A Three-Level Neutral-Point-Clamped Converter Based Standalone Wind Energy Conversion System Controlled with a New Simplified Line-to-Line Space Vector Modulation †
Abstract
:1. Introduction
2. Standalone WECS Presentation
3. Standalone WECS Modeling
3.1. Line-to-Line Conversion Modeling of the Three-Level NPC Converter
- -
- In the case where the switches T1c and T2c are on, the output voltage vm1 is equal to .
- -
- In the case where the switches T2c and T3c are on, the output voltage vm1 is equal to .
- -
- In the case where the switches T3c and T4c are on, the output voltage vm1 is equal to 0.
3.2. DFIG Based WECS Modeling
4. Standalone WECS Control
4.1. Overall WECS Control
4.2. DFIG Rotor Current Control
4.3. Simplified Direct Space Vector Modulation (SDSVM)
- Only one hexagon must be selected among the six, and this is performed according to the location of a given reference voltage.
- The original reference voltage vector must be subtracted from the amount of the center voltage vector of the selected hexagon (Figure 9).
4.3.1. Hexagon Detection and Reference Vector Correction
- In the case where the reference voltage vector belongs to one of the following hexagons (H1 or H3 or H4 or H6), then the new corrected reference voltage vector is given as follows:
- In the case where the reference voltage vector belongs to one of the following hexagons (H2 or H5), then the new corrected reference voltage vector is given as follows:
4.3.2. Sector Detection
4.3.3. Voltage Vector Selection and Duration Calculation
5. Simulation Results
6. Experimental Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Wang, L.; Wu, X.; Gao, X. Performance analysis and design of a new-type wind-motor hybrid power pumping unit. Electr. Power Syst. Res. 2022, 208, 107931. [Google Scholar] [CrossRef]
- Li, Z.L.; Li, P.; Yuan, Z.P.; Xia, J.; Tian, D. Optimized utilization of distributed renewable energies for island microgrid clusters considering solar-wind correlation. Electr. Power Syst. Res. 2022, 206, 107822. [Google Scholar] [CrossRef]
- Behabtu, H.A.; Coosemans, T.; Berecibar, M.; Fante, K.A.; Kebede, A.A.; Mierlo, J.V.; Messagie, M. Performance evaluation of grid-connected wind turbine generators. Energies 2021, 14, 6807. [Google Scholar] [CrossRef]
- Dannier, A.; Fedele, E.; Spina, I.; Brando, G. Doubly-fed induction generator (DFIG) in connected or weak grids for turbine-based wind energy conversion system. Energies 2022, 15, 6402. [Google Scholar] [CrossRef]
- Porte-Agel, F.; Bastankhah, M.; Shamsoddin, S. Wind-turbine and wind-farm flows: A review. Bound.-Layer Meteorol. 2020, 174, 1–59. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.D.; Al-Ismail, F.S.M.; Shafiullah, M.; Al-Sulaiman, F.A.; El-Amin, I.M. Grid integration challenges of wind energy: A review. IEEE Access 2020, 8, 10857–10878. [Google Scholar] [CrossRef]
- Ghennam, T. Supervision d’une Ferme Eolienne Pour son Intégration Dans la Gestion d’un Réseau Electrique, Apports des Convertisseurs Multi-Niveaux au Réglage des Eoliennes à Base de Machine Asynchrone à Double Alimentation. Ph.D. Thesis, École Centrale de Lille, Villeneuve-d’Ascq, France, EMP, Algiers, Algeria, 2010. [Google Scholar]
- Ghennam, T.; Berkouk, E.M.; Francois, B. Modeling and Control of a doubly fed induction generator based wind conversion system. In Proceedings of the International Conference on Power Engineering, Energy and Electrical Drives (POWERENG 2009), Lisbon, Portugal, 18–20 March 2009. [Google Scholar]
- Yaramasu, V.; Dekka, A.; JDurán, M.; Kouro, S.; Wu, B. PMSG-Based wind energy conversion systems: Survey on power converters and controls. IET Electr. Power Appl. 2017, 11, 956–968. [Google Scholar] [CrossRef]
- Karad, S.; Thakur, R. Recent trends of control strategies for doubly fed induction generator based wind turbine systems: A comparative review. Arch. Comput. Methods Eng. 2021, 28, 15–29. [Google Scholar] [CrossRef]
- Yaramasu, V.; Dekka, A.; Kourou, S. Multilevel converters for renewable energy systems. In Multilevel Inverters, Control Methods and Advanced Power Electronics; Academic Press: Cambridge, MA, USA, 2021; Volume 6, pp. 155–184. [Google Scholar]
- Ghennam, T.; Berkouk, E.M.; Francois, B. A novel space vector current control based on circular hysteresis areas of a three-phase neutral-point-clamped inverter. IEEE Trans. Ind. Electron. 2010, 57, 2669–2678. [Google Scholar] [CrossRef]
- Amjad, A.M.; Mehran, K.; Gadoue, S.; Blaabjerg, F. Online harmonic elimination pulse width modulation technique for modular multilevel cascade converter. Int. J. Electr. Power Energy Syst. 2021, 133, 107242. [Google Scholar] [CrossRef]
- Ghennam, T.; Berkouk, E.M. Back-to-back three-level converter controlled by a novel space-vector hysteresis current control for wind conversion systems. Electr. Power Syst. Res. 2010, 80, 444–455. [Google Scholar] [CrossRef]
- Espinoza, M.; Cárdenas, R.; Diaz, M.; Clare, J.C. An enhanced dq-based vector control system for modular multilevel converters feeding variable speed drives. IEEE Trans. Ind. Electron. 2017, 64, 2620–2630. [Google Scholar] [CrossRef]
- Aguilera, R.P.; Acuña, P.; Lezana, P.G.; Konstantinou, G.; Wu, B.; Bernet, S.; Agelidis, V.G. Selective harmonic elimination model predictive control for multilevel power converters. IEEE Trans. Power Electron. 2017, 32, 2416–2426. [Google Scholar] [CrossRef]
- Yang, S.; Tang, Y.; Wang, P. Distributed control for a modular multilevel converter. IEEE Trans. Power Electron. 2018, 33, 5578–5591. [Google Scholar] [CrossRef]
- Liu, X.; Qiu, L.; Wu, W.; Ma, J.; Fang, Y.; Peng, Z.; Wang, D. Efficient model-free predictive power control for active front-end modular multilevel converter. Int. J. Electr. Power Energy Syst. 2021, 132, 107058. [Google Scholar] [CrossRef]
- Francois, B.; Semail, E. Modeling and Control of a Three-Phase Neutral-Point-Clamped Inverter by Means of a Direct Space Vector Control of Line to Line Voltages. In Proceedings of the 10th European Power Electronics and Motion Control Conference (EPE-PEMC 2002), Cavtat & Dubrovnik, Croatia, 9–11 September 2002. [Google Scholar]
- Ko, H.S.; Yoon, G.G.; Kyung, N.H.; Hong, W.P. Modeling and control of DFIG-based variable-speed wind-turbine. Electr. Power Syst. Res. 2008, 78, 1841–1849. [Google Scholar] [CrossRef]
- Zamanifar, M.; Fani, B.; Golshan, M.E.H.; Karshenas, H.R. Dynamic modeling and optimal control of DFIG wind energy systems using DFT and NSGA-II. Electr. Power Syst. Res. 2014, 108, 50–58. [Google Scholar] [CrossRef]
- Somoro, M.A.; Memon, Z.A.; Kumar, M.; Baloch, M.H. Wind energy integration: Dynamic modeling and control of DFIG based on super twisting fractional order terminal sliding mode controller. Energy Rep. 2021, 7, 6031–6043. [Google Scholar] [CrossRef]
- Khatounian, F.; Monmasson, E.; Berthereau, F.; Delaleau, E.; Louis, J.P. Control of a doubly fed induction generator for aircraft application. In Proceedings of the IECON’03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No. 03CH37468), Roanoke, VA, USA, 2–6 November 2003; pp. 2711–2716. [Google Scholar]
- Bekiroglu, E.; Yazar, M.D. MPPT Control of grid connected DFIG at variable wind speed. Energies 2022, 15, 3146. [Google Scholar] [CrossRef]
- Behara, R.K.; Saha, A.K. neural network predictive control for improved reliability of grid-tied DFIG-based wind energy system under the three-phase fault condition. Energies 2023, 16, 4881. [Google Scholar] [CrossRef]
- Chhipą, A.A.; Chakrabarti, P.; Bolshev, V.; Chakrabarti, T.; Alexey, G.S.; Vasilyev, N.; Ghosh, S.; Kudryavtsev, A. modeling and control strategy of wind energy conversion system with grid-connected doubly-fed induction generator. Energies 2022, 15, 6694. [Google Scholar] [CrossRef]
- Aljafari, B.; Stephenraj, J.P.; Vairavasundaram, I.; Rassiah, R.S. Steady state modeling and performance analysis of a wind turbine-based doubly fed induction generator system with rotor control. Energies 2022, 15, 3327. [Google Scholar] [CrossRef]
- Mesbahi, T.; Ghennam, T.; Berkouk, E.M. A doubly fed induction generator for wind stand-alone power applications (simulation and experimental validation). In Proceedings of the 2012 XXth International Conference on Electrical Machines, Marseille, France, 2–5 September 2012. [Google Scholar]
- Ghennam, T.; Belhadji, L.; Francois, B.; Bacha, S. A simplified line-to-line space vector modulation for multilevel converter applied for a standalone wind energy conversion system. In Proceedings of the 21st European Conference on Power Electronics and Applications (EPE’19 ECCE Europe), Geova, Italy, 3–5 September 2019. [Google Scholar]
- Akel, F.; Ghennam, T.; Laour, M.; Bendib, D.; Berkouk, E.M.; Chikh, M. Control of single stage grid connected pv-inverter based on direct space vector pwm. Prog. Clean Energy 2015, 2, 755–774. [Google Scholar]
Angle θ | Hexagon (H) |
---|---|
7π/4 < θ < π/8 | H1 |
π/8 < θ < 3π/8 | H2 |
3π/8< θ < 3π/4 | H3 |
3π/4< θ < 9π/8 | H4 |
9π/8< θ < 11π/8 | H5 |
11π/8< θ < 7π/4 | H6 |
Angle θc | Sector (S) |
---|---|
0 < θc < π/4 | S1 |
π/4 < θc < π/2 | S2 |
π/2 < θc < π | S3 |
π < θc < 3π/4 | S4 |
5π/4 < θc < 3π/2 | S5 |
3π/2 < θc < 2π | S6 |
t/S | S1 | S2 | S3 | S4 | S5 | S6 |
---|---|---|---|---|---|---|
t1 | X-Y | Y | Y-X | −Y | ||
t2 | Y-X | −X | X-Y | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghennam, T.; Belhadji, L.; Rizoug, N.; Francois, B.; Bacha, S. A Three-Level Neutral-Point-Clamped Converter Based Standalone Wind Energy Conversion System Controlled with a New Simplified Line-to-Line Space Vector Modulation. Energies 2024, 17, 2214. https://doi.org/10.3390/en17092214
Ghennam T, Belhadji L, Rizoug N, Francois B, Bacha S. A Three-Level Neutral-Point-Clamped Converter Based Standalone Wind Energy Conversion System Controlled with a New Simplified Line-to-Line Space Vector Modulation. Energies. 2024; 17(9):2214. https://doi.org/10.3390/en17092214
Chicago/Turabian StyleGhennam, Tarak, Lakhdar Belhadji, Nassim Rizoug, Bruno Francois, and Seddik Bacha. 2024. "A Three-Level Neutral-Point-Clamped Converter Based Standalone Wind Energy Conversion System Controlled with a New Simplified Line-to-Line Space Vector Modulation" Energies 17, no. 9: 2214. https://doi.org/10.3390/en17092214
APA StyleGhennam, T., Belhadji, L., Rizoug, N., Francois, B., & Bacha, S. (2024). A Three-Level Neutral-Point-Clamped Converter Based Standalone Wind Energy Conversion System Controlled with a New Simplified Line-to-Line Space Vector Modulation. Energies, 17(9), 2214. https://doi.org/10.3390/en17092214