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Abstract: The accurate probabilistic forecasting of ultra-short-term power generation from
distributed photovoltaic (DPV) systems is of great significance for optimizing electricity
markets and managing energy on the user side. Existing methods regarding cluster infor-
mation sharing tend to easily trigger issues of data privacy leakage during information
sharing, or they suffer from insufficient information sharing while protecting data privacy,
leading to suboptimal forecasting performance. To address these issues, this paper pro-
poses a privacy-preserving deep federated learning method for the probabilistic forecasting
of ultra-short-term power generation from DPV systems. Firstly, a collaborative feature
federated learning framework is established. For the central server, information sharing
among clients is realized through the interaction of global models and features while
avoiding the direct interaction of raw data to ensure the security of client data privacy.
For local clients, a Transformer autoencoder is used as the forecasting model to extract
local temporal features, which are combined with global features to form spatiotemporal
correlation features, thereby deeply exploring the spatiotemporal correlations between
different power stations and improving the accuracy of forecasting. Subsequently, a joint
probability distribution model of forecasting values and errors is constructed, and the
distribution patterns of errors are finely studied based on the dependencies between data to
enhance the accuracy of probabilistic forecasting. Finally, the effectiveness of the proposed
method was validated through real datasets.

Keywords: distributed photovoltaic; ultra-short-term power forecasting; federated
learning; spatiotemporal correlation; joint probability distribution

1. Introduction
In recent years, with the rapid development of the economy and increased reliance

on fossil fuels, including coal and oil, the earth’s ecological environment has been seri-
ously threatened [1]. To alleviate environmental pressures, countries have implemented
various policies [2]. Among these, owing to its non-polluting nature, renewable energy
development has emerged as a key environmental governance strategy, gradually replacing
traditional fossil fuels as the cornerstone of future energy systems. Promoting new energy
generation has also become a critical initiative in global environmental governance. New en-
ergy generation encompasses wind power, photovoltaic (PV) power generation, geothermal
power generation, and other forms of energy. Harnessing solar power, characterized by its
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plentiful supply, environmental friendliness, and sustainable qualities, has seen widespread
adoption and application across the globe [3,4]. DPV power generation has rapidly gained
popularity due to its decentralized, clean, and highly efficient nature [5]. According to
statistics from the International Energy Agency, global DPV capacity is projected to reach
917.1 GW in 2023 and 3467.1 GW by 2030. However, PV power generation is characterized
by significant intermittency, randomness, and uncertainty. The large-scale integration of
DPV systems significantly complicates the operation and control of distribution networks.
An accurate forecast of DPV power is crucial for the operation and management of active
distribution networks and the effective utilization of DPV energy. It is vital to ensure the
safe and stable operation of active distribution networks. Moreover, these forecasts enable
PV power sellers to adjust their market strategies promptly, minimizing potential losses.
Therefore, an accurate forecast of DPV power plant output is essential.

Ultra-short-term PV power forecasting can be categorized into three main approaches:
physical modeling methods, statistical methods, and machine learning methods. The
physical modeling method develops a PV power model by applying the principles of
solar radiation transmission, energy conversion in PV systems, and associated physical
phenomena [6–8]. This method utilizes Numerical Weather Prediction (NWP) data along
with photovoltaic panel data to achieve highly accurate and interpretable forecasts. Statisti-
cal methods, in contrast, rely on historical data and statistical principles to forecast future
PV power outputs. This method analyzes historical power output data along with related
influencing factors to identify their correlation patterns and forecast future output power ac-
cordingly. Frequently used statistical methods encompass the Auto-Regression and Moving
Average (ARMA) model, along with its variations [9–11], and the Autoregressive Integrated
Moving Average (ARIMA) model [12,13]. Machine learning approaches mainly include
models like Support Vector Machines (SVMs) [14], Artificial Neural Networks (ANNs) [15],
and Extreme Learning Machines (ELMs) [16]. Among these, the Back Propagation (BP)
neural network has gained significant attention and has been widely applied due to its
flexibility and adaptability in handling nonlinear relationships [17,18]. Traditional Artificial
Neural Networks face challenges in processing large amounts of input data, including
issues such as gradient vanishing and explosion. Consequently, deep learning, encompass-
ing methods like Convolutional Neural Networks and Long Short-Term Memory networks,
has garnered significant attention from researchers [19,20]. These models demonstrate
superior capabilities for feature learning and information extraction, achieving notable
success in PV power forecasting.

While many methods developed for centralized PV plants are applicable to distributed
PV power forecasting, the latter presents unique challenges. DPV plants are typically small-
scale and geographically dispersed, located across diverse environments such as cities,
villages, and rooftops. This distribution leads to significant spatial and temporal variability
in weather, light conditions, temperature, and other environmental factors. Enhancing the
accuracy of DPV power forecasting by accounting for spatiotemporal correlations between
PV power plants is, therefore, a critical research focus [21–26]. Literature reference [21]
utilized correlation information to improve the accuracy of power forecasting and used the
power of neighboring PV sites as model inputs to forecast the power of the target station.
Literature reference [22] employed Convolutional Neural Networks (CNNs) and Long
Short-Term Memory (LSTM) networks to extract spatial and temporal features, respectively.
The temporal and spatial features were then fused using LSTMs to effectively mine the
spatiotemporal correlation characteristics of DPV systems. Literature reference [23] initially
linked highly correlated PV power stations to construct a topological graph structure.
Based on this graph, an improved spatiotemporal graph network model was constructed
to comprehensively explore the spatiotemporal characteristics of regional PV power plants.
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Literature reference [24] proposed a short-term regional DPV power generation forecasting
method based on partitioning that considers spatiotemporal correlations. Initially, it em-
ploys Graph Convolutional Networks (GCNs) to extract spatial correlation features and
LSTM networks to capture the evolution characteristics of these dynamic spatial correla-
tions, thereby establishing power forecasting models for power stations under different
weather types. Literature reference [25] applies Dynamic Directed Graph Convolutional
Networks (DDGCNs) to ultra-short-term power forecasting for regional DPV systems. To
capture the dynamic and directed adjacent relationships between graph nodes, a temporal
attention mechanism is introduced and combined with the directed GCN model. This
approach allows for considering the dynamic relationships between DPV sites.

However, existing methods for spatiotemporal correlation rely on historical opera-
tional data from all sites, achieved through centralized data sharing to construct the model.
However, such a centralized data-sharing model significantly increases the risk of data leak-
age. Spatiotemporal correlation mining typically involves collecting historical data from
multiple sites, such as power output, meteorological conditions, and equipment operation
status, potentially exposing sensitive operational details of each PV site. If stored or shared
centrally without synchronization or robust encryption, these data are vulnerable to privacy
breaches. Additionally, distributed PV sites often belong to different electricity sellers, who
may refuse to share original PV power data to safeguard their commercial interests.

Federated learning has emerged as an effective approach to address this challenge [27].
In this framework, the historical operational data of each distributed PV system are pro-
cessed locally without centralized sharing or exposure to other participants. The learning
model is trained locally using historical data, and only the model parameters are shared
for global aggregation on a central server [28,29]. However, the shared model parameters
contain limited information, making it challenging to extract spatial correlation among
distributed PV sites. While existing federated learning frameworks effectively safeguard
data privacy, they struggle to significantly enhance power forecasting accuracy. Therefore,
an important research gap is how to improve the model’s ability to mine and utilize the spa-
tiotemporal correlation information between distributed PV power stations while ensuring
data privacy under the existing federated learning framework.

Additionally, the current distributed PV power forecasting predominantly relies on
traditional point forecasting methods, which yield a single deterministic value for the
output power. However, distributed PV power is influenced by various instability factors,
such as weather conditions, introducing significant stochasticity and uncertainty. The
probabilistic forecasting of distributed PV enables the effective quantification of forecast
uncertainty, offering more comprehensive forecasting information than point forecasting
and providing critical guidance for the operation and regulation of active distribution
networks [30,31]. Depending on the modeling approach, probabilistic forecasting methods
can be categorized into parametric and nonparametric methods [32].

The parametric method presumes that the forecasting probability density function
adheres to a known distribution model, such as normal or gamma distributions. It estimates
the parameters of this model based on the forecasting errors, which are subsequently
utilized for probabilistic forecasting [33,34]. The advantage of parametric estimation lies in
leveraging the distributional form of existing data for inference, enabling the derivation of
more accurate parameter estimates. However, this approach requires strict assumptions
about the data’s distribution. When the data deviate from the assumed distribution,
significant errors can occur. In practice, PV output errors often fail to conform to such strict
distributional assumptions.

In contrast, nonparametric methods do not rely on a priori assumptions but directly
model and estimate the shape of the power distribution, offering high flexibility for captur-
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ing various forms of data distributions [35]. Literature reference [36] proposed constructing
a nonparametric PV power probabilistic forecasting model, where independent LSTM
deterministic forecasting models were developed using historical PV output data and NWP
data. Nonparametric probabilistic forecasting was achieved through quantile regression
averaging (QRA). Similarly, literature reference [37] effectively conducted the nonparamet-
ric probabilistic forecasting of power generation by employing a direct quantile regression
method that integrates Extreme Learning Machines and quantile regression, demonstrating
strong forecasting performance. Leveraging the advantages of nonparametric methods, this
study recognizes that PV power fluctuations strongly influence forecasting errors: violent
fluctuations tend to yield larger errors, while gentler fluctuations correspond to smaller
errors. Consequently, forecasting errors do not necessarily follow an independent and
identically distributed assumption [38], as their distribution law strongly correlates with
the characteristics of PV power fluctuations. However, existing nonparametric probabilistic
forecasting methods predominantly focus on improving forecasting models while often
overlooking data dependency relationships, resulting in insufficient refinement of the error
distribution characteristics.

In summary, existing DPV cluster power generation forecasts methods have three
significant research gaps. Firstly, they face severe data security issues when mining and
utilizing cluster-related information. Secondly, there is a lack of effective means for mining
and utilizing associated features under the framework of federated learning. Thirdly, they
seldom give probability forecasting results to quantify the uncertainty, and most of them
ignore the correlation between forecasting results and forecasting errors.

To address these issues, this paper proposes a privacy-preserving deep federated
learning method for probabilistic forecasting of ultra-short-term power generation from
DPV systems and designs a collaborative feature federated learning framework. For the
central server, it aggregates global models based on local model parameters and installed
capacity uploaded by each station. At the same time, it gathers temporal features from
various clients to generate global spatial features. For local client sites, a Transformer-based
autoencoder is used to extract local time-series features. The encoder couples local time
series features with global spatial features to generate spatiotemporal correlation features,
which are adaptively weighted through an attention mechanism to focus the model on
more critical features for forecasting. Based on point forecasting results, a joint probability
distribution of forecasting values and errors is constructed, and the upper and lower
bounds of errors are determined through inverse transformation, thereby obtaining the
interval for probabilistic forecasting. Thus, under the premise of ensuring privacy, the
dual-layer information interaction mechanism of model interaction and feature sharing is
utilized to construct spatiotemporal correlation features that combine local client forecasting
models, fully considering the spatiotemporal correlation relationships between different
power stations to improve the forecasting accuracy of local models. By considering the
dependencies between data, the distribution patterns of errors under different forecasting
outcomes are refined, thus enhancing the accuracy of probabilistic forecasting.

The main contributions of this paper are as follows:
(1) In existing federated learning methods, information exchange between PV sites

during the aggregation phase at the central server mostly relies on the aggregation of
model parameters. This approach carries a limited amount of information, leading to
insufficient shared information and failing to improve forecasting accuracy. To address the
issue of low forecasting accuracy caused by inadequate information sharing in traditional
federated learning methods, this paper introduces the construction of global features to
fully compensate for this deficiency. By aggregating local time-series features from each
site through the central server, the volume of information exchanged between sites is
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increased. Under the premise of protecting data privacy, this method thoroughly considers
the correlations between different sites, thereby improving power forecasting accuracy;

(2) When performing power forecasting at local stations, existing federated learning
methods predominantly rely on the global model distributed by the central server, failing
to account for the unique time-series characteristics of local sites. To improve this situa-
tion, this paper proposes that when conducting power forecasting at local PV sites, the
Transformer model should be used to extract key time-series features specific to the local
site. These extracted features are then combined with the global features issued by the
central server to form spatiotemporal correlation features. On the basis of uncovering spa-
tiotemporal correlations among sites, this approach fully considers the unique time-series
characteristics of each site, further enhancing forecasting accuracy;

(3) Traditional probabilistic forecasting methods often focus solely on improving
model performance while frequently overlooking the uncertainty in forecasting and lacking
studies on the correlation between the distribution of forecasting errors and the fluctua-
tion characteristics of PV output. To address this gap, this paper proposes constructing a
joint probability distribution between these two aspects, modeling entirely based on the
dependent relationship between forecasting values and forecasting errors. This approach
fully considers the correlations within the data. Through comparisons with existing proba-
bilistic forecasting methods, the superiority of the proposed joint distribution model has
been verified.

Compared to previous recently published articles, the main differences of this paper
are as shown in Table 1.

Table 1. The distinctions between this paper and other articles.

Point Forecasting Research Content

Content of the Article This Paper Articles [21–26] Articles [27–29]

Considering the spatiotemporal correlations between
power stations

√ √
×

Considering data privacy protection
√

×
√

Effectively mining spatiotemporal correlation information while
protecting data privacy

√
× ×

Considering both spatiotemporal correlation features and local
time-series characteristics

√
× ×

Probabilistic forecasting research content

Content of the article This paper Articles [33,34] Articles [35–38]

Flexibly capturing the distribution characteristics of data
√

×
√

Considering the dependencies between data
√

× ×

2. Materials and Methods
In this paper, a privacy-preserving DPV ultra-short-term power forecasting method

based on deep federated learning and probabilistic modeling is proposed, as shown in
Figure 1. The proposed method consists of two main phases: point forecasting and proba-
bilistic forecasting. In the point forecasting phase, this paper introduces a federated learning
method for the cooperative processing of temporal features between the central server and
the client. At the central server, two main tasks are performed. Firstly, a global model
is generated using a weighted aggregation based on power station capacity. Secondly,
local time-series features from individual sites are integrated via Independent Component
Analysis (ICA) to generate global features that contain spatial information. These global
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models and features are then distributed to each client site to enable the targeted training of
client models. For the client-side, a local Transformer-based forecasting model is developed,
incorporating spatiotemporal correlation features. This model uses an encoder to extract
local time-series features, which are then fused with global features to form spatiotemporal
correlation features. By leveraging the high correlation of historical power in neighboring
time periods, key spatiotemporal features impacting the forecasted power are extracted,
thereby enhancing forecasting accuracy. In the probabilistic forecasting phase, a joint
probability distribution model is constructed based on the point forecasting value and
forecasting error. The upper and lower boundaries of the forecasting error are obtained
through inverse transformation, forming the forecasting interval. Additionally, the error
distribution is further analyzed based on the dependence between the forecasting value
and the forecasting error. This enables the probabilistic forecasting of DPV power.
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2.1. Federated Learning Method for Collaborative Feature Processing

Most current federated learning frameworks rely on aggregating model parameters.
However, the limited information carried by model parameters restricts their ability to
enhance the accuracy of power forecasting.

2.1.1. Global Model Aggregation

Federated learning employs a decentralized training paradigm, wherein individual
sites maintain data privacy by constructing a shared model through aggregating locally
trained models, catering to specific user forecasting needs. However, this approach faces
two main challenges: firstly, due to varying scales, different sites have differing impacts on
overall error; secondly, the global model obtained is essentially a generalized model, and
its direct application to forecasting at specific client sites can result in decreased forecasting
performance due to the insufficient capture of the unique power characteristics of those sites.
To address the aforementioned issues, two optimization measures are proposed. Firstly,
during the global model aggregation phase, this paper only aggregates the parameters
of shallow networks that are responsible for extracting generalized features, taking into
full account the impact of capacity differences across sites during the aggregation process.
Secondly, in the local client model training phase, the parameters of the shallow network
are kept unchanged, while focusing on fine-tuning the parameters of deep networks that
are responsible for extracting personalized features using local data. Through this approach,
not only is the model’s ability to effectively leverage cross-site knowledge ensured, but
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also its adaptability to specific application scenarios is enhanced. The specific process is
described below:

(1) The initial setup of the global model: The initial global model FCen is established
through random initialization or pretraining using publicly available datasets.

(2) Client-side model training: The central server distributes the initialized global
model to individual client sites. During the personalized training phase, the shallow
network structure remains fixed, with emphasis placed on training and optimizing the
deep network to improve the model’s capacity for recognizing local characteristics. This
allows each client site to perform personalized training on the global model using its
local data, resulting in a forecast model tailored to the specific environment. The model
forecasting process is presented in Equation (1), while the shallow network parameter
update process is described in Equation (2).

[ p̂n
t+1, p̂n

t , . . . , p̂n
t+τ ] = f n([pn

t−σ, . . . , pn
t−1, pn

t ], θn,s, θn,d) (1)

θn,d ← θn,d − γ
∂ln([ p̂n

t+1, p̂n
t , . . . , p̂n

t+τ ]− [pn
t+1, pn

t , . . . , pn
t+τ ])

∂θn,d (2)

where pn
t and p̂n

t are the forecasting and true power values of station n at time t, f n(·) and
ln(·) are the forecasting model and loss function, θn,s and θn,d are the f n shallow and deep
network parameters, and γ is the learning rate;

(3) Global model aggregation and update: Contributions to overall forecast accuracy
vary across sites due to differences in installed capacities at each location. Thus, the global
model aggregation update aims to minimize overall loss, with weights assigned based on
each site’s capacity. This process iterates step (2) and step (3) until the model converges or
reaches a predefined maximum number of iterations, producing an optimal global forecast
model, as represented in Equations (3) and (4):

min
θ

L(θs) =
N
∑

n=1

Cn

C
ln(θn,s, θn,d)

s.t.ln(θn,s, θn,d) =
1

Tn

Tn

∑
t=1

( p̂n
t − p̂n

t )
2

(3)

θs ← θs − γ
∂L(θs)

∂θs (4)

where C and Cn are the total installed capacity of the N stations and the installed capacity
of station n, respectively; Tn is the length of the training samples of station n; θs is the
global model parameter; and L(·) and ln(·) are the overall and the loss function of station
n, respectively.

2.1.2. Global Feature Generation

Given the significant spatiotemporal correlation among DPV power plants, the tem-
poral features of individual sites can serve as auxiliary information for neighboring sites,
thereby enhancing the accuracy of power forecasting. Additionally, the features of individ-
ual stations are extracted post-model processing and cannot be easily back-extrapolated to
the original power values. This ensures that sharing client-site temporal features enhances
forecast accuracy while safeguarding the privacy of the original data. However, directly
transmitting all temporal features from all power stations to local sites as inputs to the
forecasting model, without preprocessing, may lead to feature redundancy. This not only
increases the computational load on the local model but also degrades its performance. To
address this, this paper introduces a federated learning approach leveraging global feature
generation. Temporal features from local clients are first aggregated at the central server
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using ICA to produce global features. This step extracts spatial correlation information,
reduces feature dimensionality, and efficiently utilizes critical information. Subsequently,
each local client receives the global features provided by the central server and integrates
them with local time-series features to derive spatiotemporal correlation features. These
are then utilized for local power forecasting.

During global feature generation, the significant fluctuations in DPV power output and
the complex nonlinear correlations among PV systems in the same region are considered.
ICA effectively separates statistically independent signal sources from multidimensional
data, reducing dimensionality while preserving the nonlinear characteristics. By applying
ICA to the multidimensional dataset composed of time-series features from each distributed
PV site, global features capturing the spatial correlations among PV systems are generated,
enhancing the subsequent power forecasting task.

For N DPV plants, each plant has time-series data at T time points, and the data at each
time point can be represented as a D-dimensional vector (comprising power data, meteo-
rological factors, etc.). These data are organized into a T × N•D matrix X = [x1, x2 . . . xn],
where each column corresponds to the time-series data of a single plant, and each row
represents the data for all plants at a specific time point. The goal of ICA is to recover the
potential independent components S from the data matrix X, that is, to identify a mixing
matrix A and an independent component matrix S such that

X ≈ AS (5)

where S is the unobserved independent component matrix and A is the unknown
mixing matrix.

In this paper, the Fast ICA algorithm is used to find the independent component S by
maximizing the likelihood estimation, which is calculated as follows:

(1) Firstly, the data are centralized by subtracting the meaning:

X̃ = X− 1
T

T

∑
t=1

Xt (6)

where X̃ represents the data matrix after centralization, X denotes the original data matrix,

and 1
T

T
∑

t=1
Xt indicates the calculation of the mean values for the data in that column;

(2) Whitening the data using Principal Component Analysis (PCA) results in its
covariance matrix C being an identity matrix, as shown in Equations (7)–(10):

X̃white = WX̃ (7)

C =
1
T

X̃X̃T (8)

C = UΛUT (9)

W = UΛ−
1
2 UT (10)

where W is the whitening matrix, which can be obtained by calculating the covariance
matrix C of X̃ and performing eigenvalue decomposition on it;

(3) A random vector w0 is selected as the initial weight vector, and a fixed-point
algorithm is employed to perform iterations until wi converges. These steps are repeated to
determine the independent component S = [s1, s2, . . . sk] representing the global feature, as
shown in Equations (11)–(13):

wi+1 = E1

[
X̃whiteg(wiX̃white)

]
− E2

[
g′(wiX̃white)

]
wi (11)
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wi+1 − wi < ε (12)

si = wiX̃white (13)

where g is the nonlinear activation function, E1 denotes the average of the element-by-
element product, and E2 denotes the computational average.

2.1.3. Local Client Transformer Self-Encoder Forecasting Modeling

Relying on the above federated learning framework, a local client model is constructed
for power forecasting at each site based on spatiotemporal correlation features formed
by coupling local temporal features and global features. To avoid the issue of feature
redundancy when the decoder processes spatiotemporal correlation features, a Transformer
model with an attention mechanism is introduced into the autoencoder power forecasting
model, enabling the model to focus on the global features that are more critical for output
power. The model structure is shown in Figure 2. The autoencoder model in this paper
is primarily based on a Gate Recurrent Unit (GRU) model and a Fully Connected Neural
Network (FC) connected in series as the encoder and decoder. Among them, GRU serves as
a shallow network for extracting global generalized features, and FC acts as a deep network
for further extracting personalized features of local client sites. The specific forecasting
steps are as follows:
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(1) At each PV site, the ultra-short-term power forecast is executed at the moment
t. Initially, the historical power sequence Pn = [pn

t−x, . . . , pn
t−1, pn

t ] from the preceding x
moments is input, and the encoder F computes the feature vector at moment t based on the
power at moment i and the feature from moment i − 1, as shown in Equation (14):

f n
i = f Enc(pn

i , f n
i−1) (14)

Subsequently, the temporal features are coupled with the global features S to obtain
temporal correlation features Fn,g = [ f n; S], which are used as decoder inputs;

(2) During the forecast execution at the moment t, to obtain input features that are
critical for forecasting output power at target moments t + 1 to t + 16, it is assumed
that the power remains relatively stable over short periods. The decoder output at
moment t − 1, specifically, the forecasting power values from t to t + 15 (denoted as
P̂n

t:t+15 = [ p̂n
t , p̂n

t+1, . . . , p̂n
t+15]), is used as the query vector. The spatiotemporal correlation

features serve as the key vector. These vectors are utilized in training to compute the
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attention weights at+1 during the forecast execution at the moment of t, as illustrated in
Equations (15) and (16).

et+1,i = v⊤s tanh(wsFn,g
i + us P̂n

t:t+15 + bs) (15)

at+1,i =
exp(et+1,i)

t
∑

i=t−σ
exp(et+1,i)

(16)

where et+1,i is the attention score, ws, us, bs, and vs are trainable parameters, tan h(·) is the
activation function, and exp(·) is the power exponential function.

Subsequently, the attention weight matrix is weighed and summed with the key value
matrix to obtain the final attention representation kn

t+1, as shown in Equation (17). This is
used as the decoder input sequence to further improve the forecast accuracy.

kn
t+1 = at+1Fn,g

t−x:t (17)

where at+1,i is the attention weight, at+1,i ∈ at+1, and exp(·) are exponential functions with
e as the base;

(3) Using the decoder model f Dec(·), the power forecasts for future time periods
t + 1~t + 16 can be calculated, as shown in Equation (18).

p̂n
t+τ = f Dec( p̂n

t+τ−1, kn
t+τ) (18)

2.2. Joint Probability Distribution Modeling

Current research on probabilistic forecasting of PV power output often overlooks the
uncertainty in forecasting and lacks studies on the correlation between the distribution of
forecasting errors and the fluctuation characteristics of PV output. To address these issues,
this paper proposes a probabilistic forecasting method for ultra-short-term DPV power
based on joint distribution modeling. This method integrates joint distribution models
with nonparametric methods, fully modeling based on the dependent relationship between
forecast values and forecasting errors. It can effectively describe the dependency structure
between forecasting values and forecasting errors, thereby more accurately quantifying
the uncertainty in forecasting. The Copula function is a mathematical function used to
establish dependent relationships between multidimensional random variables. It offers a
flexible approach to describing the correlation between variables without presupposing
the form of their marginal distributions, making it especially suitable for uncovering
correlations in nonlinear data. Therefore, this paper treats the point forecasting results
and forecasting errors of PV power as two random variables, using a Copula function
to fit the deterministic point forecasting and forecasting errors. This allows the width
of the forecasting intervals to better accommodate the characteristics of the forecasting
error distribution, introducing uncertainty information into the forecasting process, thereby
enhancing the accuracy of probabilistic forecasting for PV power generation. The specific
steps for forming the probabilistic forecast interval are as follows:

(1) The joint probability distribution between the deterministic point forecasting result
P̂ and the forecasting error e is constructed based on the Copula function, and the joint dis-
tribution function F (p,e) is shown in Equation (19) for the marginal cumulative probability
distribution functions FP(p) and FE(e) for the point forecasting value and forecasting error:

F(p, e) = CP,E[FP(p), FE(e)] (19)
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where the functions CP,E are called the Copula probability distribution function of the point
forecasting values and forecasting errors;

(2) After obtaining the joint probability distribution of point forecasting value and
forecasting error, the conditional probability distribution function of the cumulative prob-
ability distribution of forecasting error is obtained by taking the value according to the
cumulative probability distribution of the point forecasting value, as in Equation (20):

F(FE(e)|FP(p); θ) =
∂CP,E

∂FP(p)
(20)

where θ is the main parameter of the Copula function;
(3) Based on the desired confidence level, the corresponding forecast interval is ob-

tained. Let the confidence probability of the power curve be α, such that the α of the
data falls within the probability interval. Let β = 1− α. Let the asymmetry coefficient
of the confidence interval be k. The quantile probabilities β1, β2 of the upper and lower
boundaries of the confidence interval indicate that the probability of a data point being
higher than the upper boundary is β1 and that the probability of a data point being lower
than the lower boundary is β2, as shown in Equations (21) and (22).

β1 = (1− k)β (21)

β2 = kβ (22)

(4) Based on the obtained upper and lower boundary quantile probabilities and the
corresponding quantile probability of the point forecast value pi, the conditional probability
distribution function of the cumulative probability distribution of the forecast error is
utilized to calculate the quantiles F1i, F2i corresponding to β1, β2, as in Equations (23)–(25).

F1i = C−1
(pi)

(β1) (23)

F2i = C−1
(pi)

(β2) (24)

C(pi)
(F(ei)) =

∂CP,E(FE(e), FP(p) = pi)

∂FP(p)
(25)

(5) According to the obtained upper and lower boundaries of the corresponding
quartiles F1i, F2i, the corresponding upper and lower boundaries of the forecast error
values e1i, e2i are obtained by using the inverse of the cumulative probability distribution
function of the forecast error FE(e), as in Equations (26) and (27).

e1i = F−1
E (F1i) (26)

e2i = F−1
E (F2i) (27)

The upper and lower boundary values of the error are correspondingly superimposed
onto the corresponding forecasting value p̂ to obtain the upper and lower boundaries of
the forecasting interval p1i, p2i, and realize the DPV power probability forecasting.

3. Results and Discussion
3.1. Dataset Description

The experimental data originate from the power generation data of 30 DPV stations
located in a certain area in northern China. The data span from 1 July 2023 to 1 July
2024, with a time resolution of 15 min. To ensure data quality and reduce the impact
of outliers on power forecasting performance, the original data underwent cleaning and
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repair. Specifically, abnormally large values exceeding capacity, abnormally small values
such as negative outputs, and missing power values were corrected. Data repair was
achieved by replacing the abnormal points with the average power values of the three
normal points before and after them. Subsequently, the cleaned dataset was divided into
training, validation, and test sets at a ratio of 8:1:1, respectively used for deterministic point
forecasting training, constructing a joint distribution model using validation set data, and
testing the effectiveness of the proposed method with test set data. During the forecasting
process, all power values less than zero were set to zero.

3.2. Evaluation Metrics

During the point forecasting phase, this paper adopts the Normalized Root Mean
Square Error (NRMSE) and Accuracy (ACC) as evaluation metrics, as shown in
Equations (28) and (29). NRMSE considers the relative error between forecasting values
and actual values, while ACC evaluates the model’s performance over the entire forecasting
period by comprehensively considering the 16-step results of forecasting, thus avoiding the
limitation of assessing model performance based solely on single-point forecasting results.

NRMSE = 1− 1
pmax

√√√√ 1
T

T

∑
t=1

(pt − p̂t)
2 × 100% (28)

ACC =

n
∑

t=1
(1−

√√√√√ 16
∑

i=1
[(pi − p̂i)

2 · |pi − p̂i|
T
∑

t=1
|pi − p̂i|

]

pmax )

n
× 100% (29)

where pmax represents the maximum power, T indicates the length of the forecasting time,
p̂t and pt are the forecasted and true values at time t, and p̂i and pi are the forecasted and
true values at the ith step of forecasting at time t, with n being the number of forecasting
points evaluated for that day.

During the probabilistic forecasting phase, the Prediction Interval Coverage Probability
(PICP), Prediction Interval Normalized Average Width (PINAW), and Skill Score (SS) are
adopted as evaluation metrics, as shown in Equations (30)–(32). PICP represents the
percentage of actual values that fall within the forecasting intervals, reflecting the accuracy
of the model. PINAW measures the width of the forecasting intervals, indicating the
sensitivity of the model. SS provides a comprehensive evaluation, rewarding narrower
intervals but penalizing if the target value falls outside the forecasting interval. The
value of this metric is non-positive, and, the closer it is to 0, the better the probabilistic
forecasting performance.

PICP =
1
N

N

∑
i=1

Ci, Ci =

{
1, p ∈ [p2i, p1i]

0, p /∈ [p2i, p1i]
(30)

PINAW =
1
N

N

∑
i=1

(p1i − p2i) (31)

SS =
1
N

N

∑
i=1

Si, Si =


−2α(p1i − p2i)− 4(p− p1i), p > p1i

−2α(p1i − p2i), p ∈ [p2i, p1i]

−2α(p1i − p2i)− 4(p2i − p), p < p2i

(32)

where N represents the sample size. p1i and p2i represent the upper and lower boundaries
of the forecasted samples.
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3.3. Experimental Setup

To demonstrate the effectiveness of the proposed method in this paper, four additional
models are set up as control models in addition to the method proposed in this paper:

Proposed method: A joint distribution probabilistic forecasting model based on collab-
orative feature federated learning and a Transformer autoencoder;

Method 1: A joint distribution probabilistic forecasting model based on a traditional
federated learning framework and a Transformer autoencoder model;

Method 2: A joint distribution probabilistic forecasting model using a Transformer
autoencoder built solely on local data for each station;

Method 3: A joint distribution probabilistic forecasting model using a GRU built solely
on local data for each station;

Method 4: A traditional probabilistic forecasting model based on collaborative feature
federated learning and a Transformer autoencoder.

In the settings of these methods, Method 1 involves only the exchange of model
parameter information without aggregating global features. Methods 2 and 3, while
protecting the data privacy of clients, sacrifice inter-station information sharing and do
not fully utilize the spatiotemporal correlations between stations. Method 4 considers only
the distribution patterns of forecasting errors without accounting for the dependencies
between forecasting values and forecasting errors. By comparing the proposed method with
Methods 1 and 2, we verify that the proposed method achieves more accurate forecasting
results while ensuring data privacy. Comparing Method 2 with Method 3 verifies the
forecast performance of the local client Transformer autoencoder model. Comparing the
proposed method with Method 4 validates the accuracy of probabilistic forecasting based
on joint probability distribution. The input to each forecasting model is the power from
the previous 96 time steps of the forecast period, and the output is the power for the next
16 time steps, achieving ultra-short-term power forecasting.

In the point forecasting phase, this paper employs grid search to optimize the selection
of hyperparameters (learning rate, batch size, number of iterations) for the forecasting
model. Initially, based on the scale of the experimental data and the complexity of the model,
three different values are set for each hyperparameter. Then, by means of a grid search,
the method seeks the optimal combination of hyperparameters within the predefined
hyperparameter space. Among all combinations of hyperparameters, the one that yields the
best performance on the validation set is selected as the final hyperparameter configuration.
Through comparison, this paper selects a learning rate of 0.001, a batch size of 128, and
100 epochs for the Transformer point forecasting model. For the GRU point forecasting
model, a learning rate of 0.001, a batch size of 128, and 150 epochs are chosen.

3.4. Experimental Results Analysis

In the point forecasting phase, the proposed method and Methods 1, 2, and 3 are used
to conduct ultra-short-term power forecasting for each client station. Since Method 4 is
identical to the proposed method in the point forecasting phase, no repeated verification is
performed for Method 4. Under a time scale of 1 h ahead to 4 h ahead, the average
NRMSE metric values for each forecasting method across all stations are statistically
analyzed, as shown in Table 2. The average ACC metric values for each forecasting
method across all stations are presented in Table 3. It can be seen that the proposed method
demonstrates superiority in both evaluation metrics. Compared with Methods 1 and 2,
the proposed method improves the NRMSE by 0.55% and 0.41%, respectively, at the 1 h
ahead time scale, and by 1.17% and 2.59%, respectively, at the 4 h ahead time scale. The
ACC is improved by 1.61% and 1.74%, respectively, indicating that the collaborative feature
federated learning method proposed in this paper, compared to traditional parameter-
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aggregated federated learning, effectively mines the spatiotemporal correlations between
different client stations by introducing their temporal features and completing a dual-
layer aggregation of information with the global model, thereby enhancing forecasting
accuracy while ensuring the privacy of individual station data. Method 1 shows improved
accuracy over Method 2 by leveraging spatiotemporal correlation information to some
extent through the aggregation of model parameters: though its forecasting results at
the 1 h ahead time scale are not as good as those of Method 2, its overall forecasting
performance, evaluated by the 16-step results, is better. By comparing Methods 2 and 3,
the autoencoder built on the Transformer model outperforms the GRU neural network by
2.45% and 2.14% in the NRMSE metric, and by 1.42% in the ACC metric, at the 1 h ahead
and 4 h ahead time scales, respectively. This demonstrates that the proposed autoencoder
can effectively learn long-term dependencies within local station data and focus on more
critical temporal features through the multi-head attention mechanism, acquiring more
important information during training and thus achieving more accurate forecasting results
compared to traditional neural networks. Furthermore, by calculating the decrease in the
NRMSE metric for each method at the 1 h ahead and 4 h ahead time scales, the proposed
method shows a reduction of only 2.21%, while other methods show reductions ranging
from 2.83% to 4.39%. This indicates that the proposed method performs more stably in
ultra-short-term 16-step forecasting, with the forecasting model better capturing trends in
future data, resulting in superior forecasting performance.

Table 2. NRMSE metrics for each forecasting method.

Metrics Time Scale Proposed Method Method 1 Method 2 Method 3

NRMSE

1 h 94.15% 93.60% 93.74% 91.29%
2 h 93.63% 92.58% 91.72% 90.92%
3 h 92.90% 91.89% 89.98% 89.02%
4 h 91.94% 90.77% 89.35% 87.21%

Table 3. ACC metrics for each forecasting method.

Metrics Proposed Method Method 1 Method 2 Method 3

ACC 93.62% 92.01% 91.88% 90.46%

Taking Station No. 15 as an example, the forecasting results and forecasting errors of
the four methods are shown in Figure 3. From the figures, it can be observed that the curve
generated by the proposed method closely aligns with the actual values, and the overall
error is relatively low. Furthermore, it is evident that the distribution characteristics of
forecasting errors vary under different forecasting output results and fluctuation patterns.
For example, as shown in the figure, the first day is sunny, with relatively smooth power
output fluctuations, and the amplitude of forecasting errors is relatively small. The second
day is cloudy, with more intense fluctuations in PV power output, leading to similarly
intense fluctuations in error. The third day is overcast, with lower forecasting power values
and consequently smaller error values. This indicates that there is a relationship between
the distribution patterns of forecasting errors and the characteristics of power output
fluctuations. Moreover, the distribution patterns of forecasting errors differ from those of
forecasting values under different weather conditions. This insight also provides a basis for
constructing joint probability distributions in subsequent probabilistic forecasting research.
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Figure 3. Point forecasting results and forecasting errors under three different weather conditions
(the experimental results of Method 4 are identical to those of the proposed method). (a) Sunny;
(b) Cloudy; (c) Overcast.

Based on the above discussion, to further demonstrate the effectiveness of the proposed
method in this paper, the average values of forecasting evaluation metrics for each station
under a 4 h ahead time scale were statistically analyzed for three typical weather conditions,
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as shown in Table 4. Through comparison, it is evident that the proposed method in this
paper achieves good forecasting results in all typical weather scenarios. Under sunny
conditions, the proposed method in this paper achieved an NRMSE of 93.57%, which is
1.15%, 2.61%, and 1.56% higher than Method 1, Method 2, and Method 3, respectively. In
terms of the ACC metric, our method reached 94.88%, outperforming the other methods
by 1.76%, 2.86%, and 1.71%, respectively. This indicates that the proposed method offers
higher forecasting accuracy and stability under sunny conditions. The analysis shows
that, due to the relatively regular changes in irradiance and stable power output from
DPV systems under clear skies, all methods achieve good forecasting results, with our
proposed method being the most effective. In overcast conditions, the proposed method’s
NRMSE was up to 4.01% better than other methods, and its ACC was 3.93% higher. Under
cloudy conditions, the proposed method outperformed others by up to 3.12% and 2.7%
in the two evaluation metrics, respectively. Through comparative analysis, it is evident
that the rapid movement and changes of cloud cover in overcast and cloudy weather lead
to highly irregular patterns of solar irradiance. Solar irradiance can drop sharply from
high levels to low within a few minutes, causing significant fluctuations in PV system
output power over short periods. This unstable irradiance condition makes it difficult
for traditional forecasting models to accurately capture the trends of PV power output,
leading to decreased forecasting accuracy, especially on short time scales (such as very
short-term forecasting). The proposed method addresses these challenges by considering
the spatiotemporal correlations between this station and nearby stations, obtaining more
information about irradiance and power output changes. Stations at different geographic
locations may experience similar weather patterns but with certain lags or advances in
timing. By sharing this information, we can gain a more comprehensive understanding of
current and future irradiance trends, thereby improving forecasting accuracy. Furthermore,
the application of the multi-head attention mechanism enhances the model’s ability to focus
on key feature changes, effectively capturing critical information essential for accurate
forecasting. This helps mitigate the increased uncertainty brought by overcast and cloudy
conditions, resulting in superior forecasting performance compared to other methods.

Table 4. Forecasting accuracy of various methods under different weather conditions.

Proposed Method Method 1 Method 2 Method 3

Sunny NRMSE 93.57% 92.42% 90.96% 92.01%
ACC 94.88% 93.12% 92.02% 93.17%

Cloudy NRMSE 89.93% 89.67% 86.77% 85.92%
ACC 91.85% 91.61% 88.74% 87.92%

Overcast
NRMSE 90.95% 87.83% 89.40% 87.91%

ACC 92.96% 90.26% 91.65% 91.30%

Based on the aforementioned analysis, the proposed method demonstrates superior
point forecasting performance. On one hand, the Transformer-based autoencoder model
constructed in this paper possesses superior time series modeling capabilities, effectively
enhancing the accuracy of power forecasting by focusing on key temporal features. On the
other hand, the proposed method recognizes that information sharing among neighboring
DPV stations is an effective way to improve forecasting accuracy, achieving a deeper
exploration of spatiotemporal correlations through the dual-layer information interaction of
global models and global temporal features. Consequently, under the premise of protecting
the data privacy of local clients, the proposed method fully considers the relationships
between stations, thereby improving the accuracy of point forecasting.



Energies 2025, 18, 197 17 of 21

To further demonstrate the effectiveness of the proposed method, the ACC accuracy of
different forecasting methods across all client stations was statistically analyzed, as shown
in Figure 4. It is evident that the proposed method achieves the best forecasting perfor-
mance in the majority of stations, indicating that, by constructing a collaborative feature
federated learning framework, by establishing a more comprehensive information sharing
mechanism between the central server and local clients, and by building a Transformer
model for local temporal feature extraction, the proposed method not only effectively mines
the spatiotemporal correlations between different client stations but also fully considers the
personalized features of local sites, thereby achieving higher forecasting accuracy. Method
1, compared to Method 2, considers more of the spatiotemporal correlations between sta-
tions, and, despite sharing less information, still manages to improve forecasting accuracy.
Method 2, compared to Method 3, considers the temporal characteristics of the power
station itself, enabling the model to better focus on the fluctuation patterns of local power
data. It should be noted that the proposed method does not yield the best forecasting
results for Stations 13, 18, 25, and 26. This might be due to weaker power output correla-
tions between these stations and others, which not only makes it difficult for the global
model to effectively capture specific features of these stations during training, but also
introduces a significant amount of redundant information into the local forecasting model,
reducing its forecasting accuracy. However, overall, the proposed method still achieves
the best forecasting results, followed by Method 1, Method 2, and Method 3. This also
verifies the advantages of introducing global feature aggregation and key spatiotemporal
correlation feature generation in the collaborative feature federated learning during the
forecasting process.
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Figure 4. Comparison of ACC (accuracy) for each method across different stations (the experimental
results of Method 4 are identical to those of the proposed method).

In the probabilistic forecasting phase, the proposed method and the four other meth-
ods were used to conduct ultra-short-term probabilistic forecasting for each power station.
In this paper, the Clayton Copula function was selected to fit the cumulative probability dis-
tribution of deterministic point forecasting results and forecasting errors, with the primary
parameter θ of the Copula function being estimated using maximum likelihood estimation.

Taking Station No. 15 as an example again, the accuracy comparisons of various
probabilistic forecasting methods at different confidence levels are presented in Table 5. By
comparing the experimental results of different methods, it can be seen that, under three
different confidence levels, the proposed method exhibits the best SS, effectively narrowing



Energies 2025, 18, 197 18 of 21

the forecasting intervals according to the distribution patterns of forecasting errors while
maintaining high coverage, thus achieving a balance between reliability and sensitivity in
probabilistic forecasting.

Table 5. The accuracy metrics of probabilistic forecasting.

95% 90% 85%

PICP/% PINAW/kW SS/kW PICP/% PINAW/kW SS/kW PICP/% PINAW/kW SS/kW

Proposed
method 90.63% 39.98 −54.03 87.44% 37.48 −50.69 82.90% 35.75 −46.58

Method1 88.49% 44.36 −58.93 85.33% 40.69 −55.74 80.06% 37.90 −51.08
Method2 92.82% 48.02 −65.31 88.29% 45.92 −60.22 83.92% 42.61 −57.88
Method3 81.72% 40.33 −77.20 76.02% 34.57 −71.94 73.28% 30.40 −67.32
Method4 93.05% 54.87 −69.51 90.41% 49.65 −64.32 85.91% 46.03 −61.13

Comparing the proposed method with Methods 1, 2, and 3 reveals that, based
on achieving high-precision point forecasting, the proposed method also realizes high-
precision probabilistic forecasting. Under the three confidence levels, the SS of the proposed
method is improved by 30.01%, 29.54%, and 30.81%, respectively. Moreover, combining
the results of point forecasting, it is found that higher point forecasting accuracy also
leads to higher probabilistic forecasting accuracy. This indicates that the accuracy of point
forecasting plays a crucial role in the precision of probabilistic forecasting. High-precision
point forecasting can more accurately reflect actual values, narrow the range of error dis-
tribution, stabilize forecasting errors, and reduce the occurrence of extreme values and
sharp fluctuations, aiding probabilistic forecasting models in more accurately estimating
uncertainties, thereby achieving highly accurate probabilistic forecasting. Comparing the
proposed method with Method 4, it is evident that probabilistic forecasting based on joint
probability distribution yield better results than those considering only error distribution.
Under the three confidence levels, although the proposed method reduces the PICP by
2.42%, 2.97%, and 3.01%, respectively, it effectively narrows the PINAW by 27.14%, 24.51%,
and 22.33%, respectively, thereby improving the SS by 22.27%, 21.29%, and 23.80%, respec-
tively. This suggests that joint probability distribution, by simultaneously considering the
information of forecasting values and errors, captures the intrinsic structure and mutual
relations of data more comprehensively. By exploring the dependency structure between
forecasting values and errors, it refines the study of error distribution patterns, achieving
higher-precision probabilistic forecasting.

At a 90% confidence level, the probabilistic forecasting results of each method are
shown in Figure 5. Method 4 only considers the distribution characteristics of errors, so the
width of its forecasting interval is entirely determined by the quantiles of error boundaries
and is unaffected by changes in the forecasting values. This approach assumes that the
error distribution remains constant, leading to a forecasting interval width that is a fixed
constant value. While this fixed interval width is simple and intuitive, it overlooks the
dynamic nature of actual power output over time. Consequently, Method 4’s probabilistic
forecasting lacks sensitivity to real-time power fluctuations and fails to effectively capture
rapid changes in the short term, resulting in poorer predictive acuity. In contrast, the
method proposed in this paper, which is based on joint probability distribution modeling,
exhibits significant advantages. Our proposed method not only considers the distribution
of errors but also incorporates the patterns of change in point forecasting results. This
allows the width of the forecasting intervals to dynamically adjust according to actual
conditions, closely aligning with the true power values. This characteristic enables the
model to better reflect changes in the distribution of forecasting errors caused by differences
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in power fluctuation characteristics. By introducing Copula functions, our method can
flexibly describe the complex dependency relationships between PV output and forecasting
errors.
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In summary, the proposed method achieves dynamic adjustment of forecasting inter-
vals through joint probability distribution modeling. This ensures both the accuracy of prob-
abilistic forecasting and significantly enhances sensitivity to real-time power fluctuations.

4. Conclusions
To provide more comprehensive reference information for power system dispatch, this

paper proposes a privacy-preserving deep federated learning method for the probabilistic
forecasting of ultra-short-term power generation from DPV systems. This method achieves
the enhancement of power forecasting accuracy for target stations by mining the correlation
information of power output between stations while protecting the data privacy of each
client. In the point forecasting phase, a collaborative feature federated learning method
is proposed. Initially, the central server aggregates model parameters from each client
and generates global features, which are then distributed to each station to facilitate the
interaction and sharing of global and local information. Subsequently, a Transformer-based
autoencoder model is established for each client to deeply mine the local temporal features
of the station. This dual-layer information interaction in federated learning effectively
enhances the accuracy of point forecasting, providing reliable data support for probabilistic
forecasting. In the probabilistic forecasting phase, the Copula function is used to construct
a joint probability distribution model between forecasting values and forecasting errors,
allowing for a detailed study of error distribution patterns and obtaining more adaptive
forecasting intervals to improve the sensitivity and accuracy of probabilistic forecasting.

For future research, the following improvements can be made:
(1) In this paper, the aggregation of global features is introduced during the traditional

federated learning process, but no improvements have been made to the aggregation of
model parameters. Therefore, future work will further explore global model aggregation
methods that are more suitable for the characteristics of DPV power generation, to enhance
the performance of federated learning;
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(2) When constructing the joint probability distribution model in this paper, only the
Clayton Copula function is used for fitting. Thus, future work will continue to investigate
other types of fitting functions to find those that better fit PV data, further improving the
performance of probabilistic forecasting;

(3) Future research will consider introducing a weather anomaly detection mechanism
to identify extreme weather events and assess the model’s performance under different
weather anomalies and grid instability conditions.
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