diameter-to-depth ratio. Renew. Energy 2016, 99, 347–359. [Google Scholar] [CrossRef]
- Pyakurel, P.; Tian, W.; VanZwieten, J.H.; Dhanak, M. Characterization of the mean flow field in the far wake region behind ocean current turbines. J. Ocean Eng. Mar. Energy 2017, 3, 113–123. [Google Scholar] [CrossRef]
- Shariff, K.; Guillou, S. Developing an empirical model for added turbulence in a wake of tidal turbine. In Proceedings of the 25 ème Congrès Français de Mécanique, Nantes, France, 29 August–2 September 2022; p. 10. [Google Scholar]
- Pope, S.B.; Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Jensen, N.O. A Note on Wind Generator Interaction; Risø National Laboratory: Roskilde, Denmark, 1983; OCLC: 144692423. [Google Scholar]
- Katic, I.; Højstrup, J.; Jensen, N. A Simple Model for Cluster Efficiency: European Wind Energy Association Conference and Exhibition. In EWEC’86. Proceedings; A. Raguzzi: Rome, Italy, 1987; Volume 1, pp. 407–410. [Google Scholar]
- Barthelmie, R.J.; Larsen, G.C.; Frandsen, S.T.; Folkerts, L.; Rados, K.; Pryor, S.C.; Lange, B.; Schepers, G. Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar. J. Atmos. Ocean. Technol. 2006, 23, 888–901. [Google Scholar] [CrossRef]
- Bastankhah, M.; Porté-Agel, F. A new analytical model for wind-turbine wakes. Renew. Energy 2014, 70, 116–123. [Google Scholar] [CrossRef]
- Lam, W.H.; Chen, L. Equations used to predict the velocity distribution within a wake from a horizontal-axis tidal-current turbine. Ocean Eng. 2014, 79, 35–42. [Google Scholar] [CrossRef]
- Jo, C.H.; Lee, J.H.; Rho, Y.H.; Lee, K.H. Performance analysis of a HAT tidal current turbine and wake flow characteristics. Renew. Energy 2014, 65, 175–182. [Google Scholar] [CrossRef]
- Yazicioglu, H.; Tunc, K.M.; Ozbek, M.; Kara, T. Simulation of electricity generation by marine current turbines at Istanbul Bosphorus Strait. Energy 2016, 95, 41–50. [Google Scholar] [CrossRef]
- Palm, M.; Huijsmans, R.; Pourquie, M.; Sijtstra, A. Simple Wake Models for Tidal Turbines in Farm Arrangement. In Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, 6–11 June 2010; Volume 3, pp. 577–587. [Google Scholar] [CrossRef]
- Lo Brutto, O.A.; Thiébot, J.; Guillou, S.S.; Gualous, H. A semi-analytic method to optimize tidal farm layouts – Application to the Alderney Race (Raz Blanchard), France. Appl. Energy 2016, 183, 1168–1180. [Google Scholar] [CrossRef]
- Frandsen, S.; Barthelmie, R.; Pryor, S.; Rathmann, O.; Larsen, S.; Højstrup, J.; Thøgersen, M. Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy 2006, 9, 39–53. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, P.; Sun, H. A Novel Analytical Wake Model with a Cosine-Shaped Velocity Deficit. Energies 2020, 13, 3353. [Google Scholar] [CrossRef]
- Ishihara, T.; Qian, G.W. A new Gaussian-based analytical wake model for wind turbines considering ambient turbulence intensities and thrust coefficient effects. J. Wind Eng. Ind. Aerodyn. 2018, 177, 275–292. [Google Scholar] [CrossRef]
- Lam, W.H.; Chen, L.; Hashim, R. Analytical wake model of tidal current turbine. Energy 2015, 79, 512–521. [Google Scholar] [CrossRef]
- Syed Ahmed Kabir, I.F.; Safiyullah, F.; Ng, E.; Tam, V.W. New analytical wake models based on artificial intelligence and rivalling the benchmark full-rotor CFD predictions under both uniform and ABL inflows. Energy 2020, 193, 116761. [Google Scholar] [CrossRef]
- Quarton, D.C.; Ainslie, J.F. Turbulence in Wind Turbine Wakes. Wind. Eng. 1990, 14, 15–23. [Google Scholar]
- Frandsen, S.; Thøgersen, M.L. Integrated Fatigue Loading for Wind Turbines in Wind Farms by Combining Ambient Turbulence and Wakes. Wind Eng. 1999, 23, 327–339. [Google Scholar]
- Crespo, A.; Hernández, J. Turbulence characteristics in wind-turbine wakes. J. Wind Eng. Ind. Aerodyn. 1996, 61, 71–85. [Google Scholar] [CrossRef]
- Shariff, K.B.; Guillou, S.S. An empirical model accounting for added turbulence in the wake of a full-scale turbine in realistic tidal stream conditions. Appl. Ocean Res. 2022, 128, 103329. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Guillou, S.S.; Thiébot, J.; Santa Cruz, A. Modelling turbulence with an Actuator Disk representing a tidal turbine. Renew. Energy 2016, 97, 625–635. [Google Scholar] [CrossRef]
- Zhang, Y.; Fernandez-Rodriguez, E.; Zheng, J.; Zheng, Y.; Zhang, J.; Gu, H.; Zang, W.; Lin, X. A Review on Numerical Development of Tidal Stream Turbine Performance and Wake Prediction. IEEE Access 2020, 8, 79325–79337. [Google Scholar] [CrossRef]
- El Kasmi, A.; Masson, C. An extended k–ϵ model for turbulent flow through horizontal-axis wind turbines. J. Wind Eng. Ind. Aerodyn. 2008, 96, 103–122. [Google Scholar] [CrossRef]
- Rethore, P.E.; Sørensen, N.N.; Bechmann, A.; Zhale, F. Study of the atmospheric wake turbulence of a CFD actuator disc model. In Proceedings of the 2009 European Wind Energy Conference and Exhibition (EWEC), Marseille, France, 16–19 March 2009; WindEurope: Brussels, Belgium, 2009; p. 10. [Google Scholar]
- Shives, M.; Crawford, C. Tuned actuator disk approach for predicting tidal turbine performance with wake interaction. Int. J. Mar. Energy 2017, 17, 1–20. [Google Scholar] [CrossRef]
- McTavish, S.; Feszty, D.; Nitzsche, F. An experimental and computational assessment of blockage effects on wind turbine wake development. Wind Energy 2014, 17, 1515–1529. [Google Scholar] [CrossRef]
- Olczak, A.; Stallard, T.; Feng, T.; Stansby, P.K. Comparison of a RANS blade element model for tidal turbine arrays with laboratory scale measurements of wake velocity and rotor thrust. J. Fluids Struct. 2016, 64, 87–106. [Google Scholar] [CrossRef]
- Myers, L.; Shah, K.; Galloway, P. Design, commissioning and performance of a device to vary the turbulence in a recirculating flume. In Proceedings of the 10th European Wave and Tidal Energy Conference, Aalborg, Denmark, 2–5 September 2013; p. 8. [Google Scholar]
- Blackmore, T.; Batten, W.M.J.; Harrison, M.E.; Bahaj, A.S. The Sensitivity of Actuator-Disc RANS Simulations to Turbulence Length Scale Assumptions. In Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK, 5–9 September 2011; p. 10. [Google Scholar]
Location | Method | U (m/s) | TI (%) | H (m) | Ref. |
---|---|---|---|---|---|
Alderney Race, France | ADCP | 1.5–4.0 | 8–14 | 35 | [4] |
East River, NY | ADV | 2.0 | 15 | 9.2 | [5] |
East River, NY | ADCP | 1.5–2.3 | 16–24 | 9.2 | [6] |
Puget Sound, USA | AWAC | 2.0–3.2 | 8–11 | 56 | [7] |
Sound of Islay, UK | ADV | 2.0–2.5 | 11–13 | 55 | [8] |
Strangford Lough, UK | ECM | 1.5–3.5 | 4–9 | 24 | [9] |
EMEC Orkney, UK | ADCP | 1.9–3.0 | 11–16 | 43 | [10] |
Uldolmok Strait, South Korea | ADCP | 2.0–2.7 | 10–18 | 20 | [11] |
Cook Inlet, USA | ADCP | 2.0 | 14 | 34 | [12] |
Bank Strait, Australia | ADCP | 1.2–2.2 | 10–16 | 60 | [13] |
Clarence Strait, Australia | ADCP | 1.4–2.5 | 10–20 | 40 | [13] |
Ramsey Sound, UK | ADCP | 1.2–3.0 | 8–16 | 40 | [14] |
Paimpol-Bréhat, France | ADCP | 1.0–3.0 | - | 30 | [15] |
Fromveur Strait, France | ADCP | 2.0–2.5 | - | 50 | [16] |
Model | Principles | Profile | Wake Expansion Law | Added Turb. | Application |
---|---|---|---|---|---|
Jensen [38] | MC | top-hat | linear | – | wind turbines |
Frandsen [47] | MC & MT | top-hat | non-linear | – | wind turbines |
B-P [41] | MT | Gaussian | linear | – | wind turbines |
Zhang [48] | MC & MT | Cosine | non-linear | Yes | wind turbines |
Ishihara [49] | MT | Gaussian | linear | – | wind turbines |
Lam [50] | MT | Gaussian | linear | – | tidal turbines |
Lo Brutto [34] | MC | top-hat | non-linear | – | tidal turbines |
Proposed | MC | Gaussian | non-linear | Yes | tidal turbines |
D/H | 20% | 40% | 60% | |
---|---|---|---|---|
H (m) | ||||
10 | 2 | 4 | 6 | |
25 | 5 | 10 | 15 | |
35 | 7 | 14 | 21 | |
50 | 10 | 20 | 30 |
K | ||
---|---|---|
1 | 0.64 | 0.51 |
2 | 0.89 | 0.59 |
3 | 0.98 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shariff, K.B.; Guillou, S.S. A Generalized Empirical Model for Velocity Deficit and Turbulent Intensity in Tidal Turbine Wake Accounting for the Effect of Rotor-Diameter-to-Depth Ratio. Energies 2024, 17, 2065. https://doi.org/10.3390/en17092065
Shariff KB, Guillou SS. A Generalized Empirical Model for Velocity Deficit and Turbulent Intensity in Tidal Turbine Wake Accounting for the Effect of Rotor-Diameter-to-Depth Ratio. Energies. 2024; 17(9):2065. https://doi.org/10.3390/en17092065
Chicago/Turabian StyleShariff, Kabir Bashir, and Sylvain S. Guillou. 2024. "A Generalized Empirical Model for Velocity Deficit and Turbulent Intensity in Tidal Turbine Wake Accounting for the Effect of Rotor-Diameter-to-Depth Ratio" Energies 17, no. 9: 2065. https://doi.org/10.3390/en17092065
APA StyleShariff, K. B., & Guillou, S. S. (2024). A Generalized Empirical Model for Velocity Deficit and Turbulent Intensity in Tidal Turbine Wake Accounting for the Effect of Rotor-Diameter-to-Depth Ratio. Energies, 17(9), 2065. https://doi.org/10.3390/en17092065