
Citation: Hernik, B.; Brudziana, P.;

Klon, R.; Pronobis, M. Numerical

Studies of the Influence of Flue Gas

Recirculation into Primary Air on

NOx Formation, CO Emission, and

Low-NOx Waterwall Corrosion in the

OP 650 Boiler. Energies 2024, 17, 2227.

https://doi.org/10.3390/en17092227

Academic Editor: Pedro J. Coelho

Received: 27 March 2024

Revised: 25 April 2024

Accepted: 27 April 2024

Published: 6 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Numerical Studies of the Influence of Flue Gas Recirculation
into Primary Air on NOx Formation, CO Emission, and
Low-NOx Waterwall Corrosion in the OP 650 Boiler
Bartłomiej Hernik 1,* , Piotr Brudziana 2, Radosław Klon 2 and Marek Pronobis 1

1 Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18,
44-100 Gliwice, Poland; marek.pronobis@polsl.pl
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Abstract: Numerical calculations of the innovative flue gas recirculation (FGR) system through an
inactive coal pulverizer for a 40% load of the OP 650 boiler at the Jaworzno III Power Plant were
carried out. The research was conducted to determine the effect of FGR on the formation of NOx,
CO emissions, and low-NOx waterwall corrosion. Using numerical modelling, the influence of the
place of injection of recirculated flue gas on the formation of NOx was also investigated. The tests
were carried out based on data from the boiler monitoring system and calculation results using a
0-dimensional model. Modelling of the FGR was performed for five variants. FGR equalized the
temperature in the furnace, eliminating temperature peaks in the burner belt. Moreover, FGR did
not increase the CO content in the flue gas and reduced the O2 concentration in the area zone of
pulverized coal combustion. For FGR systems, the emission of NOx below 200 mg/m3

n for 6% O2

in dry flue gas was kept. This proves that the recirculation helps to meet the BAT (best available
techniques) requirements for NOx emissions. It has also been shown that FGR does not pose a risk of
low-NOx corrosion in the next 20 years.

Keywords: flue gas recirculation; combustion; numerical simulations; NOx emission

1. Introduction

One of the possible ways to reduce the emission of NOx in boilers, in addition to
air staging [1,2], is flue gas recirculation (FGR). It consists of supplying flue gas to the
combustion chamber of the boiler. FGR reduces and equalizes the temperature in the
furnace, eliminating temperature peaks in the burner region and preventing the secondary
formation of NOx in the final part of the furnace [3]. In addition, recirculation reduces the
O2 concentration in the combustion zone. The limitation of the use of FGR is the share
of O2 in the flame in the burner zone. If the O2 concentration is reduced too much, the
mixture may stop burning. However, in pulverized coal (PF) boilers, the ratio of excess air
in the recirculated flue gas is high. In addition, the coal itself contains 8–12% O2, which
increases the share of O2 in the combustion zone. Flue gas recirculation is used as an
additional element of modernization in PC boilers to maintain the required superheated
steam temperatures at low loads. This excludes the need to increase the ratio of excess
air in the combustion chamber, which would interfere with the NOx reduction process [4].
The recirculated flue gas increases the flue gas velocity in the area of superheaters, with
convection characteristics typical of most solutions. In [5], the influence of the degree of
FGR on the content of CO and NOx in the flue gas was examined in a laboratory combustion
chamber. It has been shown that, with the growth in the rate of FGR and the heat load of
the furnace, and the reduction in combustion air number λ, the reduction in NOx increases.
On the contrary, increasing the recirculation rate and the load increases the amount of CO
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in the flue gas. It has been shown in [6] that FGR reduces NOx emissions while increasing
CO levels. As a result of recirculation, unfavorable temperature peaks above 1600 ◦C,
which significantly promote thermal NOx production, are reduced to a relatively safe level
(1400–1450 ◦C) to limit the formation of thermal NOx. Another approach to the use of
FGR is also possible. In [7], a numerical study of the impact of FGR on the emission of
ultrafine ash particles during the combustion of pulverized coal was presented. It has been
shown that FGR has a powerful impact on both the particle number density and the size
distribution of ultrafine ash particles over PC combustion. For a recirculation rate of 10%,
the density number of ultrafine ash grain grows, and the volume mean particle size reduces
compared to the case without recirculation. In turn, [8] presents the results of a numerical
simulation of a 660 MW coal-fired ultra-supercritical PC boiler. It has been shown that
the emission of both NOx and CO decreases with the increase in the recirculation rate.
Increasing the recirculation rate can also reduce the unburnt carbon. The influence of the
degree of FGR on the combustion instability characteristics and the NOx emission of the gas
flame in a 350 kW industrial boiler was presented in [9]. As the recirculation rate rises from 0
to 20%, NOx emissions are reduced by approximately 85%. Combustion instability occurred
at high recirculation rates, above 10%. On the other hand, [10] presents the optimization
of the aerodynamics and FGR of a 550 MW cyclone-type boiler. The simulation results
showed that high-temperature zones in the kiln can be effectively eliminated due to the
adapted design of the recirculation system. The impact of FGR conditions on the operation
of a boiler with a fluidized bed in the oxy-combustion technology with an air separation
unit, CO2 compression, and purification unit, and indirect supercritical CO2 circulation
was studied in [11]. By lowering the temperature of the recirculated flue gas from 90 ◦C
to 40 ◦C, the concentration of input O2 in the combustion chamber increased from 34.7 to
38.5% by volume. The efficiency of the boiler (the ratio of the useful heat output to the
total energy input) was 99.6%, and the overall net efficiency of the cycle was 43.1%. It
was shown in [12] that the place of introduction of the recirculated flue gas and over-fire
air has a significant impact on the temperature profile, combustion efficiency, and NOx
emission in a boiler with a circulating fluidized bed (CFB). In turn, in [13], the influence of
flue gas recirculation on the efficiency and NOx emission in a waste-burning boiler was
examined. Compared to the operation of the boiler without flue gas recirculation, the NOx
concentration at the boiler outlet drops from 209.54 mg/m3 to 126.15 mg/m3 when the FGR
valve is fully opened. A new FGR system was proposed for a 600 MW coal-fired boiler [14].
It has been shown that, for various load conditions, the temperature of the reheated steam
increases with an increasing recirculation rate, while coal consumption first decreases, and
then increases. The optimization results show that a lower recirculation rate and relatively
high coal consumption are urged for high-load conditions, while a higher recirculation rate
and relatively lower coal input are suitable for low-load conditions. In [15], the influence
of the exhaust gas recirculation rate on the combustion process and NOx formation in
a cement rotary kiln with a capacity of 5000 t/d was numerically analyzed. It has been
shown that, as the recirculation rate grows, the flame extends and the high-temperature
zone reduces. When the recirculation ratio increased from 0% to 27%, the maximum furnace
centerline NOx concentration and outlet NOx concentration decreased by 392 ppm and
343 ppm, respectively. In [16], exhaust gas recirculation in the main burner was introduced
in a down-fired furnace with a power of 600 MWe. Increasing the recirculation rate has
been shown to reduce NOx emissions while worsening fuel burnout. When balancing NOx
emissions and burnout, a 12.5% exhaust gas recirculation provides an optimal low-NOx
combustion with NOx emissions reduced to approximately 600 mg/m3 (6% O2) plus high
burnout. Taking into account the occurrence of low-NOx corrosion, there are several studies
on this phenomenon. In [17], it was noticed, for a waterwall tube in conditions where
O2 < 0.5% and CO > 2%, similar to the reducing zone atmosphere, the high-temperature
corrosion rate may be much higher than in the case of the presence of H2S or HCl in
the flue gas. In [18], numerical studies were carried out to investigate the effect of wall-
protecting air on combustion and high-temperature corrosion in a 300 MWe PC utility
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boiler with opposed burners. The protection air decreased the peak of the CO and H2S
content, and also greatly lowered the zone of high CO and H2S levels near the side walls.
The protection air had little effect on the flue gas temperature and NOx concentration at the
furnace outlet and showed a marked growth in unburnt carbon. In turn, [19] examined
losses in the waterwalls of a pulverized coal-fired boiler and developed appropriate rate
correlations for corrosion mechanisms. Rate correlations are based on published study
results and investigations executed in a pilot-scale test chamber. The validation results of
the numerical model are also presented. In [20], the results of the research on co-operation
in the operation of a porous wall with air staging, performed to prevent high-temperature
corrosion, were presented. The advantages of a porous wall element should be used. It
is also very important to increase the disruption of the coal dust flow and regulate the
oxygen concentration in the reduction zone. Preliminary experimental results show that
this configuration can simultaneously achieve high-temperature corrosion prevention, high
combustion efficiency, and low NOx emissions.

The article presents the results of multi-variant numerical studies of a new concept
of recirculation of the flue gas into the primary air flowing through the mill. The research
was carried out in order to determine the effect of such FGR on the formation of NOx, CO
emissions, and waterwall corrosion in the OP 650 boiler (PC boiler, with natural circulation
in the evaporator, with a capacity of 650 t/h of superheated steam). The tests were carried
out for 40% of the unit’s power (91.6 MWe) based on the results of calculations using a
0-dimensional model.

2. Description of Modelling and Numerical Methods

To reduce NOx emissions, the low-emission burners type NR3 manufactured by
FORTUM were installed in the boiler, supplemented with OFA (over-fire air) nozzles. The
OP 650 boiler is a drum, two-pass boiler with natural water circulation in the evaporator,
coal-fired, with reheating. The dimensions of the furnace are 16.78 m × 8.91 m. The boiler
is fired by 24 front-swirl burners and equipped with four mills. The connection diagram of
mills with burners is shown in Figure 1.
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Figure 1. Arrangement of burners with mills.

Above the burner belt, on the front and rear walls, there are two levels of OFA nozzles.
The nozzles on the first level are equipped with air-swirling vanes. The concept of the new
FGR system was developed at RAFAKO Racibórz from Poland [21] and shown in Figure 2.
In the existing FGR systems, the flue gas is pumped through additional flue gas fans. In the
proposed solution, the additional fans were not necessary and the existing primary air fans
for coal mills were used for this purpose. Thus, recirculating flue gas will be introduced
to the boiler through the inactive pulverizers to coal burners. This takes place at a unit
load below 140 MW and the boiler’s operation on two mill units. By supplying flue gas
together with primary air to active mill units, it is also possible to reduce the O2 content
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in the dust-air mixture. The solution is very cheap in terms of investment. An additional
advantage of such a solution is that it is easier to maintain low NOx emissions with a
reduced specific power. In coal-fired boilers, such a procedure can be very helpful in the
case of insufficiently high steam temperatures. The recirculation of the flue gas partially
to the combustion furnace increases the flue gas stream flowing over the superheater
tubes, which intensifies the heat exchange in the surfaces with convection characteristics.
Therefore, the main purpose of using the FGR system is to ensure the required steam
temperatures, especially the reheat steam, when operating with significantly reduced boiler
power. The influence of the injection site of the recirculated flue gas on the formation of
NOx was also numerically modelled. It is important to maintain the BAT conclusions.
The BAT document [22] is a reference point for the values of emission standards. When
burning coal in the boiler with a nominal thermal power above 300 MW, the permissible
NOx emission value is 200 mg/m3

n, with an O2 concentration in the exhaust gases of 6%.
Numerical studies were carried out using the Ansys Fluent code [23]. The research of
combustion was performed to determine the effect of FGR to primary air on the formation
of NOx.
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The tests were carried out for 40% of the unit’s capacity (91.6 MWe). Flue gas recircu-
lation was performed for five cases:

1. The third and fourth row of coal burners are in operation; recirculation to the second
row—case rec1

2. The third and fourth row of coal burners are in operation; recirculation to the first
row—case rec2

3. The second and third row of coal burners are in operation; recirculation to the fourth
row—case rec3

4. The second and third row of coal burners are in operation; recirculation to the first
row—case rec4

5. The third and fourth row of coal burners are operating with 18% O2 in the primary air by
mixing with part of the recirculation flue gas; recirculation to the second row—case rec1A.

The geometry and numerical mesh of the low-emission NR3 burner are shown in
Figure 3.
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A geometric model of the OP 650 boiler RAFAKO Racibórz from Poland, including
individual stages of the live-steam (LS) and reheated-steam (RS) superheaters, is shown
in Figure 4. The model also includes a protection air system (PAS) protecting the rear and
side walls of the boiler against low-NOx corrosion and urea injection for the non-catalytic
reduction of NOx.
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The numerical mesh, consisting of 6,576,794 numerical cells, is shown in Figure 5. The
superheaters were managed as a porous area constructed in the form of sheets, heated with
flue gas as described in [24].

The coal analysis is shown in Table 1, while the coal granulation is presented in
Table 2. The polydispersity number describes the level of homogeneity of the pulverized
coal particle size. The unburnt carbon loss (furnace loss) is more significant if the boiler is
operated with coal with a low polydispersity number.
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Table 1. Fuel analysis.

Data Unit Coal M Coal H

Net calorific value kJ/kg 20,504 22,005
Ash wt% 14.5 12

Moisture wt% 15 12
Volatile matter wt% 43.1 48.5

Ultimate analysis As received
Carbon, C wt% 54.93 58.84

Hydrogen, H wt% 3.3 3.6
Oxygen, O wt% 10.33 11.83

Sulfur, S wt% 1.1 1.0
Nitrogen, N wt% 0.84 0.68

Table 2. Coal granulation.

Data Unit Value

Sieve residue (cumulative percentage retained) on sieve 90 µm % 23.15
Sieve residue 200 µm % 3.1

The average diameter of the pulverized coal µm 61
Uniformity (polydyspersity) number - 1.05

Table 3 shows the assumptions used in the numerical code for the considered cases.
Cases 60% M and 60% H mean a 60% loaded boiler fired with coal M and H, with upper
mills (M1, M2, and M4) running. The FGR calculations were carried out for coal H. There is
20% of the flue gas flow recirculated.

Table 3. The air and the fuel flows for considered cases.

Data Unit 60% M 60% H Rec 1, Rec 2 Rec 3, Rec 4

Coal flow kg/s 17.28 16.05 10.56 10.26
Primary air flow kg/s 62.34 62.34 48.78 48.78

Recirculated flue gas flow kg/s - - 23.34 22.69
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Table 3. Cont.

Data Unit 60% M 60% H Rec 1, Rec 2 Rec 3, Rec 4

Secondary air flow 1 kg/s 34.91 34.45 20.64 19.1
Secondary air flow 2 kg/s 17.52 17.29 10.36 9.6

Core air flow kg/s 8.24 8.24 2.99 2.99
OFA F air flow kg/s 2.51 2.51 1.62 1.62
OFA R air flow kg/s 7.18 7.18 4.31 4.31

PAS air flow kg/s 7.39 7.32 4.19 3.95
Primary air temperature ◦C 109 109 109 109

Secondary air temperature ◦C 262 262 251 245

To modelling turbulent flow, solving the Navier–Stokes (N–S) equations is crucial.
The Reynolds-averaged Navier–Stokes (RANS) technique, which involves formulating
behavioral equations for the time means of temperature, pressure, and velocity, is often
used for these calculations. However, because each averaging of nonlinear N–S equations
creates more unknowns, it is necessary to introduce a model that will close the system of
equations and enable their solution. Therefore, the numerical simulations use the k-epsilon
realizable model for turbulence. This model submits two variables—turbulence kinetic
energy (k) and dissipation of energy (ε). Therefore, it is possible to account for the turbulent
viscosity (µt) responsible for the growth in viscosity at turbulent flows. The model gives
the best results (within the k-epsilon “family”) in both simple and complex flows [25,26].
The transportation statement for k and ε are as follows:

∂

∂t
(ρk) +

∂

∂xj

(
ρkuj

)
=

∂

∂xj

[(
µ +

µt

σk

)
∂

∂k

]
+ Gk + Gb − ρε − YM + Sk, (1)

∂

∂t
(ρk) +

∂

∂xj

(
ρεuj

)
=

∂

∂xj

[(
µ +

µt

σk

)
∂ε

∂xj

]
+ ρC1Sε − ρC2

ε2

k +
√

vε
+ C1ε

ε

k
C3εG−b + Sε (2)

where Gk describes the production of turbulence kinetic energy as a result of the velocity
gradient, Gb is the production of turbulence kinetic energy due to buoyancy, YM describes
the contribution of dilation oscillations in compressible turbulence to the general dissipation
rate, and C2 and C1ε are constants, while σk and σε are the corresponding Prandtl numbers
for k and ε.

Turbulence and chemical reactions have a significant interplay in pulverized coal
boilers. To accurately model this process, solving the fluid flow equations and including
extra N equations associated with the reaction products is necessary. These equations can
be noted as standard transportation equations:

∂ρYk
∂t

+
∂ρuiYk

∂xi
=

∂

∂xi

(
ρDk

∂Yk
∂xi

)
+

·
ωk for k = 1, 2 . . . N, (3)

where Dk is the coefficient of diffusion, Yk is the mass fraction of the individual reaction
components, and ωk is the chemical reaction rate and is the sum of the production of each
ingredient in the M chemical reactions of the process.

To fully describe the combustion process mathematically, an energy equation is essen-
tial. It is possible to express it by the transport equation for temperature:

∂ρT
∂t

+
∂ρuiT

∂xi
=

∂

∂xi

(
λ

Cp
· ∂T
∂xi

)
+

·
ωT , (4)

·
ωT = ∑N

k=1 ∆hk
·

ωk, (5)

where ∆hk is the formation enthalpy of component k, λ is the thermal diffusion coefficient,
and Cp is the heat capacity.
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The flue gas density is determined by adding up the densities of the individual
components. As for the dynamic viscosity, it is calculated based on empirical formulae that
take temperature into account [26]. As a combustion model, a Finite Rate/Eddy Dissipation
(FR/ED) model was applied [27]. The reaction rate is determined by using both the Eddy
Dissipation Model (EDM) equations and the Arrhenius equation for the kinetic constants
of global reactions. This model permits slower reactions to be retained in cases where the
mixing process is intensive, although the reaction should not take place. The smaller value
of the following equation is selected for the calculation:

·
ωkj = min

(
·

ωkj,
·

ω
Arr
kj

)
, (6)

where
·

ωkj are the equations of the EDM model, and
·

ω
Arr
kj is the Arrhenius equation.

The EDM equations are the key to controlling the combustion process by regulating
the degree of mixing. This is determined based on the kinetic energy of turbulence k and its
degree of dissipation ε [25]. The EDM equations are indeed based on the concept of vortex
decay time, which is essentially the k/ε mixing time. Below are the reactions of volatile
fraction combustion and CO oxidation. It is worth noting that coefficients m, n, l, k, and j
were obtained based on coal composition.

CmHnOl NkSj +

(
m − l

2
+

n
4
+ j

)
O2

k1→ mCO +
n
2

H2O +
k
2

N2 + jSO2 (7)

CO +
1
2

O2
k2→ CO2 (8)

Discrete Ordinates (DOs) were used as the radiation model to solve the radiation heat
transport equations. The isotropic phase dissipation function was applied, and the model
includes radiation heat transfer between flue gas and coal particles, as well as between
boiler walls and coal particle surfaces. The absorption coefficient was calculated using
the weighted sum of grey gases model (WSGGM). The discrete phase model (DPM) was
used to simulate the coal particle flow, predicting particle trajectories with the Lagrange
approach using the average fluid velocity in turbulent flow:

dup

dt
= Fd

(
u − up

)
+

gx
(
ρp − ρ

)
ρp

+ Fx (9)

The first term represents the frictional force, the second represents the gravitational
force, and the third represents any additional forces that may be present.

Fd =
18µ

ρpd2
p

CDRe
24

(10)

Re =
ρdp

(
up − u

)
µ

, (11)

where u is the fluid velocity, up is the velocity of the particle, µ is the dynamic viscosity of
the fluid, ρ is the density of the fluid, ρp is the density of the particle, dp is the diameter of
the particle, Re is relative Reynolds number, and CD is drag coefficient.

The sphericity of the coal grains was taken and the drag coefficient is determined by
the equation:

CD = a1 +
a2

Re
+

a3

Re2 , (12)

where a1, a2, and a3 are constants specified by Morsi and Aleksander in [28].
A two-way relation between the fuel grains and fluid was considered. Additionally,

the Rosin–Rammler–Sperling distribution [4] was applied to model the coal particles. The
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Single Rate model was utilized to compute the coal devolatilization, assuming that the
degassing rate depends on the amount of volatile substances in the fuel particle [29].

−
dmp

dt
= k[mp − (1 − fv,0)(1 − fw,0)mp,0], (13)

k = Ae−( E
RT ), (14)

where mp is the molecule mass, f v,0 is the initial mass fraction of the volatiles included in
the particle, f w,0 is the mass fraction of the evaporating substance in the particle, mp is the
initial molecule mass, k is the kinetic velocity, A is the pre-exponential factor, and E is the
energy activation.

The coal combustion rate is determined by the kinetic–diffusion model, where the rate
of the surface reaction is presumed to be determined by the kinetics or rate of diffusion.
The equation used to calculate the coal combustion rate is [30,31]:

dmp

dt
= −Ap pox

D0R
D0 + R

, (15)

where D0 is the diffusion rate coefficient, mp is the molecule mass, Ap is the particle surface
area, pox is the partial pressure of the oxidant compounds in the gas surrounding the
particle, and R is the reaction rate, including the effect of the chemical reaction on the inner
surface of the coal particle and diffusion leeks.

The oxidation reaction of char to CO2 can be represented by the following equation:

C + O2 → CO2 (16)

When coal is burned, three oxygen–nitrogen compounds are made: N2O, NO, and
NO2. The most significant number of NO is produced, followed by NO2, and the smallest
amount of N2O. The formation rate of NOx is temperature-dependent. To account for
temperature and composition changes, the probability density fraction (PDF) was utilized.
A fuel and thermal NOx approach was used. The Zeldovich scheme [32] was employed to
estimate the generation of thermal NOx:

O + N2 ⇌ NO + N (17)

N + O2 ⇌ NO + O (18)

A third reaction has been proposed for the formation of thermal NOx under conditions
comparable to stoichiometric and fuel-rich compounds [33–35]:

N + OH ⇌ NO + H (19)

Most of the thermal NOx is generated after the combustion process. Therefore, ac-
cepting the thermic stability and balance of stable constituents, O atoms, and OH free
radicals, the thermal NOx formation mechanism can be isolated from the primal process
of combustion [32]. The concentrations of O [36] and OH [37] were determined using a
partial equilibrium approach. The calculations assumed that the nitrogen in the coal was
split into volatiles and char. The nitrogen in the char is converted to NO [38], while the
volatile nitrogen produces HCN and NH3. According to the Winters study [39], using a 9:1
split ratio of HCN/NH3 for coal provides more accurate NOx predictions than considering
only one indirect product.

The calculations use the reduced kinetic approach presented by Brouwer et al. [40] in
the SNCR model:

NH3 + NO → N2 + H2O + H (20)

NH3 + O2 → NO + H2O + H (21)
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HNCO + M → H + NCO + M (22)

NCO + NO → N2O + CO (23)

NCO + OH → NO + CO + H (24)

N2O + OH → N2 + O2 + H (25)

N2O + M → N2 + O + M (26)

The study by Rota et al. [41] investigated the two-step mechanism of urea decomposition:

CO(NH2)2 → NH3 + HNCO (27)

CO(NH2)2 + H2O → NH3 + CO2 (28)

The numeric model was confirmed by employing a zero-dimensional model (0D). The
results obtained from the 0D model were used as a reference for the numerical research
of flue gas recirculation. The 0D model is established on the thermal and flow balance
computations of the whole boiler, including its three dimensions (depth, width, and height).
All heat exchangers are also taken into account along with dimensions such as tube diameter
and length, tube bank pitch, number of tubes, and rows of tube. The model considers
the heat transfer between flue gas and the operating fluid. The temperature of the flue
gas and the operating fluid beyond each heat exchange surface is calculated in the 0D
model. It also delivers knowledge about the velocity of the flue gas and the operating
fluid. These calculations were carried out using a homemade program, based on the
procedures presented in [42–44]. According to the [45] standard, as well as from the
monitoring data of the distributed control system, and from other measurements, the input
data were taken. The temperature at the furnace exit was calculated using a methodology
presented in [42,46], while the convection pass of the boiler was determined by utilizing
a methodology based on research conducted at the Silesian University of Technology, as
presented in [45]. A comprehensive analysis of the computational model’s accuracy is
presented in [45], and many modernizations of boilers have been developed, applying the
depicted method, confirming its believability. The 0D model based on measurements is
adequate for examining the operating parameters of boilers built after modernization [47].

3. Calculation Results with Discussion
3.1. Numerical Model Verification

Since the boiler did not operate at 40% load, the base reference case for numerical
model verification was the case of a 60% boiler load. Two coals marked as M and H were
used to validate the model to obtain a greater reliability of the numerical model. For the
reference case of a 60% boiler load, information from the distributed boiler control system
about the CO and NOx content in the flue gas at the model exit and unburnt coal in the
fly ash and slag were obtained. Using the 0D model, the temperatures behind each heat
exchanger in the flue gas path and at the outlet from the combustion chamber and the
model exit were also verified. The O2 content at the combustion chamber outlet and the
model’s exit, as well as the CO and NOx content at the combustion chamber outlet, were
also verified employing the 0D model. The results of the verification for a 60% load, fired
with M and H coal with the 0D model, are presented in Table 4. The flue gas temperature
in the characteristic planes of the boiler is shown in Figure 6, while the collation of the
area-weighted average flue gas temperatures in cross-sections as a relationship of the flue
gas path is shown in Figure 7.
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Changing the fuel slightly affects the flue gas temperature in the area of the burners.
In this area, the flue gas temperature reaches higher values for the case of the 60% H—coal
with a higher calorific value. For both cases, the flue gas temperature receives the highest
value above the fourth row of burners, in front of the OFA nozzles. The flue gas temperature
beyond the level of the OFA nozzles slightly increases, because the air supplied by the OFA
nozzles burns the unburnt coal particles remaining as a consequence of sub-stoichiometric
combustion (fuel-rich condition—insufficient oxygen). As heat is transferred between the
flue gas and the heat exchangers, the temperature of the flue gas decreases along their path.
Behind the combustion chamber in the flue gas path, the flue gas temperature for the case
of 60% M usually reaches higher values than for the case of 60% H.

The O2 mass fraction in the flue gas in the typical planes of the boiler is shown in
Figure 8. A lack of O2 can be observed in the vicinity of the rear wall OFA nozzles. This is
due to the course of the combustion in this area, resulting from the so-called flame licking of
the rear wall (see Figure 6). Therefore, a high O2 content can be observed in the flue gas at
the level of the front wall OFA nozzles. The core air from the first level of burners supports
the combustion of the fuel and lowers the underburning in the slag hopper—Table 4.
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The collation of the area-weighted average O2 contents in the flue gas in cross-sections
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Figure 9. The area-weighted average O2 content [%] in cross-sections as a function of flue gas path
for 60% M and 60% H cases.

The average O2 content in the flue gas decreases from the second row of burners.
An increased share of O2 can be observed in the planes of the OFA nozzles. Behind the
OFA nozzles, the average O2 content in the flue gas decreases, which is related to the
afterburning of unburnt fuel particles in this area in accordance with Reaction (16). This is
also due to the participation of O2 in the CO oxidation reaction according to the course of
Reaction (8). The change of fuel slightly affects the differences in the average O2 content in
the flue gas in the area of the burners. In the combustion area, the average O2 contents in
the flue gas reaches lower values for the case of 60% H. On the other hand, at the model
outlet, the average O2 content in the flue gas is 60% M lower for the case. The increase in
the O2 content at the final section of the flue gas path results from boiler leaks, i.e., from
sucking in false air.

Figure 10 shows the CO contents in the dry flue gas in the typical planes of the boiler.
The appearance of CO in the vicinity of the burners is the result of the degassing of coal
particles and the combustion of volatile matter. The presence of CO is even an effect of the
combustion of pulverized coal grains in the absence of O2 in the combustion region. The
highest CO value was obtained in the planes of the third and fourth row of burners.
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n 6% O2] in cross-sections as a function of

the flue gas path for 60% M and 60% H cases.

The decrease in the CO content behind the fourth row of burners is related to the
afterburning of unburnt sub-stoichiometric fuel particles in the area of the burners. This
is also due to the course of the oxidation Reaction (8). In the area of the burners, slight
differences in the mean CO contents in the flue gas due to the change of fuel can be observed.
In the combustion area, the mean content of CO in the flue gas reaches lower values for the
case of 60% M. On the other hand, at the model outlet, the average CO contents in the flue
gas is lower for the 60% H case.

Figure 12 shows the NOx contents in the typical planes of the boiler. A lower NOx
concentration is observed for variant M, where there is a lower temperature in the com-
bustion region than in variant H—Figure 6. The lower contents of O2 in the flue gas in the
sub-stoichiometric combustion zone for variant M in relation to case H (Figures 8 and 9)
also results in the formation of a smaller amount of NOx in case M.
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sections as a function of the flue gas path is shown in Figure 13.
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Figure 13. The area-weighted average NOx content [mg/m3
n 6% O2] in cross-sections as a function

of the flue gas path for 60% M and 60% H cases.

The change of fuel affects the differences in the average contents of NOx in the flue gas
in the boiler along the flue gas path. The average NOx content in the flue gas reaches higher
values for the case of 60% H, but only up to the area of the third reheater stage. This is due
to the higher flue gas temperature for this case in this area—the thermal mechanism of
nitrogen oxide formation prevails. On the other hand, in the area behind the third reheater
stage in the flue gas path, the average NOx content in the flue gas is higher for the case of
60% M. M coal has a higher nitrogen content in the fuel, which, despite temperatures that
are not too high, contributes to the increased NOx content in this area—the fuel mechanism
of nitrogen oxide formation prevails.

3.2. Numerical Research for Flue Gas Recirculation

The flue gas temperature in the characteristic planes of the boiler is shown in Figure 14.
The collation of the area-weighted average flue gas temperatures in the cross-sections as a
relationship of the flue gas path for recirculation cases is shown in Figure 15.
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Figure 15. The area-weighted average flue gas temperature [K] in cross-sections as a function of flue
gas path for rec1, rec1A, rec2, rec3, and rec4.

Due to the reduced O2 in the primary air, for the case of rec1A, the combustion is more
extended along the height of the combustion chamber compared to the case of rec1. In
the case of rec1, the flame core (high-temperature region) is lowered compared to the case
of rec2. Similarly, case rec3 shows the lowest-position flame core compared to case rec4.
Reducing the flue gas temperature for case rec3 in the plane of the fourth row of burners
results from the recirculation of flue gas to this row. The high flue gas temperature in the
area up to the third row of burners is the result of the boiler operating on the middle burners
(second and third row of burners). The lowest flue gas temperatures in the bottom section
of the burner belt can be observed for case rec2. Relatively low flue gas temperatures in
this area are also observed for case rec1A. The most increased flue gas temperatures above
the fourth row of burners occurred for cases rec1, rec1A, and rec2, where the two upper
rows of burners (III and IV) operate on coal. With the heat exchange between flue gas and
heat exchangers, the flue gas temperature drops about the same for all cases through the
flue gas path.

The O2 mass fraction in the flue gas in the characteristic planes of the boiler is shown
in Figure 16. The collation of the area-weighted average contents of O2 in the flue gas
cross-sections as a function of the flue gas path for recirculation cases rec1, rec1A, rec2, rec3,
and rec4 is shown in Figure 17.
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In case rec2, the contents of O2 in the flue gas decreased in the plane of the first row
of burners compared to case rec1. For case rec3, the O2 content above the fourth row of
burners is reduced compared to case rec4. For case rec4, in the plane of the first row of
burners, a decrease in the O2 content is observed compared to case rec3. The O2 proportion
in the flue gas is also influenced by which rows of burners are fed with coal during flue
gas recirculation. For cases rec4 and rec2, the flue gas is recirculated to the first row of
burners, but, in case rec4, a lower share of O2 in the flue gas in the first row of burners is
observed. The lowest average contents of O2 in the flue gas in the lower part of the burner
belt occurred for case rec4. A relatively low average concentration of O2 in the flue gas in
this area is also observed for case rec3. The highest average O2 content in the flue gas in the
lower part of the burner belt appeared for cases rec1 and rec1A.
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The increase in the O2 in the region between the furnace outlet and the model outlet
results from boiler leaks, i.e., from sucking in false air. Figure 18 shows the CO contents in
the flue gas in the typical planes of the boiler. A comparison of the area-weighted average
share of CO in cross-sections in the flue gas path for recirculation cases rec1, rec1A, rec2,
rec3, and rec4 is presented in Figure 19.
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Figure 18. The CO content [mg/m3
n 6% O2] in selected planes—from left: rec1, rec1A, rec2, rec3, and rec4.

In case rec2, the concentration of CO in the flue gas in the first row of burners increases
compared to case rec1. In the case of rec1A, with less O2 in the primary air, less CO was
produced in the surface of the second row of burners according to the volatile matter
combustion Reaction (7). In turn, the reduced O2 content in this case, in accordance with
Reaction (8), causes an increase in the share of CO at the combustion chamber exit and from
the model exit—see Table 4. The reduced O2 content in the case of rec1A also increases
the fly ash and slag in relation to case rec1—see Table 4. For case rec3, the CO content
above the fourth row of burners increases compared to case rec4. For case rec4, in the
surface of the first row of burners, the CO content increased in relation to case rec3. The
level of active coal burners during the FGR operation also affects the proportion of CO in
the flue gas. For case rec4, the contents of CO decreased in the plane of the first row of
burners compared to case rec2. In the lower part of the burner belt, the highest average CO
content was achieved for case rec2 and the lowest average CO content was recorded for
case rec3.
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Figure 20 shows the NOx contents in the dry flue gas in the typical planes of the boiler.
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Figure 20. The NOx content [mg/m3
n 6% O2] in selected planes—from left: rec1, rec1A, rec2, rec3,

and rec4.

In case rec2, a higher content of NOx in the flue gas in the first row of burners was
noted compared to case rec1. For case rec1A, with less O2 in the primary air, less NOx
is produced in the surface of the second row of burners. The reduced O2 content in this
case results in a lowering in NOx at the furnace outlet and the outlet from the model—see
Table 4. In case rec3, a decrease in the NOx content above the fourth row of burners is
observed compared to case rec4. For case rec4, a decrease in NOx was achieved in the
surface of the first row of burners compared to case rec3. The amount of NOx is also
influenced by which rows of burners are fed with coal during flue gas recirculation. For
case rec4, in the surface of the first row of burners, a smaller amount of NOx was recorded
compared to case rec2. The collection of the area-weighted average contents of NOx in the
cross-sections of the flue gas as a relationship of the flue gas path for recirculation cases
rec1, rec1A, rec2, rec3, and rec4 is presented in Figure 21. In case rec3, the area of the first
three rows of burners produces the highest amount of NOx compared to the other cases. In
the surface of the fourth row of burners, NOx reduction occurred in this case. For case rec3,
the smallest amounts of NOx are produced in the area of OFA nozzles. The highest NOx
values in the upper part of the burner belt and in the area of OFA nozzles were obtained
for case rec4. In all cases, in the plane downstream of the second and third live-steam
superheaters (LS II and III), a decrease in NOx was recorded as a result of the operation of
the SNCR installation.
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The presented numerical study reasonably reliably reflects the flue gas temperature
distribution compared to the zero-dimensional model (0D) and the values obtained from
the measurements. The measurement results are derived from the monitoring data of the
distributed control system and are presented in Table 4 as (m). The summarized results in
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the combustion chamber exit planes and from the model exit planes are shown in Table 4.
Numerical effects were received at a level near the computed values. The notation 0D/m
means a value obtained using a zero-dimensional model or from measurements. The values
obtained from the measurement are marked with (m) in the data column.

Table 4. A summary of the outcomes in the combustion chamber exit planes and the model exit plane.

Data Unit
60% M 60% H Rec1 Rec1a Rec2 Rec3 Rec4

0D/m CFD 0D/m CFD 0D/m CFD CFD 0D/m CFD 0D/m CFD 0D/m CFD

O2 furnace exit % 2.52 2.5 2.53 2.58 2.75 2.67 1.93 2.75 2.86 2.75 2.71 2.75 2.89
CO 6% O2 furnace exit mg/m3

n- 2137 - 2086 - 452 650 - 504 - 70 - 163
NOx 6% O2 furnace exit mg/m3

n- 282 - 349 - 196 161 - 170 - 171 - 211
O2 model outlet % 3.23 3.26 3.25 3.5 3.83 4,2 3.3 3.83 3.4 3.83 4.1 3.83 4.05

CO 6% O2 model exit (m) mg/m3
n97 88.5 97 62 - 46 111 - 5 - 4 - 3

NOx 6% O2 model exit (m) mg/m3
n179 199 179 172 - 185 149 - 162 - 156 - 154

Temperature furnace exit ◦C 1190 1182 1197 1194 1060 1031 1023 1060 1024 1005 1021 1005 1037
Temperature after LS II, III ◦C 985 955 990 1034 890 913 911 890 907 851 871 851 875

Temperature after RS II ◦C 839 893 842 850 761 811 800 761 805 726 728 726 758
Temperature after LS IV ◦C 743 730 747 711 700 721 706 700 714 659 630 659 653
Temperature after RS III ◦C 644 659 647 605 613 651 648 613 646 588 597 588 606
Temperature after RS I ◦C 497 547 500 483 474 513 504 474 501 459 515 459 511

Temperature model exit ◦C 450 458 452 420 433 475 445 433 462 422 461 422 454
Unburnt carbon in fly ash (m) % 6.2 3.21 6.2 3.16 - 0.3 1.9 - 0.5 - 0.8 - 0.9

Unburnt carbon in slag (m) % 3.3 0.95 3.3 1.26 - 0.5 1.1 - 0.8 - 9.4 - 11.2

Similar to [8,48–50], FGR reduces the NOx contents in the flue gas at the exit of the
combustion chamber and at the outlet of the model. This is noticeable by comparing the
cases rec1, rec1A, rec2, rec3, and rec4 with the cases of 60% M and 60% H presented in Ta-
ble 4. All considered cases obtained NOx emissions under 200 mg/m3

n, @ O2 6%, following
the requirements of the BAT document. FGR also reduced the flue gas temperature at the
combustion chamber outlet. A comparable tendency of the temperature of the flue gas to
decrease is observed in [48,50]. The CO content declines with the growth of the O2 content.
For the recirculation cases, no increase in the contents of CO in the flue gas is observed
in relation to the case of 60% H in the zone of pulverized coal combustion. A higher CO
concentration is noticeable only for the row of burners through which the recirculated flue
gas is fed. In case rec1A, with the O2 in the primary air reduced to 18%, there is no increase
in the contents of CO in the flue gas in the third and fourth row of burners in relation to
case of 60% H. That proved the stable combustion in the combustion chamber. The reduced
flame temperature caused by FGR may lead to combustion instability [9]. Despite the
decrease in O2 concentration in the region of the third and fourth row of burners, no rapid
decrease in the flue gas temperature was observed. Thus, the combustion process proceeds
stably without breaking the flame. On the other hand, the unburnt carbon in the fly ash and
in the slag increases in relation to case rec1, which is the base for the discussed case rec1A.
Therefore, supplying the stream of recirculated flue gas to the furnace through burners that
are not fueled with coal does not affect the combustion stability.

3.3. Numerical Research of Protection Air Systems

In PC boilers, where primary methods of reducing NOx emissions were used, the
corrosion of the waterwalls often occurred, causing injury to the tubes and the need for
their expensive replacements [4,51,52]. It seems that, even if the contents of O2 in the flue
gas is higher than the CO content, there is no need to worry about rapid corrosion. It is
universally assumed that, if the content of O2 decreases below 1% near the walls of the
combustion chamber, then the intensification of corrosion processes should be taken into
account. An additional criterion is the presence of CO in the flue gas boundary layer [4]. In
Polish boilers, corrosion was observed already at concentrations CO ∼= 0.8%. In order to
reduce the intensity of corrosion in the OP 650 boiler, a protective air system (PAS) was used.



Energies 2024, 17, 2227 20 of 25

The air streams are entered alongside the walls of the burner belt, creating an oxygen-rich
boundary layer separating the evaporator tubes from the aggressive components of the
flue gas, and protecting against the local occurrence of a reducing atmosphere [18,53].

The content of O2 and CO in the flue gas boundary layer for the walls of the evaporator
was presented in Figure 22 for the 60% case.
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Figure 22. The O2 (left) and CO (right) content [%] for front and left, and rear and right walls—60% M.

For the case of 60% M, the greater part of the right wall is exposed to low-NOx
corrosion. There is no O2 in the boundary layer of the flue gas. There is a reducing
atmosphere, with a CO content of 0.9%. The left wall, on the other hand, is not at risk of
corrosion because, despite the lack of O2, the CO content in it does not exceed 0.5%. The
part of the back wall of the evaporator is at risk. There is no O2 in the zone between the
PAS and the OFA nozzles, but, on the right side, there is CO in an amount of 0.83 to 0.92%.

Figure 23 shows the content of O2 and CO in the flue gas boundary layer for the walls
of the evaporator for the case of 60% H.
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For the case of 60% H, the rear part of the right wall is exposed to low-NOx corrosion.
There is a reducing atmosphere with a CO content of 0.74%. The left wall is not exposed
to corrosion, because there is a boundary layer containing O2 and the CO content does
not exceed 0.3%. The front wall is also not at risk of corrosion because there is a high
concentration of O2, despite the CO content of 0.74%. The right part of the back wall of the
evaporator is at risk of corrosion. On the right side of the rear wall, in the area between the
PAS and OFA nozzles, there is no O2, but there is CO in the amount of 0.74%.

Figure 24 shows the percentages of O2 and CO in the flue gas boundary layer for the
walls of the evaporator for the case of rec1. For case rec1, none of the walls is drastically
exposed to low-NOx corrosion. For the rear wall with a CO content of 0.92%, there is a high
concentration of O2 in the flue gas equal to 8%.
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Figure 26 shows the percentages of O2 and CO in the flue gas boundary layer for the 
walls of the evaporator for the case of rec2. For case rec2, none of the walls is drastically 
exposed to corrosion. In areas with an increased CO content in the amount of 1.11%, there 
is a high concentration of O2 equal to 11%.  
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Figure 25 shows the percentages of O2 and CO in the flue gas boundary layer for the
walls of the evaporator for the case of rec1A. For case rec1A, the left and rear walls are not
drastically exposed to corrosion. In the areas with a CO content of 1.04%, there is a high
concentration of O2, equal to about 15%. However, the left wall is at risk of corrosion. In
the area of CO occurrence at the level of 1.04%, O2 is not contained in the boundary layer
of flue gas.
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Figure 26 shows the percentages of O2 and CO in the flue gas boundary layer for the
walls of the evaporator for the case of rec2. For case rec2, none of the walls is drastically
exposed to corrosion. In areas with an increased CO content in the amount of 1.11%, there
is a high concentration of O2 equal to 11%.
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Figure 27 shows the percentage content of O2 and CO in the flue gas boundary layer
for the walls of the evaporator for the case of rec3. For case rec3, a slight rear part of the
right wall is exposed to corrosion. In this area, there is no O2, but there is a CO content of
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0.75%. The left wall is not exposed to corrosion; despite the lack of O2 in its boundary layer,
the concentration of CO does not exceed 0.6%. The rear wall is not drastically exposed to
corrosion. Despite the lack of O2 in the area between the PAS and OFA nozzles, the CO
content does not exceed 0.5%.

Energies 2024, 17, x FOR PEER REVIEW 22 of 25 
 

 

Figure 26. The O2 (left) and CO (right) content [%] for front and left, and rear and right walls—rec2. 

Figure 27 shows the percentage content of O2 and CO in the flue gas boundary layer 
for the walls of the evaporator for the case of rec3. For case rec3, a slight rear part of the 
right wall is exposed to corrosion. In this area, there is no O2, but there is a CO content of 
0.75%. The left wall is not exposed to corrosion; despite the lack of O2 in its boundary 
layer, the concentration of CO does not exceed 0.6%. The rear wall is not drastically ex-
posed to corrosion. Despite the lack of O2 in the area between the PAS and OFA nozzles, 
the CO content does not exceed 0.5%. 

 
Figure 27. The O2 (left) and CO (right) content [%] for front and left, and rear and right walls—rec3. 

Figure 28 shows the percentage content of O2 and CO in the flue gas boundary layer 
for the walls of the evaporator for the case of rec4. For case rec4, a significant part of the 
right wall is not drastically exposed to low-NOx corrosion. In the oxygen-depleted area, 
the CO content in the boundary layer of the flue gas is a maximum of 0.8%. However, in 
the area where the CO content is 1%, there is also O2 in the amount of about 8%. Similarly, 
the left wall is also not drastically exposed to corrosion. In the oxygen-free area, the CO 
content is a maximum of 0.75%. The rear wall is at risk of corrosion. In areas without O2, 
the CO content is a maximum of 0.95%. 

 
Figure 28. The O2 (left) and CO (right) content [%] for front and left, and rear and right walls—rec4. 

Table 5 below presents the results of the calculations of the corrosion rate of the evap-
orator tubes according to the methodology contained in [54]: 𝑤ை௫ = 17.91[CO] + 7.63 [nm/h] (29)

Table 5. The tube thickness loss rates due to the low-NOx corrosion. 
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Figure 28 shows the percentage content of O2 and CO in the flue gas boundary layer
for the walls of the evaporator for the case of rec4. For case rec4, a significant part of the
right wall is not drastically exposed to low-NOx corrosion. In the oxygen-depleted area,
the CO content in the boundary layer of the flue gas is a maximum of 0.8%. However, in
the area where the CO content is 1%, there is also O2 in the amount of about 8%. Similarly,
the left wall is also not drastically exposed to corrosion. In the oxygen-free area, the CO
content is a maximum of 0.75%. The rear wall is at risk of corrosion. In areas without O2,
the CO content is a maximum of 0.95%.
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Table 5 below presents the results of the calculations of the corrosion rate of the
evaporator tubes according to the methodology contained in [54]:

wmax
corrCO = 17.91[CO] + 7.63 [nm/h] (29)

Table 5. The tube thickness loss rates due to the low-NOx corrosion.

Data Unit 60% M 60% H Rec1 Rec1A Rec2 Rec3 Rec4

wmax
corrCO nm/h 24.1 20.9 - 26.3 - 21.1 27.3

wmax
corrCO mm/year 0.211 0.183 - 0.230 - 0.185 0.239

tf h 207,407 239,425 - 190,430 - 237,389 182,943
CO % 0.92 0.74 0.92 1.04 1.11 0.75 1.1
O2 % 0 0 8 0.01 11 0 0

Table 5 shows the maximum values of carbon monoxide in the flue gas boundary layer
for a particular case as CO. The O2 values refer to the areas where the above-mentioned
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maximum CO values occur for a particular case. The evaporator has tubes with a wall
thickness of 5 mm. The time tf was calculated, after which the tube wall thickness is
punctured and a failure occurs, resulting in the shutdown of the power unit. It should be
emphasized that FGR does not cause an increased risk of the low-NOx corrosion of screens.
The values in Table 5 prove that they are not dangerous for a boiler with a maximum
remaining operating time of 50,000–70,000 h.

4. Conclusions

The paper shows the results of the numerical research of the combustion process,
including flue gas recirculation for a boiler operating in a 200 MW power plant unit. In the
control planes of the OP 650 boiler and at the outlet from the model, there is a satisfactory
agreement of temperature, O2, CO, NOx, and unburnt carbon with the values received from
the zero-dimensional model and the measurements. It has been shown numerically that
FGR reduces and equalizes the temperature in the furnace, eliminating temperature peaks
in the burner belt. In addition, it has been shown that FGR reduces the O2 concentration in
the combustion area and also reduces the flue gas temperature at the combustion chamber
outlet. Based on the results of numerical calculations, it was shown that FGR reduces the
content of CO and NOx in the flue gas at the furnace outlet and the model exit. For FGR
systems, the emission of NOx was kept below 200 mg/m3

n @ 6% O2 in the dry flue gas.
This proves that, at a low power of the boiler, FGR will help meet the BAT requirements for
NOx emissions. Assuming the NOx emission criterion, case rec4 is the most advantageous
variant of FGR. The analysed FGR, which consists of feeding the exhaust gas to the furnace
through inactive mills, will not impair the combustion stability. For the tested cases of
boiler operation, there is no risk of low-NOx corrosion occurring during the expected life
of the boiler. A future research step will be the combustion of a mixture of coal with an
alternative fuel or a switch to another fuel.
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