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Abstract: The deployment of a green power alternative within an isolated network, powered by
renewable energy sources, in the “Three North” region of China can facilitate the substitution of
high-energy-consuming industrial loads with green power. However, an inadequate power supply
configuration may lead to economic and reliability issues. To address this problem, effective capacity
allocation within the green power alternative isolated network is proposed. The capacity allocation
process starts with the design of a network structure that aligns with local conditions. Subsequently,
a capacity allocation model is developed, considering economic factors, renewable energy utilization
efficiency, and system reliability. The gray wolf optimizer is enhanced to establish a capacity allocation
method for the green power alternative isolated network. This method is then employed to simulate
and assess the performance of the network. The results indicate that the green alternative isolated grid
can successfully facilitate green power substitution, satisfying the energy requirements of the loads.

Keywords: green power substitution; capacity allocation; electrolytic aluminum; improvement of
gray wolf optimizer

1. Introduction

To address the energy crisis and mitigate the impact of global warming on human
society, energy conservation, emissions reduction, and the development of a low-carbon
economy have become the prevailing trends in the energy sector worldwide. In recent years,
the expansion of China’s wind and photovoltaic power generation capacity connected to
the grid has led to increasingly severe energy consumption challenges. The phenomenon
of wind and solar energy waste not only squanders investments in clean energy and
resources but also, to some extent, hampers the development of subsequent wind and
photovoltaic power initiatives. High-energy-consuming loads are characterized by their
large unit capacities and concentration. According to data from 2015, mentioned in the
literature [1], the power consumption per ton for electrolytic aluminum production was
13,000–14,000 kWh, for electrolytic manganese production it was 5400–6200 kWh, and for
iron and steel production, it was 450–500 kWh. Among these, electrolytic aluminum had the
highest total power consumption, exceeding that of iron and steel and being significantly
higher than other high-energy-consuming loads. Electrolytic aluminum is noted for both
its high unit energy consumption and high total energy consumption. By 2021, the shares
of thermal power and hydropower in China’s aluminum consumption were 82% and 16%,
respectively, while other renewable energy sources remained relatively marginal, indicating
an urgent need for green transformation in the aluminum industry.

Usually, self-owned power plants for aluminum electrolysis are generally constructed
near hydroelectric stations, but with technological advancements, this situation is likely to
change significantly in the future. Firstly, the technologies for wind power and photovoltaic
power are rapidly advancing. The cost of wind power has already become lower than that
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of thermal power, and the cost of photovoltaic power is also lower than that of most thermal
power. The costs of photovoltaic and wind power are approaching those of hydroelectric
power, and in the future, they are expected to be lower than hydroelectric costs. Secondly,
the locations where China’s rivers can accommodate hydroelectric construction are nearly
saturated, and hydroelectric power is easily affected by seasonal variations, thus impacting
aluminum electrolysis production. Lastly, among the top three provinces in China in terms
of aluminum electrolysis capacity are Xinjiang and Inner Mongolia, which cannot provide
large amounts of hydroelectric power for aluminum electrolysis loads. However, these
regions have abundant wind and solar resources. Therefore, utilizing renewable energy
to replace high-energy-consuming loads in such areas is a suitable choice. Hence, green
energy alternatives for aluminum electrolysis should consider making appropriate plans
based on corresponding scenarios.

In areas abundant in wind and solar energy, constructing an isolated network for
green power replacement of high-energy-consuming loads, exemplified by aluminum
electrolysis [2], is extremely meaningful. It is important to study the construction of
isolation networks for green power substitution of high energy-consuming loads, which
is an effective strategy to ensure the local consumption of renewable energy, optimize
the utilization of these resources, and advance the replacement of green power in energy-
intensive industries.

Numerous studies have been conducted on the capacity allocation of green power
alternatives. Literature [3] evaluates the potential for green power substitution in rail
transportation. Literature [4] proposes three models of charging stations: one with an
energy storage system, one with a photovoltaic system, and one combining both systems.
It was demonstrated that the combined photovoltaic and energy storage system could
reduce costs while promoting the use of green electricity. Literature [5] establishes a multi-
objective optimal allocation model for charging stations, aiming to minimize the annual
construction cost, the cost of abandoned light and lost load, and the total emission cost
annually. Literature [6] develops a design model for highway microgrids using wind
and solar resources, focused on minimizing the annualized integrated cost for microgrid
capacity allocation. Literature [7] discusses a microgrid with a school as the case study,
optimizing the power supply configuration with economic considerations. Literature [8]
examines a direct-supply system in buildings, focusing on improving the load supply
rate and smoothing the power consumption curve with two optimization objectives, and
explores equipment capacity configuration methods for the building’s Power-Energy-
Demand Flexibility (PEDF) system. Literature [9] focuses on an independent microgrid in
a plateau area, proposing an optimization method for configuring power supply capacity
based on typical meteorological years and time-shifted oxygen production loads. The
goal is to minimize the average annual cost over the microgrid’s lifecycle. Literature [10]
optimizes the power capacity allocation for an integrated wind, solar, hydrogen, and
storage power supply system, establishing a model to minimize unit power generation costs.
Literature [11] formulates a mathematical model for each unit in a grid-connected microgrid,
proposing an operational strategy and a comprehensive capacity optimization objective
function considering average annual investment costs, operation and maintenance costs,
replacement costs, outage compensation, power purchase costs, operational revenue, and
end-of-life recycling benefits. Literature [12] proposes a wind–solar–hydrogen microgrid
capacity allocation method based on cooperative games, considering the uncertainties of
wind and solar energy, and aims to maximize the monthly net return on invested capacity.
Literature [13] proposes an optimization model for storage capacity allocation from the
power plant side, prioritizing the reduction of average photovoltaic power volatility and
storage system costs with a two-tiered optimization approach focusing on both cost and
volatility minimization.

Literature [14] constructs an optimal energy storage capacity allocation model aimed at
achieving the best capacity ratio and minimizing investment costs. It introduces a discrete
particle swarm algorithm to solve the model and obtain the optimal energy storage capacity
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allocation results. Literature [15] develops a two-layer optimization model for energy
systems in rural areas, employing a particle swarm algorithm combined with mixed integer
linear programming to determine the optimal configuration. Literature [16] is based on a
composite energy system optimal planning and configuration method, along with a hybrid
optimization algorithm proposed in this study. It focuses on comprehensive optimization
objectives, including whole life cycle cost (LCC) and minimal energy consumption, for
optimal capacity allocation. The study analyzes the results of energy system capacity
allocation under various optimization objectives and operational performance on a typical
day. Literature [17] establishes a two-layer collaborative optimization model that addresses
both system capacity planning and dispatch operations. The upper layer optimizes ca-
pacity allocation with goals of efficiency and economy, while the lower layer focuses on
minimizing operating costs to achieve the best solution. Literature [18] constructs an opti-
mization objective function that emphasizes comprehensive performance, supplemented
by investment costs. It proposes a two-stage capacity optimization allocation method based
on orthogonal design preferences and intelligent algorithm optimization. Literature [19]
rationalizes the allocation of each power source in residential areas with the objective of
maximizing annual benefits. Literature [20] delineates a tripartite capacity with the goal of
maximizing each investor’s return while considering operating costs. Literature [21] targets
the average annual return over the operating life of wind, solar, and storage equipment
as the optimization objective and adopts three game models for the rational allocation of
these resources. Literature [22] proposes a method to calculate the equipment capacity of
a hybrid PV–wind–battery system, as well as to balance generation and demand power,
aiming to minimize annual energy production costs and solve the capacity allocation issue.
Literature [23] prioritizes economy, introduces a lost-load penalty function, as well as a
power-abandonment penalty function, and seeks to minimize comprehensive costs and
expenses as the objective function to derive the optimal configuration of wind, solar, diesel,
and storage systems.

Literature [24,25] considers the reliability and economy of microgrids to find the opti-
mal solution for microgrid power supply. Literature [26] evaluates the reliability of power
supply, the complementary characteristics of wind and solar power, and power fluctuations
in the grid from both independent and grid-connected operations, with the goal of mini-
mizing system costs as the objective for capacity allocation. The results of the above studies
on green power substitution show that the penetration rate of green power can be signifi-
cantly increased through rational allocation. However, these studies primarily focus on
green power substitution systems for transportation and parks, revealing some limitations
in the capacity allocation for industrial loads. In exploring capacity allocation for green
power alternative systems for industrial loads, Literature [27] establishes a multi-objective
optimal allocation model aimed at maximizing the annual net return of the microgrid, with
a particular focus on maximizing in situ PV consumption rate. Literature [28,29] constructs
a multi-objective optimization model for the optimal allocation of energy storage capacity
in industrial PV microgrids, with the objectives of maximizing PV utilization and annual
net profit. Literature [30] optimizes wind and solar capacity in the captive power plant
of aluminum electrolysis enterprises with an economic focus, but it does not consider the
flexibility transformation of thermal power units, which limits the study’s potential to
enhance the green power penetration rate in aluminum electrolysis.

To address a series of issues caused by irrational allocation and to provide a reliable
reference scheme for promoting green power substitution in high energy-consuming loads,
we have chosen Xinjiang, China, as the case study. Here, we design a topology for green
power substitution specifically tailored for aluminum electrolysis, combining the local
actual conditions. We also propose a capacity allocation solution method based on the im-
proved gray wolf optimizer, which effectively resolves the capacity allocation model. This
method allows us to compare different configuration schemes and select the optimal one.
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2. Topology and Operation Strategy of Green Power Substitution Isolated Grids

Wind power generation is subject to instability and uncontrollability. The output from
a wind farm with an installed capacity of 200 MW over ten days is depicted in Figure 1.
Similarly, photovoltaic power generation also experiences these issues. Consequently, when
connecting high-energy-consuming loads to renewable energy sources, it is essential to
have an adequate number of flexible power sources to mitigate the uncertainty inherent in
renewable energy generation.
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2.1. Topology of Green Power Substitution Isolated Grids

The “Three North” region of China is abundant in coal resources, which makes the
construction of thermal power units less geographically restrictive. Opting for thermal
power units that have been modified for flexibility as the flexible power sources in green
energy alternatives for isolated grids capitalizes on the region’s vast coal resources. This
approach addresses the variability of renewable power generation and ensures the stable
operation of the system.

Thus, the green power alternative isolated grid system comprises renewable energy
sources, such as wind and photovoltaic power, along with energy storage and thermal
power units that have been enhanced for flexibility. This paper will analyze three scenarios
for capacity allocation within the green power alternative isolated grid system. Scenario 3
is illustrated in Figure 2, while the other two scenarios share similarities with Figure 2.

Scenario 1: photovoltaic power + flexibility modified thermal unit;
Scenario 2: wind power + flexibility modified thermal unit;
Scenario 3: wind power + photovoltaic power + flexibility modified thermal unit.
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2.1.1. Wind Power Model

The relationship between wind speed and the wind turbine’s power output can be
approximated by Equation (1).

WT(t) =


0 0 ≤ v < vci/v ≥ vco

Pr(v−vci)
vr−vci

vci ≤ v ≤ vr

Pr vr ≤ v < vco

(1)

where vci is the tangential wind speed at the wind turbine; vr is the rated wind speed; vco
is the tangential wind speed; Pr is the rated output power of the wind turbine. When the
wind speed is between vci and vr, the wind turbine’s output power is approximately linear.

2.1.2. Photovoltaic Power Generation Model

The output of photovoltaic power generation is primarily influenced by factors such
as solar radiation and ambient temperature. The relationship between its output and these
factors is expressed in Equation (2).

PV(t) = Pstc
Ea

Estc
[1 + ↕(ta − tstc)] (2)

where Estc represents the standard conditions of solar irradiance, Ea is the workplace solar
irradiance at the workplace, tstc denotes the standard conditions of temperature, ta is the
workplace temperature, ↕ is the power temperature coefficient, Pstc represents the standard
conditions of the solar power generation system’s rated power, PV(t) represents the output
power of the photovoltaic power generation system at the operating point at time t.

2.1.3. Energy Storage Model

The state of charge (SOC) of the energy storage device at time t + 1 is determined by
the electricity supply and demand in the system at the previous moment, time t, as shown
in Equation (3).

See(t + 1) =

 See(t) +
Pcha(t)∆t

ηcha

See(t)− ηdisPdis(t)∆t
(3)

where See(t) and See(t + 1) denote the charge capacity of the energy storage system at times
t and t + 1, respectively; Pcha(t) and Pdis(t) represent the charging power or discharge
power of the energy storage system at time t, respectively; ηcha and ηdis are the charging
and discharging efficiencies of the energy storage system, respectively.

2.1.4. Peak Shaving Cost Model of Thermal Power Units

The operational process of thermal power units can be categorized based on regula-
tion capacity and cost characteristics into regular peak regulation (RPR) and deep peak
regulation (DPR), with the latter subdivided into oil-free deep peak regulation (DPR)
and oil-assisted deep peak regulation (ODPR), depending on whether oil is used during
operation. The peak shaving process is depicted in Figure 3.
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During the regular peaking phase (RPR), the peaking cost consists of fuel expenses,
typically calculated using the coal consumption characteristic function, as shown in
Equation (4).

Ccoal(Pth(t)) = (aPth(t)
2 + bPth(t) + c)qcoal (4)
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where Pth is the unit output power; a, b, c are coefficients of the quadratic, linear, and
constant terms of the unit consumption characteristic function, respectively, and their
values depend on the type of thermal power unit, the boiler type, and the coal quality; qcoal
represents the coal price.

During deep peaking operations (DPR), thermal power units operate away from
their design values, significantly decreasing power generation efficiency, shortening unit
lifespan, and increasing generation costs. The loss cost of the unit can be estimated using
the Manson–Coffin formula, which considers the number of cycles in the fracturing cycle,
as shown in Equation (5).

Cli f e(Pth(t)) =
1

Nt
Cth (5)

In oil-free deep peaking (ODPR), the unit’s cost is the sum of the fuel cost and the
unit’s loss cost. During deep peaking with oil, the unit requires oil injection to maintain
normal operation, thus necessitating the inclusion of oil injection costs at this stage. Overall,
thermal power units exhibit different characteristics during various peaking stages, and
their peaking costs are presented in Equation (6).

Cth,p(t) =
Ccoal(Pth(t)) Pb ≤ Pth(t) ≤ Pmax

Ccoal(Pth(t)) + Cli f e(Pth(t)) Pa ≤ Pth(t) ≤ Pb

Ccoal(Pth(t)) + Cli f e(Pth(t)) + Coil(Pth(t)) Pmin ≤ Pth(t) ≤ Pa

(6)

2.1.5. Controllable Load Characteristics of Electrolytic Aluminum

The electrolytic aluminum load is a typical heat storage type load with significant
thermal inertia. The normal operating temperature for aluminum electrolysis loads is
between 950 and 970 degrees Celsius. High temperature requirements exist during the op-
eration of aluminum electrolysis loads, necessitating continuous energy supply to maintain
stable operations.

Figure 4 shows the equivalent circuit model of aluminum electrolysis [31]. In this
model, VAH and VAL represent the high- and low-voltage side voltages of the AC busbars,
respectively; k denotes the turns ratio of the on-load tap changer, and LSR stands for the
equivalent inductance value of the saturable reactor. Vd and Id represent the DC voltage
and DC current of the electrolytic cell, respectively. Ed and Rd represent the counter electro-
motive force and equivalent resistance inside the electrolytic cell. As indicated in Figure 4,
the active power of the electrolytic aluminum load can be effectively controlled by adjusting
the AC side voltage, the on-load transformer ratio, and the saturation reactor voltage.
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The power of the electrolytic aluminum load is shown in Equation (7).

PASL = Vd Id =
Vd(Vd − Ed)

Rd
(7)
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The quantitative relationship between the DC voltage Vd and the high-voltage side
bus voltage VAH is illustrated in Equation (8) [32].

Vd =

(
1.35VAH

k
+

3w
2π

LSR
Rd

Ed

)/(
1 +

3w
2π

LSR
Rd

)
(8)

Here, ω represents the angular frequency of the system. Given that the frequency
of the system changes minimally during the frequency process, its variation is neglected
in Equation (8). During the control process, the saturated reactor exits steady current
control, and the inductance of the saturated reactor is assumed to be constant. After
applying linearization using the Taylor expansion method, Equation (9) is derived from the
linearized Equation (8).

∆Vd =
2.7πRd

2kπRd + 3wLSR
∆VAH = KL2∆VAH (9)

Substituting Equation (9) into Equation (7) yields the corresponding relationship
between the voltage change at the generator terminal and the change in active power of the
load, as shown in Equation (10).

∆PASL = a2∆V2
AH + b∆VAH (10)

The relationship between the change in voltage at the generator end and the change in
active power of the load is established through Equation (10). According to Equation (10)
and corroborated by field tests referenced in [33], the power of the electrolytic aluminum
load can quickly respond to the regulation signal, with a regulation capability of up to 15%
of the rated power.

2.2. Operation Strategy

To satisfy the energy requirements of aluminum electrolysis and maximize the con-
sumption of green power, a systematic operational strategy must be devised. The strategy
should adhere to the principle: “reduce thermal power output first when there is excess
new energy generation, followed by charging the energy storage, and when new energy
generation is insufficient, discharge the energy storage first, followed by increasing thermal
power output”.

(1) When t = 1, when the sum of new energy generation and thermal power output
is considered, if it exceeds aluminum demand at minimum thermal power output,
energy storage systems should charge. If the storage cannot absorb the surplus
power, the system must discard it. Conversely, if the combined output of new energy
generation and thermal power is less than the aluminum demand, the strategy should
prioritize discharging from storage and increasing the thermal power output. If these
measures cannot meet the demand, it is assumed that the load of the electrolytic
aluminum will be correspondingly reduced.

(2) If the sum of new energy and the thermal power output from the previous moment
exceeds the demand for electrolytic aluminum and the state of charge of the energy
storage is below maximum, the thermal power unit should reduce its output, and the
energy storage should be charged. If neither can absorb the excess, the system discards
the surplus power to achieve equilibrium. If the energy storage charge level is at
or above the maximum, the thermal power output should be reduced to absorb the
excess energy, discarding any surplus to maintain balance. On the other hand, if the
output from new energy and thermal power units from the previous moment is less
than the electrolytic aluminum demand and the energy storage charge level is above
the minimum, the storage should discharge, and thermal power should increase its
output to reach equilibrium. If the charge level is at or below the minimum, thermal
power should increase its output to achieve balance. If it is not possible to meet the
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shortfall, it is assumed that the electrolytic aluminum load will decrease accordingly
to maintain system power balance.

3. Alternative Grid Capacity Allocation Model for Green Electricity
3.1. Industrial Grid System Model

The aim of allocating capacity for electrolytic aluminum in isolated grids using green
power alternatives is to balance the utilization rate of green energy with the reliability of
the system’s energy supply. This is achieved by judiciously allocating capacities among
wind turbines, PV modules, energy storage systems, and thermal power units, while also
considering the system’s economy. The objective function for the green power alternative
isolated grid with electrolytic aluminum is presented in Equation (11).

minF = ( f1, f2, f3)min (11)

where f1 is the total cost of the system; f2 is the curtailment rate of the system; f3 is the
power shortage rate of the system.

3.1.1. Total System Cost

The total cost of the green power alternative isolated grid encompasses the investment
cost for power supply, Ca; the cost of thermal unit peaking, Cth,p; operation and maintenance
expenses, Com; and the environmental costs associated with tail gas emissions, Ct. These
components are detailed in Equation (12).

f1 = Ca + Cth,p + Com + Ct (12)

The average annual initial investment cost for each power source within the isolated
grid is expressed in Equation (13) [34].

Ca =
n

∑
i=1

(NiCs,i
γ(1 + γ)yi

(1 + γ)yi − 1
) (13)

where n is the number of power supply types; Ni is the number of power supplies of type i;
Cs,i is the unit cost of the power supply type i; γ is the discount rate; and yi is the service
life of the power supply type i.

The annual O&M cost of the lone network is shown in Equation (14).

Com =
n

∑
i=1

com,i Ni (14)

where com,i is the unit O&M cost of Type i power supply.
The cost of an isolated network environment is shown in Equation (15).

Ct =
m

∑
i

piqi (15)

where pi is the i-type exhaust emission factor; qi is the i-type exhaust gas treatment cost.

3.1.2. System Curtailment Rate

When the system generates excess power that cannot be consumed, power curtailment
is necessary to maintain the system’s power balance. The curtailment rate is defined in
Equation (16).
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f2 =

T
∑

t=1
(PV(t)∆t + WT(t)∆t − PV′(t)∆t − WT′(t)∆t)

T
∑

t=1
(PV(t)∆t + WT(t)∆t)

(16)

where PV(t) and WT(t) are the photovoltaic output and wind power output that can be
theoretically obtained according to the time t wind and solar data, and PV′(t) and WT′(t)
are the actual PV and wind power output.

3.1.3. System Power Supply Reliability

To ensure the normal operation of the electrolytic aluminum load within the system,
the load shortage rate is used to assess the reliability of the system’s power supply. A lower
load-shortage rate indicates greater reliability. If the system is unable to meet the load
demand, it is necessary to curtail the corresponding load to achieve power balance. The
formula for the power shortage rate is shown in Equation (17).

f3 =

T
∑

t=1
Pbre(t)∆t

T
∑

t=1
Pload(t)∆t

(17)

where Pbre(t) is the power deficit when the system cannot meet the load demand; Pload(t)
is the load power of electrolytic aluminum.

3.2. Capacity Configuration Constraints

The power generated by renewable energy sources in the isolated grid system at any
given time must satisfy a value less than or equal to the theoretical value. The operation
of thermal units should meet the power constraints. The power for storage charging
and discharging, along with the state constraints of nuclear power, must comply with
reasonable limits. The above constraints are shown in Equation (18). Additionally, the
number of power sources should conform to Equation (19).

0 ≤ WT′(t) + PV′(t) ≤ WT(t) + PV(t)

Pth,min ≤ Pth(t) ≤ Pth,max

−∆Pdown
th ∆t ≤ Pth(t + 1)− Pth(t) ≤ ∆Pup

th ∆t

SOCmin < SOC(t) < SOCmax

0 ≤ Pcha(t) ≤ Pcha,max

0 ≤ Pdis(t) ≤ Pdis,max

(18)



0 ≤ N1 ≤ N1,max

0 ≤ N2 ≤ N2,max

0 ≤ N3 ≤ N3,max

0 ≤ N4 ≤ N4,max

(19)

where N1, N1,max represent, respectively, the number of wind turbine configurations and
the maximum number of installations; N2, N2,max represent, respectively, the number of
photovoltaic module configurations and the maximum number of installations; N3, N3,max
represent, respectively, the number of thermal power generator configurations and the
maximum number of installations; N4, N4,max represent, respectively, the number of energy
storage module configurations and the maximum number of installations.
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4. Improvement of the Gray Wolf Algorithm and Solution Flow
4.1. Gray Wolf Colonies and Their Predatory Behavior

The GWO algorithm is a swarm intelligence optimization technique developed by
Mirjalili et al. [35], scholars from Griffith University, Australia, in 2014. Inspired by the prey
hunting behavior of gray wolves, this algorithm exhibits strong convergence performance,
has few parameters, and is easy to implement.

Gray wolves are members of the canine family and typically live in groups, averaging 5–12
individuals per pack. A strict hierarchy exists within a gray wolf pack, as depicted in Figure 5.
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The leader, or α, of the pack has the responsibility of managing the group and is at the
top of the hierarchical pyramid, in charge of activities such as hunting, habitat selection,
and food distribution. Immediately below the α is the β, who assists the α and is second
in the pack’s dominance hierarchy. The δ wolves occupy the third level of the pyramid,
taking directions from both the α and β. At the bottom of the pyramid are the ω wolves,
whose primary role is to maintain the pack’s numbers. The hierarchy within the pack is
dynamic; older wolves may be demoted if their performance diminishes, while younger
wolves may be promoted if they excel. The predation behavior of gray wolves typically
involves the following steps:

(1) Searching for, tracking, and approaching the prey;
(2) Encircling the prey;
(3) Attacking the prey.

4.2. Gray Wolf Optimizer Model

The gray wolf optimizer emulates the social hierarchy and hunting tactics of gray
wolves in nature. The entire wolf pack is categorized into four distinct levels. The top three
levels, consisting of the most adaptable groups, lead the rest of the wolves, denoted as ω,
in the hunt for prey. During the search, ω wolves orbit around the leading three groups to
update their positions. 

Dα = |C1Xα(t)− X|

Dβ =
∣∣C2Xβ(t)− X

∣∣
Dδ = |C3Xδ(t)− X|

(20)


X1 = Xα − A1Dα

X2 = Xβ − A2Dβ

X3 = Xδ − A3Dδ

(21)

A = 2ar1 − a (22)

C = 2r2 (23)

In Equation (20), Dα, Dβ, and Dδ denote the distance between α, β, and δ from other
individuals, respectively; Xα, Xβ, and Xδ represent the current positions of α, β, and δ,
respectively; C1, C2, and C3 are random vectors, and X is the position of the current gray
wolf. Equation (21) defines the step size and direction of the wolves in pack ω towards
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the other three groups of wolves, respectively. Equations (22) and (23) are the calculation
methods for A and C, respectively, where α is the convergence factor, which decreases
linearly from 2 to 0 with the number of iterations, and r1 and r2 are the random numbers
between the modulo [0,1].

In this section, the gray wolf optimizer’s mathematical model is presented. It is worth
noting that the model does not guarantee finding the global optimum; instead, during the
iterative process, there is a tendency to converge on local optima as it moves towards the
other three wolf groups.

4.3. Improved Gray Wolf Optimizer

(1) A dynamic weighting strategy is introduced to expedite the convergence of the gray
wolf optimizer. Proportional weighting based on step Euclidean distance has proven
to be effective. Therefore, this paper implements a proportional weighting approach
premised on step Euclidean distance [36].

(2) Nonlinearization of the convergence factor. To prevent the gray wolf optimizer from
succumbing to local optima, the parameter σ2

1 is adjusted to be larger in the initial
phase and smaller in the latter phase. This paper introduces a convergence factor
modeled after the normal distribution density function’s decay pattern. By altering
the value of σ2

2 , the decay rate of the normal distribution density function can be
modified. The improved convergence factor is expressed in Equation (24).

a =



ainitiale
−( l

lmax
)

2
/(2σ1

2)

l ≤ 0.5lmax

ainitiale
−( 0.5lmax

lmax
)

2
/(2σ1

2)e−( l
lmax

−0.5)
2
/(2σ2

2)

0.5lmax ≤ l ≤ lmax

(24)

where ainitial is the initial value of a of the convergence factor (in this paper, the initial value
of a is taken to be 2), l is the current number of iterations, lmax is the maximum number of
iterations, while σ2

1 and σ2
2 are the convergence factor adjustment parameters.

When σ2
1 is set to 0.08, σ2

2 is set to 0.0064, as indicated in Figure 6, the value of a
regulation of the improved gray wolf algorithm decays slowly in the early stage, which is
conducive to the global exploration capability of the algorithm, and decays quickly in the
later stage, which can effectively improve the convergence of the algorithm.
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To more intuitively reflect the advantages of the improved gray wolf optimizer, four
test functions were selected, and both the original gray wolf optimizer and the improved
gray wolf optimizer were used as controls, in which y1(x) and y2(x) were single-peak
benchmark functions, and y3(x) and y4(x) were multi-peak benchmark functions. The test
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results are shown in Figure 7. It should be noted that the y4(x) searched for an optimal
solution 500 times, but the optimal solution was found in fewer than 200 attempts.

y1(x) =
n
∑

i=1
x2

i

y2(x) =
n
∑

i=1
|xi|+

n
∏
i=1

|xi|

y3(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(√
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + exp(1)

y4(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1

(25)
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gence plot of y2(x); (c) convergence plot of y3(x); (d) convergence plot of y4(x).

Figure 6 shows the solution process of the four test functions using the original gray wolf
algorithm, the improved gray wolf optimizer, and the CGWO proposed in this paper for the
optimal solution of the test functions. It can be seen that in the single-peak function solving
process, the improved gray wolf algorithm proposed in this paper is significantly better than
the original gray wolf algorithm and the CGWO; in the multi-peak test function solving
process, the improved gray wolf algorithm proposed in this paper is significantly better than
the original gray wolf algorithm, and the CGWO is not much different from the results. In
conclusion, the improved gray wolf algorithm proposed in this paper has good results.

4.4. A Configuration Solution Method Based on the Improved Gray Wolf Optimizer

According to the energy operation strategy, combined with the improved gray wolf
optimizer, the solution steps are as follows (the solution flowchart is shown in Figure A1 of
Appendix A):

(1) Enter the data of wind speed, light intensity, temperature and load data for 8760 h of
the year;
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(2) Set the parameters of the power supply, initialize the wolf pack size N, the maximum
number of iterations lmax, the value in the convergence factor, and the upper and
lower limits of the optimization variables to generate the initial wolf pack;

(3) Based on the wind and solar data, the output of a single wind turbine and photovoltaic
is obtained. The objective function value is solved based on the scheduling strategy and
relevant parameters, and it is used as the fitness of the gray wolf. The top three fitness
values are denoted as wolves α, β, δ, and their positions are denoted as Xa, Xβ, and Xδ;

(4) When l ≥ lmax, the optimal value is output, and when the solution is completed, if
l < lmax, then step (3) is executed;

(5) According to Equation (25), the nonlinear convergence factor α is updated, A and C are
updated according to Equations (22) and (23), the position of the gray wolf is updated
according to Equation (21), the individual fitness is recalculated until the termination
condition is satisfied, and the optimal capacity configuration result is output.

5. Parameter and Result Analysis
5.1. Parameters

Figure 8 shows the hourly weather data for a place in Xinjiang. Initialize the wolf
pack size N = 1000 and the maximum number of iterations as lmax = 100. The electrolytic
aluminum load is 680 MW, and since the green power system mentioned in this article serves
electrolytic aluminum, it is assumed that the electrolytic aluminum operates at maximum
power throughout the year. The remaining parameters are shown in Table A1 of Appendix A.
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5.2. Analysis of Results

(1) Analysis of the economics of total investment

As indicated in Table 1 and Appendix A of Table A1, among the scenarios, Scenario 3
has the highest installed capacity for renewable energy generation, at 580.741 MW, with
Scenario 2 at 504 MW, and Scenario 1 at 471.567 MW. As depicted in Table 2, the total
cost for Scenario 2 is the lowest, at CNY 1667.29702 M which is less than the total costs of
CNY 1734.61290 M for Scenario 3 and CNY 1830.30371 M for Scenario 1, representing a
reduction of 8.906 percent from Scenario 1 and 3.881 percent from Scenario 3. The total cost
for Scenario 3 is 5.228 percent lower than that of Scenario 1.

Table 1. The configuration result in three scenarios.

Scenarios Number of Wind
Turbines

Number of PV
Modules

Number of Thermal
Power Units

Number of Energy
Storage Components

1 0 437 2 198
2 168 0 2 199
3 122 199 2 197

Table 2. Result of each objective.

Scenarios Objective Function f1/CNY Objective Function f2/% Objective Function f3/%

1 1830.30371 M 0.541 6.647
2 1667.29702 M 0.220 2.826
3 1734.61290 M 0.701 1.970

From an economics standpoint of total investment, Scenario 2 is the most favorable,
followed by Scenario 3, and lastly, Scenario 1, when considering only economics of total
investment factors. Table A2 in Appendix B details the unit cost, operating cost, cost related
to thermal peaking, and environmental costs for the three scenarios.

(2) Renewable energy utilization analysis

Figure A2 in Appendix C presents the hourly generation and curtailment throughout
the year. In order to conveniently reflect the utilization rate of green electricity, based on
the hourly generation and curtailment for the entire year, the proportion of curtailment is
analyzed weekly to obtain the curtailment for all 52 weeks of the year, as shown in Figure 9.
As indicated in Figure 9, In Scenario 1, there are more weeks with curtailed electricity
compared to the other two scenarios. However, the curtailment rates in Scenario 2 are not
high, with the highest not exceeding 0.01. In both Scenario 1 and Scenario 2, the weeks with
curtailed electricity are fewer, mainly concentrated between the 15th and 27th weeks, with
weekly curtailment rates exceeding 0.03, significantly higher than the highest curtailment
rate in Scenario 2.

As shown in Table 3, Figure A2 in Appendix C and Figure 9, among the scenarios,
regarding hourly power curtailment, Scenario 3 experiences the most, at 199.467 MW,
followed by 154.636 MW in Scenario 1, and the least, at 144.5 MW in Scenario 2. Overall, the
average and total power curtailment are greatest in Scenario 3, followed by Scenario 1, and
then Scenario 2. Scenario 2 produces the most total green electricity, at 1,871,769.262 MWh,
with Scenario 3 generating 1,836,691.928 MWh. The least amount is produced in Scenario 1,
at 901,629.849 MWh. The rate of green power substitution for Scenario 1 is significantly
lower, at 15.054%, compared to 31.353% for Scenario 2 and 30.617% for Scenario 3.
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Figure 9. Three scenarios for the annual 52-week proportion of curtailment results. (a) Proportion of
curtailment for Scenario 1. (b) Proportion of curtailment for Scenario 2. (c) Proportion of curtailment
for Scenario 3.

Table 3. Green electricity production and utilization.

Scenarios
Average Amount of

Electricity
Curtailed/(MWh)

Total
Curtailment/(MWh)

Total Power Generation
from Renewable
Energy/(MWh)

Green Energy
Substitution Rate/%

1 0.558 4884.824 901,629.849 15.054
2 0.471 4126.762 1,871,769.262 31.353
3 1.470 12,881.044 1,836,691.928 30.617

Table A3 in Appendix D shows emission factors and emission benefits. Using the
benchmark of 0.123 kg of standard coal consumption per unit of electricity generated,
the green electricity in Scenario 1 equates to saving 110,299.638 tons of standard coal,
which can reduce emissions by approximately 83,607.126 tons, including a reduction
of 80,077.537 tons of CO2, 2426.592 tons of SO2, and 1102.996 tons of NOX, resulting
in total environmental benefits worth CNY 21.95967 million. In Scenario 2, the green
electricity savings are equivalent to 229,720.028 tons of standard coal, with a reduction in
emissions of about 174,127.781 tons, including a CO2 reduction of 166,776.740 tons, an SO2
reduction of 5053.841 tons, and an NOX by 2297.200 tons, generating total environmental
benefits of CNY 45.73519 million. For Scenario 3, green electricity consumption corresponds
to a saving of 224,328.739 tons of standard coal, reducing emissions by approximately
170,041.184 tons, including reducing CO2 by 162,862.665 tons, SO2 by 4935.232 tons, and
NOX by 2243.287 tons, resulting in total environmental benefits of CNY 44.66183 million.
The analysis of green power utilization in the three scenarios of the green power alternative
isolated grid connecting to electrolytic aluminum demonstrates that incorporating such a
high-energy-consuming load can significantly cut down on coal usage, decrease tail gas
emissions, and generate substantial environmental benefits.
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(3) System power supply reliability analysis

Figure A3 in Appendix C presents the hourly power shortage rate throughout the year,
assuming that the electrolytic aluminum load did not participate in regulation. In order to
conveniently reflect the power shortage rate, based on the hourly power shortage rate for
the entire year, the proportion of curtailment is analyzed weekly to obtain the proportion
of load shortage for all 52 weeks of the year, as shown in Figure 10.
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Figure 10. Three scenarios for the annual 52-week proportion of load shortage results. (a) Proportion 
of load shortage for Scenario 1. (b) Proportion of load shortage for Scenario 2. (c) Proportion of 
curtailment for Scenario 3. 
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As shown in Figure 10, Figure A3, and Table 2, Scenario 3 boasts the lowest power
shortage rate, at 1.970%, which is better than the 2.826% in Scenario 2 and significantly
lower than the 6.647% in Scenario 1. The above weekly data preliminarily suggest the
feasibility of all three scenarios. Assuming that the aluminum electrolysis load does
not participate in system regulation, all three scenarios experience electricity shortages
throughout the year, with Scenario 1 exhibiting the most severe shortages, especially at
the beginning and end of the year. The highest shortage rate occurs in the 51st week,
exceeding 0.08, while the lowest shortage rate appears in the 26th week. Scenario 2
and Scenario 3 have similar overall shortage rates, both being lower than Scenario 1,
with Scenario 3 demonstrating better performance than Scenario 2 in terms of electricity
shortages. According to Section 2.1.5, overall, the weekly shortage rates do not exceed 0.1,
which is less than 15% of the rated power.

As seen from Figure A3, the maximum power deficit occurs in all three scenarios, at
80 MW. This is because the configuration for all three scenarios consists of two 300 MW
thermal power units. Under extremely adverse wind and solar conditions, i.e., when wind
and solar power output values are both 0, the system ensures the normal operation of
aluminum electrolysis loads by running the two thermal power units at their rated power.
The remaining power deficit of 80 MW is managed by reducing the aluminum electrolysis
load. Considering the regulation capability of aluminum electrolysis loads to be 15% of
the rated power, in this scenario, when the power deficit of the load is less than 102 MW,
the aluminum electrolysis loads can operate at reduced power for a period of time. When
the power deficit exceeds 102 MW, as shown in Figure A3, the maximum power deficits in



Energies 2024, 17, 2136 17 of 23

Scenarios 1 and 2 exceed 102 MW, with Scenario 1 and 2 both exceeding 200 MW, while the
maximum power deficit in Scenario 3 is approximately 102 MW. Under the consideration of
the regulation characteristics of the aluminum electrolysis load, Scenario 3 is more capable
of achieving power balance compared to the other two scenarios. Clearly, Scenario 3 is
superior to the other two scenarios in terms of reliability.

This analysis considers only one aspect of each scenario. Scenario 2 is the most
economically advantageous and also leads in renewable energy utilization. Scenario 3 is
slightly less economical, and Scenario 1 is slightly behind in terms of renewable energy
utilization compared to Scenario 2. The goal of the green power alternative isolated grid is
to fulfill the energy demand of the electrolytic aluminum load as much as possible, using
green power and ensuring grid reliability. The total investment cost for Scenario 3 is only
CNY 67.31588 M more than that of Scenario 2, which is about a 4.037% increase. This
difference in investment costs is relatively minor. Scenario 3’s power curtailment rate is
0.856% lower than that of Scenario 1 and is reduced by 30.290% compared to Scenario 2.
Although the power curtailment rate of Scenario 3 is 0.481% higher than that of Scenario
2, which is an increase of 218.636%, the power curtailment rates of both Scenarios 2 and
3 are less than 1%. This means that the utilization rate of renewable energy resources is
nearly 100%. The slight increase of 0.481% in the power curtailment rate for Scenario 3 has
resulted in a lower shortage rate compared to Scenario 2 by 0.856%. Therefore, considering
the overall scenario, Scenario 3 is the optimal choice among the three scenarios configured
under the historical weather conditions described in the study.

6. Conclusions

This paper evaluates three topological schemes of a green power alternative isolated
grid, devises operational strategies based on renewable energy consumption and the load
demands of aluminum electrolysis, and establishes a capacity configuration model that
considers economy, renewable energy utilization, and reliability. The model is solved using
the improved gray wolf optimizer (IGWO), and the results are compared and analyzed,
yielding the following conclusions:

(1) The nonlinearized convergence factor of the GWO has been tested using both single-
peak and multi-peak functions. The results show that the GWO proposed in this
paper is substantially improved in terms of search capability. This confirms that
nonlinearizing the convergence factor achieves a balance between the initial and final
phases of the search.

(2) Utilizing the controllable load characteristics of aluminum electrolysis, when the
green power alternative isolated grid cannot entirely satisfy the aluminum electrol-
ysis energy demand, reducing part of the power operation stabilizes and enhances
system reliability.

(3) Within the green power alternative isolated grid, a combination of “multiple renew-
able energy generation + thermal power unit” proves more stable and reliable than
the other two scenarios, albeit at the expense of some economic and renewable energy
utilization aspects.

(4) Through the flexibility of thermal power units, the green power substitution isolated
grid can partially replace the energy consumption of aluminum electrolysis with green
power while ensuring the normal operation of the electrolysis process.

It should be noted that the research presented in this paper is primarily applicable
to new-energy-rich regions with abundant coal resources. These areas can supply large
quantities of green power, while coal ensures the regular operation of flexible thermal
power units. Large industrial loads serve as a vessel for utilizing substantial amounts
of green power. Future studies will consider additional topologies that combine flexible
power sources with new energies, along with corresponding capacity allocation models
and solution methods.
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Appendix A

Table A1. Unit parameter table.

Parameters Items Numerical Value/Unit

Wind Power Generation

Stand-alone capacity 3 MW
The cost of a single machine CNY 11.34 M

O&M costs CNY 376,500/year
Cut into the wind speed 3 m/s

Rated wind speed 14 m/s
Cut out the wind speed 25 m/s

service life 20 year

Photovoltaic Power Generation Modules

Stand-alone capacity 1.0791 MW [30]
The cost of a single machine 8.10 m [30]

Unit O&M costs CNY 70,000/year
Rated operating temperature 25 ◦C

Spectral irradiance 1000 W/m2

Temperature coefficient −0.0047
service life 20 year

Energy Storage Batteries

Stand-alone capacity 2 MWh/0.25 MW [37]
The cost of a single machine CNY 36,000 [37]

Unit O&M costs CNY 1800/year [37]
Charge efficiency 0.9

Discharge efficiency 0.9
service life 10 year [37]

Thermal Power Units

Stand-alone capacity 300 MW
The cost of a single machine CNY 1241.535 M [30]

Unit O&M costs CNY 600/year [30]
Flexibility retrofit costs 120/MW

Climb cap 90 MW/h
Lower limit of climbing 90 MW/h

Peak oil shaving and oil consumption 2.3 t/h
Oil prices CNY 11,000/t

Coal consumption coefficient a 0.000381
Coal consumption coefficient b 0.1586
Coal consumption coefficient c 20.32

Coal prices CNY 500/t [30]
Service life 20 years
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Appendix B

Table A2. Cost composition.

Scenarios Unit Costs
/CNY

O&M Cost
/CNY

Peak Shaving Life Cost
/CNY

Coal Cost
/CNY

Fuel Costs
/CNY

Environmental Costs
/CNY

1 622.70684 M 31.304 M 42.59063 M 802.51658 M 11.638 M 319.54766 M
2 471.99814 M 63.9696 M 133.84066 M 684.12261 M 40.9607 M 272.40531 M
3 578.78718 M 62.8324 M 105.66714 M 696.48729 M 13.5102 M 277.3287 M

Appendix C

From the configuration result simulation, the total green power generation and dis-
carded power for the whole year are obtained, as shown in Figure A2. Figure A3 shows the
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hour-by-hour power deficit throughout the year without considering the participation of
the electrolytic aluminum load in the system regulation.
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Figure A2. Total green electricity production and curtailment. (a) Total green electricity production
and curtailment in Scenario 1. (b) Total green electricity production and curtailment in Scenario 2.
(c) Total green electricity production and curtailment in Scenario 3.
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Appendix D

Thermal power units will emit exhaust gases during operation, as shown in Table A3.

Table A3. Emission factors and emission benefits.

Types of Exhaust Gases Emission Factor/t Emissions Reduction Income per Unit/CNY

CO2 0.726 208.5
SO2 0.022 1260
NOx 0.010 2000
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