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Abstract: Hydrogen fuel cell-based UAM (urban air mobility) systems are gaining signifi-
cant attention due to their advantages of higher energy density and longer flight durations
compared to conventional battery-based UAM systems. To further improve the flight times
of current UAM systems, various hydrogen storage methods, such as liquid hydrogen and
hydrogen metal hydrides, are being utilized. Among these, hydrogen metal hydrides offer
the advantage of high safety, as they do not require the additional technologies needed for
high-pressure gaseous hydrogen storage or the maintenance of cryogenic temperatures
for liquid hydrogen. Furthermore, because of the relatively slower dynamic response of
hydrogen fuel cell systems compared to batteries, they are often integrated into hybrid
configurations with batteries, necessitating an efficient power management system. In
this study, a UAM system was developed by integrating a hydrogen fuel cell system with
hydrogen metal hydrides and batteries in a hybrid configuration. Additionally, a state
machine control approach was applied to a distribution valve for the endothermic reaction
required for hydrogen desorption from the hydrogen metal hydrides. This design utilized
waste heat generated by the fuel cell stack to facilitate hydrogen release. Furthermore, a
fuzzy logic control-based power management system was implemented to ensure efficient
power distribution during flight. The results show that approximately 43% of the waste
heat generated by the stack was recovered through the tank system.

Keywords: hybrid system; metal hydride tank; polymer electric membrane fuel cell; power
management system; thermal management system; urban air mobility

1. Introduction
1.1. Research Background

Urban air mobility (UAM) is gaining significant attention as an innovative solution to
environmental challenges arising from technological advancements and urban centraliza-
tion, while also alleviating traffic congestion in cities. UAM has the potential to improve
travel times, reduce road traffic accidents, and mitigate air pollution [1–3]. Currently, UAM
systems primarily rely on lithium-ion batteries as power sources due to their technological
maturity, safety, regulatory compliance, and suitability for short-term operations. However,
lithium-ion batteries face limitations in meeting the increased power demands of manned
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flights and enabling extended flight durations, primarily due to challenges such as state-of-
charge (SOC) management and low energy density. To overcome these limitations, recent
research has focused on UAM systems incorporating hydrogen fuel cell systems. Hydrogen
fuel cells offer several advantages over batteries, including higher energy density, faster
refueling times, and efficient long-range operation [4–6]. Among various types of fuel
cells, such as polymer electrolyte fuel cells (PEFCs), phosphoric acid fuel cells (PAFCs),
and solid oxide fuel cells (SOFCs), PEFCs are predominantly used in mobility applications
because of their high power density, fast response, and low operating temperatures [7–10].
Fuel cells generate electricity through an electrochemical reaction between hydrogen and
oxygen, making a consistent supply of these gases essential. In this process, the polymer
electrolyte membrane, a key component of fuel cells, plays a central role in determining
the system’s performance and efficiency. The membrane selectively transports protons
(hydrogen ions) generated from the dissociation of hydrogen molecules at the anode to
the cathode while separating electrons to flow through an external circuit. This allows the
protons to combine oxygen at the cathode to form water, completing the energy generation
process. Such functionality of the membrane is crucial for ensuring the continuity and
efficiency of the electrochemical reaction [11]. Currently, most hydrogen supply systems
store hydrogen in the gaseous form at high pressure within tanks. However, alternative
hydrogen storage and supply methods, including liquid hydrogen and metal hydride
tanks, have been the subject of recent research [12–17]. Metal hydride tanks, in particular,
offer advantages such as high safety, high-density hydrogen storage, and space-saving
characteristics due to their solid-state storage without requiring high-pressure conditions.
Despite these advantages, metal hydride technologies are still in the development stage.
These tanks require external heat input to convert stored hydrogen from its solid form
to a gaseous state, necessitating a thermal management system capable of meeting the
hydrogen supply flow rate requirements. Furthermore, the performance, efficiency, and
stability of fuel cell systems are significantly influenced by temperature, making an effective
thermal management system essential. Hybrid configurations combining fuel cells and
batteries are widely adopted to improve output stability, enhance energy recovery, and
increase system responsiveness. Such systems require a robust power management system
(PMS) to appropriately distribute power demands between the fuel cell and the battery.

1.2. Research Survey

Research on transitioning from battery-based UAM systems to hybrid UAM systems
integrating hydrogen fuel cell systems and batteries has been actively conducted. Ahluwalia
et al. conducted an economic evaluation of fuel cell systems for eVTOL air taxis, referencing
fuel cell systems and batteries developed for medium-duty vehicles. They identified
key factors for successfully applying fuel cell systems to air taxis, including durability,
lightweight design, safety, and aviation compatibility [18]. Kim et al. performed power and
weight analyses for the conceptual design of a tiltrotor battery–fuel-cell hybrid propulsion
UAM system and proposed a thermodynamic and heat-transfer-based design methodology
for hydrogen tank selection [19]. An et al. presented a sizing methodology for UAVs
using hybrid fuel cell and battery systems, employing an advanced sizing methodology to
determine energy requirements for flight, which resulted in improved energy efficiency
and flight performance [20]. Santos et al. evaluated performance requirements for applying
fuel cell systems to UAVs, focusing on efficiency, lightweight design, and durability, and
confirmed that fuel cell systems offer longer flight times and higher efficiency compared
to batteries [21]. Boukoberine et al. reviewed various strategies and future prospects for
UAV power and energy management systems, analyzing power management strategies
involving different power sources, such as batteries and fuel cells, and emphasizing their
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importance [22]. Fakhreddine et al. analyzed the technical and economic challenges of
hydrogen fuel cell systems in transportation, presenting future prospects to address these
challenges and highlighting hydrogen fuel cell systems as key next-generation eco-friendly
power sources [23]. Kim et al. assessed the efficiency of hybrid UAM systems with fuel
cells compared to battery systems and proposed power management strategies to enhance
performance and efficiency while improving cost-effectiveness [24]. Furthermore, Mazzeo
et al. conducted theoretical analyses and simulations of a 70 kW fuel cell system applicable
to lightweight helicopters, evaluating its potential as an eco-friendly urban transport
solution [25].

The power management system for hydrogen-fuel-cell–battery hybrid systems sig-
nificantly impacts the performance, efficiency, and lifespan of the system by optimizing
energy efficiency, prolonging the lifespan of the fuel cell and its balance of plant (BoP)
components, and ensuring a stable power supply. Consequently, extensive research has
been conducted on this topic. Jia et al. proposed a novel energy management strategy
for fuel-cell–battery hybrid electric buses. This strategy optimizes system efficiency and
extends its lifespan by preventing excessive fuel cell degradation and ensuring battery
thermal stability, considering the health state of the fuel cell and thermal and lifespan
constraints of the battery [26]. Zheng et al. developed an energy management strategy
based on Pontryagin’s minimum principle (PMP) to extend the fuel cell stack’s lifespan in
hybrid vehicles. The proposed strategy optimizes energy allocation by incorporating the
degradation mechanisms of the fuel cell stack and evaluates the extension of the fuel cell’s
lifespan and its economic benefits through simulations [27]. Pereira et al. introduced a real-
time nonlinear model predictive control (NMPC)-based strategy for energy management in
fuel cell hybrid electric vehicles. Their strategy optimizes energy distribution between the
fuel cell and battery by considering the dynamic characteristics of the vehicle and energy
system constraints, improving fuel efficiency and extending battery lifespan [28]. Zhou et al.
proposed a real-time cost-minimizing power allocation strategy based on model predictive
control for fuel cell hybrid electric vehicles. This strategy calculates the energy costs of
the fuel cell and battery, performing real-time optimal power allocation to achieve high
fuel efficiency, prolonged battery lifespan, and minimized operating costs [29]. He et al.
developed a cost-minimizing power allocation strategy for fuel-cell–battery hybrid electric
buses, considering the lifespans of the fuel cell and battery. By evaluating battery lifespan
and fuel cell degradation, the strategy minimizes operational costs through optimized
power distribution [30].

With the growing interest in hydrogen fuel cell-based UAM systems, research on
thermal management has been actively conducted. Chang et al. simulated three cooling
systems—air cooling, liquid cooling, and pulsating heat pipe cooling—for hydrogen fuel
cell systems in UAVs and comparatively analyzed their thermal management performance.
The study confirmed that the liquid cooling system was the most efficient for thermal
management in high-power regions, while pulsating heat pipe cooling was identified as
a useful alternative for lightweight UAV applications [31]. He et al. proposed an online
energy management strategy that integrates the efficiency and thermal management of
fuel cells. They addressed the issue of performance degradation caused by heat generated
during fuel cell operation, suggesting methods to extend the lifespan and maximize perfor-
mance through an efficient thermal management system. The proposed system employs a
real-time, data-based control algorithm to regulate the flow of coolant, pump operation, and
radiator heat dissipation, simultaneously optimizing fuel consumption and temperature
variations [32]. Anselma et al. proposed a thermal management optimization method
using Dynamic Programming for fuel cell systems. They developed an efficient cooling
strategy to prevent fuel cell stack overheating under various thermal load conditions during
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operation. Notably, the dynamic programming algorithm determined the operating points
of the cooling system under diverse driving conditions, minimizing hydrogen consumption
and ensuring system stability [33]. Li et al. comprehensively reviewed research trends and
application cases related to key components of hydrogen fuel cell systems. Their review
covered the latest studies on the design and optimization of fuel cell stacks, hydrogen
storage systems, and thermal management systems. In particular, thermal management
systems were emphasized as critical factors influencing fuel cell efficiency and lifespan.
Additionally, strategies for balancing heat dissipation performance, cost, and weight in
cooling system design were discussed [34].

Research on metal hydride tanks is also actively being conducted because of their
advantages, such as high hydrogen storage density, safety, and flexibility in hydrogen
storage and supply systems. Darkrim et al. investigated the effects of carbon nanotube
properties on hydrogen adsorption and storage efficiency, analyzing the surface modifi-
cations and structures of carbon nanotubes to optimize storage and adsorption rates, as
well as suggesting future research directions [35]. Sakintuna et al. outlined the advantages
and limitations of metal hydride tanks, emphasizing their high energy density and stability.
They compared the characteristics and reactivity of various metal hydrides and suggested
directions for technological development and practical applications [36]. Satheesh et al.
evaluated the thermal performance and efficiency of heat pumps using metal hydrides with
different reaction temperatures, proposing design optimizations for heat pump systems
based on metal hydride tanks [37]. Park et al. developed an integrated system combining
metal hydride absorption/desorption reactions with compressors to enhance heat transfer
efficiency and performance coefficients, proposing design conditions to improve system
energy efficiency and stability [38]. Kim et al. analyzed absorption/desorption reactions
in metal hydride tanks based on ultra-insulated thermal wave propagation, evaluating
energy conversion efficiency and proposing design and operation conditions for system
implementation [39]. Kikkinides et al. modeled and optimized the dynamic characteristics
of metal hydride tanks, simulating hydrogen absorption/desorption reactions based on
thermodynamic principles, and analyzed design variables to improve storage capacity,
reaction rates, and thermal management efficiency [40].

In this study, the development of a hydrogen fuel cell hybrid UAM system model
utilizing a metal hydride tank presents an innovative approach not addressed in previous
research. While studies on hybrid UAM systems using batteries and hydrogen fuel cells
have been actively conducted, the integration of fuel cell systems incorporating metal
hydride tanks and system-level power management and analysis based on such configura-
tions are scarcely found in the literature. Therefore, this study developed a hybrid UAM
system model utilizing a metal hydride tank and designed a mechanism to enable the
desorption of solid-state hydrogen from the tank by utilizing waste heat from the fuel cell
stack. This approach maximized the efficiency of waste heat utilization while integrating
auxiliary cooling loops and valve state control to ensure system stability. Additionally, a
fuzzy logic control-based power management system was implemented, enabling efficient
power distribution based on the state of charge (SOC) of the battery and load power.

2. System Configuration
The schematic diagram of the hydrogen–electric UAM system can be seen in Figure 1.

The power sources consist of a 138 kW fuel cell system and a 60 kWh battery, while
the power conversion devices include DC–DC converters, and the propulsion system
comprises thrust motors and propellers. The power required by the fuel cell system and
battery fluctuates based on the demands of the power distribution system, resulting in
different voltage levels. To convert the voltage to the 400 V operating voltage of the thrust
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motor, DC–DC converters were applied to each power source. A unidirectional converter
was used for the fuel cell, as it only generates power using hydrogen, while a bidirectional
converter was implemented for the battery to enable both charging and discharging. These
components regulate the voltage to a unified bus voltage applied to the thrust motor. The
thrust motor generates the thrust needed for the UAM to overcome its load and ascend
to higher altitudes. The power required by the thrust motor is supplied by the fuel cell
and battery, with the power management system distributing power based on the overall
system’s power requirements and the battery’s state of charge (SOC).
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2.1. Fuel Cell System

The hydrogen fuel cell system comprises a stack that generates electricity through
an electrochemical reaction between hydrogen and oxygen, along with a balance of plant
(BOP) that ensures the stable operation of the stack. The BOP includes a hydrogen supply
system and an air supply system to provide hydrogen and oxygen, respectively, as well
as a thermal management system to dissipate the heat generated by the fuel cell stack,
maintaining its optimal operating temperature.

2.1.1. Fuel Processing System

The hydrogen supply for stack operation is facilitated using a metal hydride tank,
which, despite the drawback of requiring an external heat source, offers advantages such
as a high hydrogen storage density per unit volume and enhanced safety. The heat transfer
coefficient of the metal hydride tank was derived based on assumed heat transfer coeffi-
cients of metal hydrides and gaseous hydrogen, and it was modeled using thermodynamic
and energy equations [41]. Figure 2 illustrates the schematic diagram of the metal hydride
tank used in this study. The metal hydride tank consists of gaseous hydrogen and the metal
hydride material LaNi5, an alloy of lanthanum (La) and nickel (Ni) known for its high
hydrogen affinity and ability to absorb and desorb hydrogen at low operating temperatures.
These properties make LaNi5 widely used in most metal hydride tanks. In this system, the
metal hydride absorbs heat from an external heat source, enabling a desorption reaction
that converts solid-state hydrogen into gaseous hydrogen, which is then supplied to the
fuel cell stack.

The tank accounts for changes in the gaseous hydrogen density over time, hydro-
gen desorption from the metal hydride, and hydrogen release from the tank. The mass
conservation equation for this system is expressed as follows:(

Vtank
VMH

− 1 + ε

)
∂ρg

∂t
=

.
m′′′

MH − .
m′′′

out (1)
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Here, Vtank
VMH

represents the ratio of the tank volume to the metal hydride volume, and ε

denotes the porosity;
.

m′′′
MH and

.
m′′′

out represent the mass flow rate per unit volume for the
metal hydride and tank, respectively. The porosity accounts for the fact that metal hydride
is not a completely solid material, allowing for a more precise calculation of the masses of
the metal hydride and the gaseous hydrogen.
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Hydrogen desorption in the metal hydride can be expressed based on the heat trans-
fer from an external heat source, heat transfer within the metal hydride tank, and a
thermodynamics-based energy conservation equation, as shown below:(

Vtank
VMH

− 1 + ε

)
Cpg

∂(ρgT)
∂t

+ (1 − ε)Cps
∂(ρsT)

∂t
= ke∇2T − .

m′′′
MH∆H +

.
Q

′′′
(2)

Here, Cpg and Cps represent the specific heat capacities of the gas and metal hydride,
respectively, while ρg and ρs denote the densities of the gas and metal hydride. Additionally,
ke is the thermal conductivity of the metal hydride, ∆H represents the enthalpy change
during the desorption process in the metal hydride, and

.
Q

′′′
indicates the heat input from

an external source.
The mass flow rate of hydrogen generated during desorption in the metal hydride

can be calculated using the Arrhenius equation, which is based on collision theory and the
molecular kinetic energy required for the chemical reaction to occur.

.
m′′′

MH = −Caexp
(
−EA
RT

)
ln
(

P
Peq

)
(ρs

s − ρs) (3)

Here,
.

m′′′
MH represents the mass flow rate per unit volume from the metal hydride, Ca

is the reaction coefficient determined by the physical and chemical properties of the metal
hydride, and −EA denotes the activation energy required for hydrogen desorption from
the metal hydride.

The pressure changes in the metal hydride tank can be expressed as follows, based
on the thermodynamic relationship between hydrogen storage capacity and temperature,
illustrating how hydrogen desorption occurs with temperature variations.

ln
Peq

P0
= a +

b
T
+ (ϕ ± ϕ0)tan

[
α1π

{(
H

Hmax

)
− α2

}]
± β

2
(4)
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Here, ln Peq
P0

represents the pressure ratio change during the hydrogen desorption
process, a and b are coefficients that define how the equilibrium pressure in the metal
hydride tank changes with the temperature, H is the current hydrogen storage level, and
Hmax is the maximum hydrogen storage capacity. Additionally, ϕ and ϕ0 and α1 and α2 are
physical property constants related to the adsorption mechanism of the metal hydride tank.

The flow rate of the gaseous hydrogen generated from the desorption in the metal
hydride tank is determined by the tank’s internal pressure, temperature, and flow charac-
teristics (Mach number and specific heat ratio) and can be calculated as follows:

.
m′′′

out =
Ptank

Vtank
√

RTtank
Ath

√
rMe

(
1 +

(r − 1)Me2

2

) (r+1)
(2−2r)

(5)

Here, Ptank represents the internal pressure of the tank, Vtank is the tank volume, Ath

denotes the heat transfer area due to the external heat source, and Me represents the Mach
number for hydrogen outflow.

The heat supplied by the external heat source is entirely transferred to the metal
hydride tank, and the process is assumed to be adiabatic, with no natural convection
occurring with the external environment.

dQcoolant = UdA(T − TMH) = − .
mcoolantCp,coolantdT (6)

Here, dQcoolant represents the amount of heat transferred to the metal hydride tank,
U is the heat transfer coefficient, and dA denotes the area through which the heat transfer
occurs. Table 1 presents the list of parameters and data for the metal hydride tank developed
in this study.

Table 1. Parameters for the metal hydride tank model [42].

System Components Parameters Unit

Metal Hydride Tank

a 13.44 -
b 3780 K
α1 1 -
α2 0.5 -
β 0.137 -
de 0.005 m

Dtank 0.6 m
Ltank 1 m
Ca 59.187 1/s
Cpg 14,890 J/kg·K
Cps 419 J/kg·K
Cpw 1860 J/kg·K
Ea 21,179.6 J/mol

∆H 1.54 × 107 J/kg
ε 0.5 -
γ 1.409 -
ϕ 0.038 -
ϕ0 0 -
ρs0 8400 kg/m3

ρss 8517 kg/m3

Ru 8.314 J/mol·K
U 300 W/m2·K

2.1.2. Air Processing System

In this study, a pressurized compressor capable of maintaining a high supply pressure
was applied to the high-capacity fuel cell system, which requires high power output. The
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required supply pressure and flow rate for the stack are calculated as follows, and the
developed compressor is controlled using a PI controller.

.
mO2 =

i
nF

× ncell × stoi (7)

P =

(
1 +

η
( .
m, U

)
TatmCP

)γ/(γ−1)

× Patm (8)

Here,
.

mO2 represents the required oxygen flow rate, F is the Faraday constant, i is the
load current, and stoi denotes the oxygen stoichiometric ratio.

2.1.3. Stack

The hydrogen fuel cell stack was developed based on Ballard’s FCgen-HPS fuel cell
stack, designed for low mass to meet the requirements of aerial mobility. The stack was
validated through experimental studies, as shown in Figure 3 [43]. Detailed information
about the stack can be found in Table 2. The voltage of the fuel cell stack is calculated
by considering the theoretical maximum voltage determined by the temperature and
fuel concentration, known as the Nernst voltage. This is adjusted by accounting for the
activation losses caused by the energy required to initiate the electrochemical reaction,
concentration losses due to fuel depletion at high current densities, and ohmic losses
resulting from the system’s electrical resistance and ionic conductivity, as expressed below:

Vcell = E − Vact − Vcon − Vohm (9)

E = −
∆g f

nF
= −

∆g0
f

nF
+

RT
nF

ln

(
pH2 p0.5

O2

pH2O

)
(10)

Vact =
RT
nαF

ln
(

j
j0

)
(11)

Vconc =
RT
nF

ln
(

1 − j
jL

)
(12)

Vohm = i × Rohm (13)
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Table 2. FCgen-HPS fuel cell stack specifications [43].

System Component Parameter Unit

Fuel Cell Stack

Rated power 138 kW
Number of cells 309 ea

Rated current 645 A
Rated voltage 202 V

Mass 55 kg
Active area 480 cm2

Here, ∆g f represents the change in Gibbs free energy, j is the current density, j0 is the
exchange current density, jL is the limiting current density, and Rohm denotes the internal
resistance.

2.1.4. Thermal Management System

The fuel cell stack must maintain a stable operating temperature range to achieve an
efficient performance, making the thermal management system essential. Additionally, this
study proposes a mechanism to utilize the waste heat from the fuel cell to enable hydrogen
desorption from the metal hydride tank. To effectively implement this mechanism, the
flow and temperature of the coolant must be controlled through the thermal management
system. Lastly, this study aims to develop an integrated model of a hydrogen fuel cell-based
hybrid UAM system, and the thermal management system model is a critical component
for simulating and optimizing the interactions between the fuel cell stack, metal hydride
tank, coolant pump, and radiator.

Accordingly, in this study, the thermal management system removes the heat gener-
ated during the operation of the fuel cell stack to maintain the stack within its operating
temperature range. It consists of a three-way valve, coolant pump, radiator, and cooling
fan. Because of time and economic constraints, the development of each thermal manage-
ment component was based on the experimental testing literature. Additionally, the heat
required for the metal hydride tank is supplied via heat exchange using coolant heated by
the fuel cell’s operation. This is achieved through a separate distribution valve, as shown
in Figure 4.
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The inlet and outlet temperatures of the stack are maintained at 333.15 K and 343.15 K,
respectively, by controlling the inlet and outlet coolant temperatures using a PI controller
for the cooling fan and coolant pump. Additionally, the distribution valve for the flow to
the metal hydride tank ensures efficient heat transfer to the tank when the high-temperature
coolant, which is sufficiently heated by the stack, enters. However, when the hydrogen
flow rate required by the stack is low, the continuous desorption of the hydrogen from the
metal hydride due to the high-temperature coolant can lead to instability in the tank. To
address this, state machine control was applied to manage the distribution valve based
on the stack’s outlet coolant temperature and the hydrogen flow rate requirements. The
state machine control operates by systematically and clearly defining actions based on
input data, criteria, and rules. Accordingly, 12 states were defined based on the hydrogen
flow rates and the stack’s outlet coolant temperature, and the control was implemented as
described in Table 3.

Table 3. State machine control of the distribution valve.

State Stack Outlet Temperature [K] Mole Flow Rate [mol/s] Distribution Valve [-]

1 Low
.

m >
.

m1 Opening Ratio = 1
2 Low

.
m >

.
m2 Opening Ratio = 0.9

3 Low
.

m >
.

m3 Opening Ratio = 0.8
4 Low

.
m >

.
m4 Opening Ratio = 0.7

5 Medium
.

m >
.

m1 Opening Ratio = 0.8
6 Medium

.
m >

.
m2 Opening Ratio = 0.7

7 Medium
.

m >
.

m3 Opening Ratio = 0.6
8 Medium

.
m >

.
m4 Opening Ratio = 0.5

9 High
.

m >
.

m1 Opening Ratio = 0.6
10 High

.
m >

.
m2 Opening Ratio = 0.5

11 High
.

m >
.

m3 Opening Ratio = 0.4
12 High

.
m >

.
m4 Opening Ratio = 0.3

2.2. Battery

The battery serves as an auxiliary power source to complement the slow response
speed of the hydrogen fuel cell system and meet the required power output. Additionally,
it facilitates the load distribution, efficiency optimization, system stability, and operational
flexibility, thereby improving the overall system’s efficiency through organic power dis-
tribution during the system’s operation [44–46]. Lithium-ion batteries are well-suited to
hybrid UAM applications because of their unique charging and discharging characteris-
tics, including high energy density, efficiency, and long cycle life. During the charging
process, lithium ions move to the anode through the electrolyte, while during discharge,
the ions move back to the cathode, releasing stored energy. Key factors influencing these
processes include the battery’s state of charge (SOC), temperature, and applied current, all
of which significantly impact performance and lifespan. In this study, lithium-ion batteries,
commonly used in electric vehicles, were scaled down based on experimental data for
application in multicopter systems [47]. Furthermore, to accurately model the battery’s
characteristics, a 2-RC equivalent circuit model was developed to reflect its electrical and
dynamic properties, as expressed below:

VBT = VOC − i ×
{

R0 + R1

(
1 − e(−t/τ1)

)
+ R2

(
1 − e(−t/τ1)

)}
(14)

Here, VOC represents the open-circuit voltage of the battery, R0 denotes the internal
resistance of the battery, R1 and R2 represent the dynamic resistances within the battery,
and τ1 and τ2 indicate the time constants.
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2.3. DC–DC Converter

The DC–DC converter serves to convert the voltage generated by the hydrogen fuel
cell system and battery into the operating voltage required by the motor. Through this
process, the output voltage of the converter is supplied to the motor at a consistent voltage
level. However, since the battery undergoes both discharging to power the motor and
charging using the power generated by the fuel cell, a bidirectional DC–DC converter was
applied. In this study, the converter was developed based on a duty ratio control method.

VConv,out =
VConv,in

1 − Duty ratio
(15)

iConv,out = (1 − Duty ratio)× iConv,in (16)

Here, VConv,in represents the input voltage to the converter, VConv,out denotes the output
voltage of the converter, and the Duty ratio refers to the duty ratio.

2.4. Thrust Motor

The UAM system developed in this study was designed with a quadcopter structure,
consisting of four propulsion motors, because of its simplicity, streamlined control system,
and efficient power consumption. The propulsion motors were modeled using a first-order
differential equation to describe the rotational speed as a function of the input current.
The thrust was calculated based on the thrust coefficient of the propulsion motors, as
formulated below.

dω

dt
=

Kt

J
i − B

J
ω (17)

FThrust = k f × ω2 (18)

Here, ω represents the angular velocity of the motor, Kt denotes the motor torque
constant, J is the moment of inertia, i is the input current, B represents the viscous friction
coefficient, and k f is the thrust coefficient. Detailed specifications of the propulsion motors
can be found in Table 4.

Table 4. Specifications of the thrust motor with the blade.

Current [A] Speed [RPM] Thrust Force [N] Power [kW] Efficiency [%]

6.94 1166 250.84 2.33 83.57
12.46 1424 381.61 4.37 87.58
20.49 1684 538.67 7.38 89.94
33.39 1936 762.92 12.25 91.72
50.47 2197 1008.57 18.56 91.98
74.87 2449 1299.34 27.27 91.22
108.3 2703 1632.48 38.64 89.42

3. Results and Discussion
A power management system was implemented to evaluate the hybrid UAM system

based on a hydrogen fuel cell system with an integrated metal hydride tank. Additionally,
the flight simulation scenarios were designed based on the standards of South Korean
aviation law to analyze the system’s response and thermal management performance.

3.1. Power Management System

The power management system must ensure an efficient load distribution among
power sources to maintain the system’s stability and efficiency [48,49]. Additionally, the
battery, which operates as an auxiliary power source, must maintain an optimal SOC while
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meeting the required power demand. In this study, a fuzzy logic control-based power
management system was developed to enable organic control across various system states.
Fuzzy logic control defines each state for the input data and determines the degree of
membership based on the membership functions. Subsequently, the inference result is
calculated using fuzzy rules, and the result is transformed into system input data for control
purposes, as defined below.

1. Fuzzification: the process of defining the proportions of the membership function
to convert continuous and precise values into a fuzzy set that can be processed by
fuzzy logic.

2. Fuzzy Inference: the process of applying predefined fuzzy rules to the fuzzified
inputs to determine the degree of membership of their output values and calculate
the final output.

3. Defuzzification: the process of converting the fuzzified output values into actual
output values for the physical system.

Based on this approach, the power management system was designed to appropriately
follow the load power while maintaining the battery’s SOC within an optimal range. The
load power for the fuel cell was determined using two input parameters, and the battery
power was subsequently calculated based on the determined fuel cell power. The SOC
of the battery was defined using the following states: Very Low, Low, Medium, High,
and Very High. The membership functions were also defined accordingly. For the load
power, the states were defined as follows: Off, Very Small, Small, Little Small, Medium,
Little Large, Large, Very Large, and Max. Fuzzy Rules were then defined as shown in
Table 5 and Figure 5. In this configuration, when the SOC is high, the power demand on
the fuel cell decreases, while when the SOC is low, the load power handled by the fuel cell
increases. Additionally, the power distribution ratio between the fuel cell and the battery
was designed to vary depending on the total system load.
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Table 5. Fuzzy rules of the power management system.

Fuzzy Rules of the PMS
Load Power [kW]

Off
(0~20)

Very Small
(20~40)

Small
(40~60)

Medium
(60~90)

Large
(90~110)

Very Large
(110~130)

Max
(130~150)

State
Of

Charge
[-]

Very Low
(~0.3)

Little
small Medium Little

large Large Very
large Max Max

Low
(0.3~0.5) small Little

small Medium Little
large Large Very

large Max

Medium
(0.4~0.7)

Very
small

Very
small Small Medium Little

large Large Very
large

High
(0.6~0.9)

Very
small

Very
small Small Little

small
Little
large Large Very

large
Very High

(0.8~) Off Very
small

Very
small Small Medium Little

large Large

3.2. Flight Profile

Based on the fuzzy logic control power management system, the power of the fuel cell
system with a metal hydride tank and the battery is distributed accordingly, and a flight
simulation scenario was developed to analyze the system’s behavior. The scenario was
designed based on the operational concept document for Korean Urban Air Mobility (K-
UAM) provided by the Ministry of Land, Infrastructure, and Transport of South Korea, with
the altitude constraints set between 300 and 600 m. As shown in Figure 6, the simulation
was developed to include the stages of takeoff, ascent, cruising, descent, and landing,
reflecting the flight characteristics of UAM [50]. The simulation results confirm that the
altitude of the hydrogen fuel cell hybrid UAM appropriately follows the changes in altitude
during flight.
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3.3. Urban Air Mobility Performance

For flights at the target altitude, the UAM system ascends when the thrust generated
by the propulsion motors exceeds the weight of the UAM system and descends when the
thrust decreases. The mass of each component of the UAM system developed in this study
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was assumed based on the reference literature, as shown in Table 6, and the altitude was
calculated using the following equation [51]:

Altitude =
∫ ∫ (

FThrust − FGravity
)
dt (19)

Table 6. Mass specifications of the hydrogen fuel cell hybrid UMA system.

Component Mass [kg]

Fuel cell stack 55

DC–DC converter 15 × 2 ea

Hydrogen tank 72

Structure 120

Passenger 80

Thrust motor 9.1 × 4 ea

Battery 63

Total 462.4

Here, Altitude represents the altitude, FThrust denotes the thrust generated by the
propulsion motors, and FGravity represents the gravitational force based on the mass of
the UAM system. The thrust and gravity are illustrated in Figure 7. It was observed that
the thrust generated by the propulsion motors varies and is controlled to achieve altitude
control as the target altitude changes. In a hovering state, where there is no change in
altitude, the thrust matches the gravitational force, maintaining a steady altitude.
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3.4. Discussion

The required power for flight to the target altitude is distributed between the hydrogen
fuel cell and the battery by the fuzzy logic control-based power management system, as
shown in Figure 8. At the beginning of the flight, the increasing power demand is met by
distributing the load between the fuel cell and the battery. As the battery’s SOC decreases,
the battery’s load power organically adjusts according to the fuzzy rules. When the battery’s
SOC reaches 0.4, most of the load power is handled by the fuel cell, reducing the reliance
on the battery. From the 3400 s mark, when the load power decreases, the power generated
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by the fuel cell is directed to the battery for charging. According to the power management
system, the load power from the hydrogen fuel cell system fluctuates, leading to variations
in the required hydrogen flow rate. Consequently, the heat demand from the metal hydride
tank varies, and the opening rate of the distribution valve is controlled by the state machine
control, as shown in Figure 9. During the initial stage of the flight, because of the low
operating temperature and hydrogen flow rate of the fuel cell system, the distribution valve
operates in State 4 of the state machine control (Table 3). At the 100 s mark, with the start of
flight and increased load power from the fuel cell, the temperature and hydrogen flow rate
rise, transitioning to States 5 to 7. Furthermore, because of the high operating temperature
of the fuel cell stack, the state transitions to State 10 and, subsequently, to State 9 as the
hydrogen flow rate increases. Finally, at the end of the flight, as the fuel cell operates at low
power to charge the battery, the hydrogen flow rate decreases, transitioning to State 12.
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Through the distribution valve, the coolant flows into the metal hydride tank, causing
the metal hydride to desorb hydrogen, converting it into gaseous hydrogen, which is then
supplied to the fuel cell stack. To meet the required hydrogen flow rate, the outlet valve
of the tank is controlled, as shown in Figure 10. During the flight, the hydrogen flow
rate required for the operation of the hydrogen fuel cell system is controlled across all
intervals by adjusting the valve opening rate. It can be observed that the required flow rate
changes proportionally to the fuel cell’s load power and is effectively tracked by the valve
control system.
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Figure 10. Hydrogen mass flow rate results with the mass flow rate control valve.

The high-temperature coolant heated by the stack is cooled by the distribution valve
through the metal hydride tank and the radiator and cooling fan, and all of the coolant
is mixed in the reservoir, reducing the temperature. However, the inlet and outlet tem-
peratures of the stack are controlled to 333.15 and 343.15 K by the coolant pump and the
cooling fan, which is confirmed in Figure 11. Figure 11a shows the inlet coolant temperature
of the fuel cell stack. The high-temperature coolant heated by the stack is cooled by the
distribution valve through the metal hydride tank and the radiator and cooling fan, and all
of the coolant is mixed in the reservoir and the temperature is reduced. However, the inlet
and outlet temperatures of the stack are controlled to 333.15 and 343.15 K by the coolant
pump and the cooling fan, which can be confirmed through Figure 11. Figure 11a shows the
inlet coolant temperature of the fuel cell stack, confirming that the temperature fluctuated
according to the load change but was controlled to the target temperature of 333.15 K. In the
first 500 s of the simulation, a section appeared where the temperature decreased rapidly.
This was the result of the change in the opening rate of the distribution valve to the metal
hydride tank. Before 500 s of the simulation elapses, the required flow rate of the hydrogen
is low, so the opening rate of the distribution valve operates at 0.5. However, after 500 s, the
required flow rate of the hydrogen increases, and the opening rate of the distribution valve
operates at 0.6. Accordingly, the flow rate of the coolant flowing to the radiator decreases,
but since the inlet temperature is still lower than the target temperature, the cooling fan
operates at the same minimum flow rate, which is considered to be the temperature change.
In addition, after 3400 s, as the load power of the fuel cell decreases, the required flow
rate of the hydrogen decreases, and, accordingly, the opening rate decreases to 0.3 by
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operating the state machine control of the distribution valve. Therefore, it is confirmed
that the heat dissipation to the metal hydride tank decreases and the temperature increases
accordingly, but it converges to the target temperature by controlling the cooling fan. In the
case of Figure 11b, the temperature increases as the UAM flies in the 100 s section, but it is
controlled to the target temperature by the coolant pump, and the temperature decreases
as the load power of the fuel cell decreases after 3400 s.
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Figure 11. Temperature response results: (a) stack inlet temperature; (b) stack outlet temperature.

The heat generated from the fuel cell stack is cooled by the control of the distribution
valve for the thermal management system and the metal hydride tank. As a result, the
required heat release of the thermal management system decreases because of the heat
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absorption process of the metal hydride tank, which is confirmed in Figure 12. After the
first 100 s of the simulation, as the hydrogen fuel cell hybrid UAM system is flown, the load
on the fuel cell system increases, and the required heat release increases accordingly. The
thermal management system operates to control the temperature, but it can be confirmed
that the hydrogen demand flow rate increases rapidly according to the load, as well as the
heat required from the metal hydride tank. However, in the section after 900 s, it can be
confirmed that the required heat decreases because of the increase in hydrogen generated
from the metal hydride tank, as well as that the heat release occurs because of the operation
of the thermal management system for temperature control. In addition, it can be confirmed
that the heat release from the metal hydride tank reaches approximately 60% of the total
heat release due to the rapid increase in the required hydrogen flow rate at the beginning
of the simulation, as well as that it decreases to approximately 30% of the total heat release
as the required heat from the metal hydride tank decreases thereafter. As a result, it can
be confirmed that, on average, 43% of the waste heat is recovered through the tank as the
hydrogen-fuel-cell–battery hybrid UAM system using hydrogen metal hydride is flown.
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4. Conclusions
In this study, a model of a hydrogen fuel cell hybrid UAM system using a metal

hydride tank was developed. The absorption reaction of the metal hydride tank using the
waste heat generated from the stack was controlled through state machine control, and the
power management system for the hybrid system was applied to the fuzzy logic control.
The main results of this study are summarized as follows:

1. A hydrogen fuel cell hybrid UAM system was developed using a 138 kW FC gen-
HPS-based fuel cell system from Ballard and a 60 kW battery;

2. A metal hydride tank system for the hydrogen supply was mathematically devel-
oped based on thermodynamic and energy conservation equations and applied to a
hydrogen fuel cell system;

3. The absorption of heat for the desorption process of the metal hydride was applied
through the waste heat generated from the fuel cell stack, and this was configured to
be controlled by applying state machine control to the distribution valve;
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4. A flight simulation was applied based on the Korean Urban Air Mobility (K-UAM)
operation concept for the hydrogen fuel cell hybrid UAM system, and a power
management system based on fuzzy logic control was developed and applied for
efficient power distribution of the battery and hydrogen fuel cell system;

5. The load power was distributed by the fuzzy logic control-based power management
system according to the flight scenario, and it was confirmed that 43% of the waste
heat generated from the fuel cell stack was recovered through hydrogen metal cargo
and hydrogen was desorbed.
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Nomenclature

A Active area [cm2]
B Viscous friction coefficient [N·m·s/rad]
E Open-circuit voltage [V]
F Faraday’s constant [C/mol]
F Force [N]
∆G Gibbs free energy change [J/mol]
∆h Enthalpy [J/mol]
i Current [A]
j Current density [A/cm2]
J Moment of inertia [kg·m2]
Kt Torque constant [Nm/A]
m Mass [kg]
m Mole flow rate [mol/s]
n Number of electrons [-]
P Pressure [bar]
p Partial pressure [-]
R Resistance [Ω]
R Universal gas constant [J/K·mol]
stoi Stoichiometric ratio [-]
T Temperature [K]
V Voltage [V]
v Velocity [m/s]
Subscripts and superscripts
act Activation
BT Battery
conc Concentration
conv Converter
ohm ohmic
Greek
α Activity [-]
ρ Density [kg/m3]
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