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Abstract: The rapid compression machine measures ignition delay time at high pressures
and low to intermediate temperatures. However, unavoidable facility effects, such as
compression and heat loss, shift the measurements away from ideal (adiabatic and constant
volume) values to varying extents. Consequently, the ignition delay times measured by
different facilities can be in large deviations, especially for fuel mixtures without negative
temperature coefficient behavior. To address this issue, this work proposes a standard-
ization algorithm that correlates the measurements to the ideal ignition delay times. The
algorithm applies the Livengood–Wu integral method inversely and adopts a Bayesian
approach to optimize the correlation parameters. The ignition delay times of an ethanol
mixture under distinct facility effects were further used to test the performance of this
algorithm. The results show that the dispersed ignition delay times can be effectively
standardized within 20%, facilitating the direct comparison of measurements from different
facilities. By setting a proper residual target of the algorithm, reasonable standardization
accuracy can be achieved. This method enables a significantly easier interpretation of the
rapid compression machine experimental data and can be broadly applied to any fuel
mixtures exhibiting single-stage ignition characteristics.

Keywords: rapid compression machine; ignition delay time; facility effect; standardization;
inverse Livengood–Wu integral

1. Introduction
Ignition delay time (IDT) [1], which characterizes the global reactivity of a combustible

mixture, is a crucial parameter in combustion research. While the definitions of IDT may
vary among facilities, it typically represents the induction time from thermal stimulus
to a violent chemical reaction. Modern engine design requires precise control of IDT to
achieve high thermal efficiency, avoid knock and instability, and reduce pollutant emis-
sions [2,3]. Therefore, IDT is also an important parameter for evaluating the feasibility of
alternative fuels.

IDT is typically measured by shock tube (ST), rapid compression machine (RCM) and
constant volume bomb (CVB), each designed for different measurement time scales and
temperature ranges [4,5]. Specifically, ST is suitable for measuring IDTs within the range
of a few milliseconds at high temperatures [6]. Limited by the time scale of heating the
injected fuel mixtures, CVB is generally used to measure IDTs from 10−1 s to 101 s and is
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more suitable for determining the autoignition limits [7]. Complementarily, RCM achieves
low to intermediate temperatures and high pressures through fast piston compression and
is effective in measuring IDTs from 100 to 102 milliseconds [4].

The IDTs obtained from ST and RCM are often used to validate the chemical kinetic
mechanism of fuels [8]. However, compared to that of ST, the thermal condition of RCM is
less ideal, and its measurements are more intended to be affected by the facility effects [9].
IDTs measured by different STs can usually be compared directly [10], while the measure-
ments of different RCMs cannot [9,11,12]. Two typical pressure traces from ST [13] and
RCM [14], respectively, are compared with normalized time, as shown in Figure 1. The
thermal condition in ST is built up almost instantly through the compression of a shock
wave. In contrast, the compression process in RCM is limited by the piston movement, and
noteworthy chemical reactions can take place in this process, shortening the IDT measure-
ment, especially for conditions with higher reactivities. Furthermore, due to the longer
time scale of the RCM measurement, the heat transfer between the gas mixture and the
chamber wall cannot be neglected, which results in a gradual pressure drop before the
ignition, as shown in the RCM nonreactive measurement (replacing O2 with N2 in the
mixture) in Figure 1. The heat loss tends to prolong the IDT measurement, especially for
conditions with lower reactivities. As a result, RCMs with different geometries and piston
movement designs may have distinct measurements of IDTs, even though all of them are
“accurate” in the modeling [4,9].

Figure 1. Comparison of the pressure measurements between ST [13] and RCM [14].

To accommodate the facility effect of the RCM measurement, the volume tabulation
method [15,16] is usually adopted in the zero-dimensional (0D) kinetic simulation. The
volume profile is derived from the nonreactive pressure trace using Equations (1) and (2)
under the assumption of the “adiabatic core” theory [17].
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where T0, p0, and V0 are the initial temperature, pressure and volume, respectively; T, p,
and V are the temperature, pressure, and volume, respectively, at any time; and γ is the
temperature-dependent specific heat ratio of the mixture.

With the help of the volume tabulation method, the “accurate” RCM measurements
should achieve equal agreement with the model simulation results. Despite this, the RCM
experiments still require rigorous specification of the initial and boundary conditions,
i.e., heat loss characteristics. Using simple characteristic parameters, such as compressed
temperature and pressure, as the basis to evaluate the experimental results of different
RCMs remains a challenge, as illustrated in the international RCM workshop [4]. To
find a common ground for RCM experiments, Preußker et al. [9] modified their RCM to
unconventional operation conditions, including variations of the piston compression from
creep to abrupt stopping, usage of different piston crevice geometries, and altered dead
volume of the combustion chamber. By adopting the volume tabulation approach, 98%
of the IDT measurements with altered facility effects can be predicted within ±25% using
one single mechanism. Büttgen et al. [12] investigated the IDTs of ethanol obtained from
five independent RCMs. As expected, the raw measurements of these RCMs show notable
differences at the same thermal conditions. With the facility effects considered through the
volume tabulation approach, the chemical kinetic model can predict all experimental data
within the uncertainty. Their work put emphasis on repeating experimental data using
various facilities.

Another suitable approach to predicting the IDT under transient thermal environments
is the Livengood–Wu (L–W) integral method [18], which has been effectively applied in
engine knock prediction [19–24], as well as the onset of ignition in compression ignition
engines and homogeneous charged compression ignition engines [20,25,26]. A general
formulation of the L–W integral is written as Equation (3), where x(t) represents an ignition
carrier and can only be accumulated up to its critical value xc. The integration equals 1 at
the time of ignition.

x(t)
xc

=

t∫
0

1
τ

dt (3)

Briefly, the L–W integral method assumes the ignition carrier reaches its critical
concentration by summing up the carriers formed at each quasi-steady state, in which
the production rate of the carriers is simplified as 1/τ. Although the L–W method was
developed by assuming a zeroth order kinetics of the system, Khaled et al. [27], Pan [28]
and Miyoshi [29] further theoretically rationalized the validity of this method for any global
order kinetics.

Since the L–W integral method can predict the IDTs under transient thermal conditions
using the IDTs at ideal steady states, it would be worthy to test the inverse application of this
method, namely, to predict the IDTs at ideal conditions based on the autoignition profiles
measured under varying thermal conditions. Reyes et al. [5] adopted an inverse L–W
method to obtain the analytical expressions of IDT from the autoignition timing measured
in a CVB. The work studied fuels like n-heptane while assuming a simple Arrhenius IDT
expression. Since the two-stage heat release and negative temperature coefficient (NTC)
characteristics of n-heptane were not considered in their method, the correlated IDTs still
showed large deviations with the other measurements. Tao et al. [30] incorporated the
genetic algorithm in the inverse L–W method to interpret the IDTs measured in a high
repetition rate miniature shock tube. Their optimized solutions on the IDT correlation
showed a very good agreement with the reference data, demonstrating the feasibility of the
inverse use of the L–W integral method at high-temperature conditions.
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For fuels with two-stage ignition and NTC behaviors, such as n-heptane and iso-octane,
the agreement of the IDT measurements among different RCMs is generally accept-
able [4,31]. In contrast, fuels with low low-temperature reactivity (L-fuels), like ethanol
and methane, exhibited much larger deviations in IDT measurements among different
RCMs [9,11]. To our knowledge, no reliable method exists to standardize the IDTs of the
L-fuels, despite the fact that their autoignition characteristics (single-stage and no NTC)
are well suited for the inverse L–W integral method. To interpret the RCM data, the
volume tabulation method remains the most prevalent approach to date. This indirect
interpretation of RCM experimental data, though it performs well in the model validation,
is time-consuming and can be influenced by the uncertainties in the chemical kinetic model.
Shah et al. [32] also pointed out that uncertainties in the kinetic model can be significantly
amplified for model-based control of ignition timing in advanced compression ignition
engines. This motivates our work to develop a method that can interpret the RCM mea-
surement without involving complex kinetic modeling and enable the direct comparison of
the IDTs from different facilities.

In this work, we propose an algorithm that combines the inverse L–W integral method
with the Bayesian optimization approach [24] to standardize the IDTs under different
facility effects. The standardization procedure is introduced first in the following sections.
Autoignitions of an ethanol mixture under distinct facility effects are then used to test the
forward predictions of the L–W integral method. Sensitivity analyses of the IDT correla-
tion parameters are conducted to improve the efficiency of hyperparameter optimization.
Finally, IDT correlations obtained from the inverse L–W integral method at various resid-
ual levels are presented, and their performance in terms of IDT standardization accuracy
is discussed.

2. Standardization Method Procedure
The standardization procedure for the IDTs obtained from RCM is shown in Figure 2,

which mainly includes input data preparation, IDT correlation (parameter fit), and hyper-
parameter optimization (residuals and GP optimization).

Figure 2. Standardization procedure for the IDTs from RCM.

2.1. Input Data Preparation

To calculate the IDT at each quasi-steady state, the input data should include pressure
profiles, temperature profiles and the corresponding global IDTs_f (IDTs affected by facility
effects). In RCM experiments, the pressure in the combustion chamber can be directly
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measured by a transducer, while the temperature profiles of the core region are derived
from the pressure using Equation (1). A properly designed RCM piston is a prerequisite
for the validity of the “adiabatic core” theory [17], thereby ensuring the accuracy of the
temperature profiles.

In this study, we adopt three types of volume profiles, mimicking different facility
effects, to generate input data, as shown in Figure 3. Inputs-1 and inputs-2 are from the
RCM at Xi’an Jiaotong University [11,33], while inputs-3 is from the RCM at the University
of Galway. [34]. Inputs-1 to inputs-3 were modified to have the same compression ratio.
The inputs-1 has the largest volume expansion rate after the end of compression (EOC),
presenting the most severe heat loss, which would typically occur with a short combustion
chamber. Inputs-2 follows the same compression process as inputs-1 but with the least
heat loss. The compression process of inputs-3 is much faster, and its heat loss is between
inputs-1 and inputs-2.

Figure 3. (a) The input volume profiles mimicking different facility effects. (b) Simulated pressure
traces at Tc ~ 900 K under different facility effects.

An ethanol chemical kinetic model extracted from NUIGMech1.1 [34] was adopted
in the kinetic simulation using Cantera. The ethanol sub-mech in NUIGMech1.1
has been sufficiently validated against a wide range of experimental data, includ-
ing IDTs from ST [35] and RCM [36], speciation in a Jet-stirred reactor [37] and
laminar flame speed [38]. Details of the validation can be found in the mecha-
nism website of Galway (https://www.universityofgalway.ie/media/researchcentres/
combustionchemistrycentre/files/C2.pdf, accessed on 1 January 2025). With the con-
strained volume profile, the temperature and pressure profiles in the reactor are determined
by solving the ideal gas law and energy equation. IDT is defined as the time interval be-
tween end of compression and the instant of maximum dp/dt. Examples of the autoignition
pressure traces for the ethanol mixture (3.72% C2H5OH, 11.17% O2 and 85.11% diluents) at
Tc ~ 900 K (temperature at the end of compression) are shown in Figure 3b. Inputs-1 has
the longest IDT (60 ms) due to the most severe heat loss. With less heat loss in inputs-2 and
inputs-3, their IDTs decrease to 14.1 ms and 26.8 ms, respectively.

By adjusting T0 prior to each simulation, Tc was varied accordingly, and the IDTs for
each input set were maintained within the typical RCM measurement range (5–200 ms),
as shown in Figure 4. For each set of simulations, p0 was slightly adjusted to ensure that
pc remained approximately 20 bar. Temperature and pressure profiles required by the
algorithm were obtained from the Cantera simulation results and stored in csv files. The
global IDTs_f was attached as the label of the corresponding csv file.

https://www.universityofgalway.ie/media/researchcentres/combustionchemistrycentre/files/C2.pdf
https://www.universityofgalway.ie/media/researchcentres/combustionchemistrycentre/files/C2.pdf
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Figure 4. The IDTs under different facility effects and the predictions of the L–W integral.

2.2. IDT Correlation

The IDTs can generally be correlated using an Arrhenius expression at both high [26]
and low temperatures [20] (outside of the NTC region), as shown in Equation (4).

τ = A × ∏ xai
i × pn × exp(

E
RT

) (4)

where τ is the IDT; xi is the concentration of the species; R is the gas constant; A, ai, n and E
are the fitted parameters. Specially, E is also called the activation energy of the mixture. For
the ethanol mixture, the IDTs show a typical Arrhenius temperature dependence and can
be simplified as Equation (5) when the composition is fixed.

τ = A × pn × exp(
E

RT
) (5)

where τ is in milliseconds, p is in bar, T is in K, and R is in J/mol·K−1 in this work.
The IDTs_f are firstly used to fit the three parameters of the Arrhenius expression using

the least squares method, obtaining an initial guess (A0, n0 and E0) of the IDT correlation.
The algorithm can then enter into the next part: optimizing these parameters for the ideal
IDT_cv correlation.

2.3. Hyperparameter Optimization Algorithm

At least three input files of each set are required for the hyperparameter optimization
since the target IDT correlation, Equation (5), contains three unknown parameters, i.e., A,
n and E. A0, n0 and E0 obtained from last step are adopted in the forward L–W integral
from time zero to the ignition time (compression time + IDT_f). Residual (δ) of the current
optimization result is defined as Equation (6), where 1 represents ignition in the L–W
integral method. A negative δ therefore indicates the L–W integral does not reach 1 at the
time of ignition, which means the current IDT correlation is slower. Conversely, a positive
δ indicates a faster IDT correlation.

δi =
τi∫

0

1
A · pn · exp(E/RT)

dt − 1 (6)

If all δi meet the target residual (δt), these three parameters will then constitute the target
correlation expression.
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Without extensive optimization, |δi| can be very large. To address this, we adopt a
Bayesian optimization approach [39] to optimize the hyperparameters of the Arrhenius
expression. Within this framework, the Gaussian process optimization was used as the spe-

cific implementation, which minimizes the objective function (ε =
i

∑
1

δ2
i ) using a Gaussian

process (GP). If δi cannot meet the requirement after one cycle of optimization, ranges of
the hyperparameters can be gradually narrowed down based on previous best estimations
or increasing the iteration number of the GP process. With the optimized A, n and E, the
Arrhenius expression can then be used to correlate the IDTs_f to those at the ideal constant
volume and adiabatic conditions (IDTs_cv): the measured pc and Tc from the experiments
were substituted for p and T in the correlation, respectively.

3. Results and Discussion
This work emphasizes the performance of the standardization method; therefore,

constant volume and adiabatic simulation results using the chemical kinetic model are
adopted as the ground truth for quantitative evaluation.

3.1. Forward Prediction of the L–W Integral

Before applying the inverse method of the L–W integral, we first test the predictive
ability of the forward L–W integral method. As shown in Figure 4, the IDTs under different
facility effects (inputs-1 to inputs-3) exhibit significant deviations. However, since all the
scatter data were calculated using the same chemical kinetic model, these “measurements”
are chemically accurate, and any discrepancies arise solely from the facility effects. The
dashed line is the adiabatic constant volume simulation result, and its IDTs are given by
Equation (7).

τ = 1.077 × 10−6 × p(−9.017×10−1) × exp
(

1.427 × 105/T
)

(7)

Using Equation (7), the IDTs_f under varying thermal conditions of inputs-1 to inputs-3
are predicted as the solid lines in Figure 4. Generally, the L–W integral predictions agree
well with the IDTs_f. The largest deviation occurs at 889 K of the inputs-1, which is
around 45.7%. For inputs-2 and inputs-3, the largest deviations also occur at the lowest
temperatures, which are around 18.5% and 30.9%, respectively.

To quantify the overall agreement of the L–W integral prediction under different inputs
cases, an Average Relative Deviation (ARD) is defined by Equation (8), where n represents
the number of cases for each input set. IDTi is the individual IDT prediction using the
L–W integral, while IDTi,real is the IDT calculated through chemical kinetic simulation. As
shown in Table 1, the ARD exhibits a positive correlation with the heat loss rate of different
inputs. In other words, errors of the L–W integral predictions are larger under conditions
with more severe heat loss.

ARD =

√
n
∑

i=1

(
IDTi − IDTi,real

IDTi,real

)2

n
× 100% (8)

Table 1. ARD for inputs-1 to inputs-3.

Inputs ARD/%

1 15.4
2 5.1
3 6.6
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The L–W integral predictions are all slightly lower than the IDTs_f. To figure out
the possible explanation, instants of the L–W integral equal to 1 (L–W = 1) are plotted
on the pressure traces and pressure differential curves, as shown in Figure 5. When
determining the IDT, ignition timing is usually defined as the instant of maximum dp/dt.
While the instants of L–W = 1 do not occur where the pressure rises violently but at
places where chemical heat release counteracts the heat loss and the pressure begins to rise.
Correspondingly, L–W = 1 occurs at points where 0 < dp/dt < 1 in the differential curves,
as shown in Figure 5b. In the L–W integral method, ignition is defined as the moment
where the ignition carrier reaches its critical concentration. While in the constant volume
reactor, the ignition carrier has already gone beyond its critical concentration at the instants
of maximum dp/dt due to the feedback of the violent chemical heat release. Therefore,
ignition predicted by the L–W integral should always be earlier than that determined by
maximum dp/dt in the constant volume reactor.

Figure 5. The instants of the L–W integral equal to 1 for Inputs-3. (a) The pressure profiles and
(b) the differential pressure profiles of Inputs-3 from 867 K to 946 K.

3.2. Sensitivity of the Correlation Parameters

To obtain the IDT correlation, three parameters of the Arrhenius expression need to be
optimized. Except for the initial guess, the GP model also requires a proper varying range
of the parameters. Therefore, sensitivity analyses of these parameters on the IDTs were
conducted, as shown in Figure 6.

Figure 6. IDTs of the Arrhenius expression with varying parameter values.
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The parameter E exhibits the highest sensitivity to the IDT. With only 10% variation
of E, the IDTs change even more than varying A and n by 50%. A sensitivity factor, S, is
calculated as defined by Equation (9).

S = log(τRi/τRd)/ log(Ri/Rd) (9)

where τRi is the IDT with a parameter that increases by a factor of Ri, τRd is the IDT with a
parameter that decreases by a factor of Rd. Physically, S indicates the order of magnitude
change on IDT resulting from one order of magnitude change of the parameter. At 800 K,
the S for A, n and E are 1.0, −2.5 and 21.2, respectively.

The initial estimates of A, n and E, fitted from the IDTs_f, are listed in Table 2. The
parameter A has a wide range of distribution, ranging from 10−17 to 10−6. Since A shows the
lowest S, a relatively wide range of (0 to 1.0 × 10-5) was given to A during the optimization.
IDT generally shows a negative correlation with pressure, so n should be negative. The
changing scope of n is given as (−15.0 to 0.0).

Table 2. Initial estimations of A, n and E for inputs-1 to inputs-3.

Inputs A0 n0 E0

Inputs-1 2.158 × 10−17 −10.988 5.6441 × 105

Inputs-2 2.183 × 10−6 −3.814 2.0250 × 105

Inputs-3 1.688 × 10−9 −5.737 3.0575 × 105

The parameter E corresponds to the slope of the IDT line in the log plots versus 1000/T,
and the optimized E should always be smaller than E0. Therefore, E is given the scope of
(1.0 × 105 to 5.6 × 105) during the optimization. Since E shows the highest S, its varying
range could be gradually narrowed down based on the previous best solution during the
optimization. For example, if a positive δ is achieved at the high temperature limit and a
negative δ is achieved at the low temperature limit, respectively, the current correlation is
overestimating the slope (E). In the next cycle of optimization, current E is set as the upper
limit of its varying scope.

3.3. IDT Correlation Using the Inverse L–W Integral Method
3.3.1. Effect of Residuals on the IDT Correlation

The optimization algorithm minimizes the objective function within the specified
ranges of the parameters, reducing the levels of δ to the δt. For each set of input profiles,
δ at different temperatures is averaged (δ) to quantify the overall residual of the current
correlation. Correlations of inputs-1 with δ ranging from −0.20 to 1.00 are compared in
Figure 7. Detailed values of the parameters and the corresponding δ are provided in the
Supplementary Materials.

The adiabatic constant volume simulation result is used as the benchmark of the IDT
correlation, as shown by the solid black line in Figure 7. As δ increases from −0.200 to
−0.025, the correlation becomes closer to the benchmark. However, the closest correlation
is that with δ = 0.260 rather than that with δ = 0.000. This is also because the L–W = 1
occurs earlier than the maximum dp/dt in the constant volume reactor, as discussed in
Section 3.1. Specifically, for inputs-1, the L–W integrals at the moments of the maximum
dp/dt are 1.56, 1.52, 1.50, 1.45 and 1.35 at 867 K, 878 K, 892 K, 919 K and 946 K, respectively.
Consequently, inputs-1 achieves the lowest ARD at δ = 0.5, as shown in Figure 8. When δ is
further increased to 1.000, the correlation has gone below the benchmark, underestimating
the IDT.
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Figure 7. Correlations of inputs-1 with δ ranging from −0.200 to 1.000.

Figure 8. Effects of the averaged residual on the correlation ARD for different inputs.

The ARD of the correlations for the other inputs also shows a similar trend to that of
inputs-1, as shown in Figure 8. The best residuals are all larger than 0 and are close to the
value of (forward L–W integral at the instant of maximum dp/dt − 1). This indicates that
the inverse usage of the L–W integral method does not introduce extra errors, except for
the errors in the forward L–W integral method itself, and by setting a proper δt, the errors
of the IDT correlation can be counteracted by the inherent forward L–W integral errors.

3.3.2. Standardization Performance of the Correlation

After obtaining the correlation, the IDTs_f can then be standardized, as shown
in Figure 9. The IDTs_f of different inputs, which showed large deviation due to the facility
effects, are now in good agreement after standardization, at least within the typical experi-
mental uncertainty (<20%). The standardization procedure facilitates the direct comparison
of the IDTs measured among different RCM facilities.

Note that the minimum absolute value of δ does not guarantee the highest standard-
ization accuracy in the current algorithm, as shown in Figure 9a,b. The IDTs_cv with the
minimum absolute δ are higher than the benchmark by about 30% to 40%, but they exhibit
the best consistency. Details of the parameter values and the corresponding δ for each input
set are provided in Table 3. IDTs_cv, with δ = 0.5, are generally lower than the benchmark
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by about 20%. At δ = 0.2, as shown in Figure 9a, the IDTs_cv agree well with the benchmark
line, allowing for the direct simulation using a simple constant volume reactor.

Figure 9. Standardized IDTs using correlations with different δ.

Table 3. Parameters with the minimum absolute value of δ for inputs-1 to -3.

Inputs |δ|min A n E/J · mol−1 · K−1

1 0.0020 2.4049 × 10−6 −1.2924 1.4763 × 105

2 0.0004 5.0685 × 10−6 −1.9038 1.5529 × 105

3 0.0470 2.7358 × 10−6 −1.3808 1.4876 × 105

The standardization accuracy is dependent on δ, but a proper value of δ is unknown
in practical RCM data correlation. Based on the current calculations, δ is suggested to
be positive and would not be larger than 0.5. As shown in Figure 9c, the accuracy of the
standardization deteriorates when δ becomes larger than 0.5. For general applications
of this standardization procedure, determining a proper δ and feeding it back into the
optimization process (δt) are needed in future works.

3.4. Limitation and Future Direction

Due to the simple Arrhenius IDT correlation, this standardization algorithm can
currently only be applied to fuels exhibiting single-stage ignition characteristics, such as
methanol, ethanol, methane, ethane and hydrogen. However, this inverse application of
the L–W integral method has shown its potential for expansion to more complex fuels with
two-stage ignition and NTC behaviors. As demonstrated by Pan et al. [28] and Tao [40]
et al., a staged L–W integral can successfully predict the two-stage ignition behavior of
the primary reference fuels. Therefore, updating the simple Arrhenius IDT correlation to a
multi-stage form could enable the algorithm to accommodate larger molecular fuels.

4. Conclusions
This paper proposes a standardization algorithm for IDT measurements from RCMs.

By applying the Livengood–Wu integral method inversely and using a Bayesian approach
to optimize the correlation parameters, the IDTs, which are influenced by distinct facility ef-
fects, can be effectively correlated to those under adiabatic and constant volume conditions.

The autoignitions of an ethanol mixture under distinct facility effects were set as an
example to test this algorithm. The results show that moments where the L–W = 1 generally
occur earlier than the ignition defined by the maximum dp/dt due to the violent chemical
heat release, and with a greater extent of heat loss in the input profile, the deviation between
L–W = 1 and the maximum dp/dt increases. However, the errors of IDT_cv correlation can
be counteracted by the inherent forward L–W integral errors. Consequently, the IDT_cv

correlation achieves the highest accuracy when the algorithm takes into account this integral
deviation, resulting in a relative error of less than 5%.
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Although the correlation accuracy varies at different residual levels, the dispersed IDTs
under facility effects can be standardized within 20% across a wide range of the algorithm
residual (0.0–0.2). By applying this algorithm to the raw measurements from different
RCMs, IDTs can then be directly compared without importing complex chemical kinetic
modeling, thereby facilitating the assessment of the reliability of the experimental data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en18010165/s1, Table S1. Detailed values of the parameters and
the corresponding δ of Inputs-1. Table S2. Detailed values of the parameters and the corresponding δ

of Inputs-2. Table S3. Detailed values of the parameters and the corresponding δ of Inputs-3.
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