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Abstract: The elevated penetration of renewable energy has seen a significant increase in
the integration of inverter-based resources (IBRs) into the electricity network. According
to various industrial standards on interconnection and interoperability, IBRs should be
able to withstand variability in grid conditions. Positive sequence voltage-oriented control
(PSVOC) with a feed-forward decoupling approach is often adopted to ensure closed-loop
control of inverters. However, the dynamic response of this control scheme deteriorates dur-
ing fluctuations in the grid voltage due to the sensitivity of proportional–integral controllers,
the presence of the direct- and quadrature-axis voltage terms in the cross-coupling, and
predefined saturation limits. As such, a twin delayed deep deterministic policy gradient-
based voltage-oriented control (TD3VOC) is formulated and trained to provide effective
current control of inverter-based resources under various dynamic conditions of the grid
through transfer learning. The actor–critic-based reinforcement learning agent is designed
and trained using the model-free Markov decision process through interaction with a grid-
connected photovoltaic inverter environment developed in MATLAB/Simulink® 2023b.
Using the standard PSVOC method results in inverter input voltage overshoots of up to
2.50 p.u., with post-fault current restoration times of as high as 0.55 s during asymmetrical
faults. The designed TD3VOC technique confines the DC link voltage overshoot to 1.05 p.u.
and achieves a low current recovery duration of 0.01 s after fault clearance. In the event of
a severe symmetric fault, the conventional control method is unable to restore the inverter
operation, leading to integral-time absolute errors of 0.60 and 0.32 for the currents of the
d and q axes, respectively. The newly proposed agent-based control strategy restricts cu-
mulative errors to 0.03 and 0.09 for the d and q axes, respectively, thus improving inverter
regulation. The results indicate the superior performance of the proposed control scheme
in maintaining the stability of the inverter DC link bus voltage, reducing post-fault system
recovery time, and limiting negative sequence currents during severe asymmetrical and
symmetrical grid faults compared with the conventional PSVOC approach.

Keywords: reinforcement learning; twin delayed deep deterministic policy gradient; data-
driven control; grid fault ride-through; voltage-oriented control; asymmetrical and sym-
metrical faults
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1. Introduction
The revolution in renewable energy is evolving substantially with the advancement

of energy policies, the development of infrastructure, and the integration of continually
improving power technologies. Renewable energy sources (RES), such as photovoltaics
(PVs), wind energy conversion systems (WECSs), hydroelectric power stations (HPSs), and
fuel cells (FCs), combined with various forms of energy storage devices, such as batteries
and flywheels, are becoming increasingly dominant components of the power network.
Power generation using distributed energy resources (DER) requires optimal deployment of
extraction and control techniques for large-scale integration and transmission. Improving
the stability and increasing the operational reliability of these microgrids is a topic of
significance among many researchers around the world today [1,2].

Microgrids (MGs) generally operate in two main modes of operation: islanded or stan-
dalone and grid-connected. In islanded mode, central or decentralized control can be used
to provide set voltage and frequency points, such as droop control or master–slave meth-
ods [3]. However, when coupled to the upstream electricity network, the grid-connected
inverter is programmed to follow the voltage and frequency of the grid using control
methods such as voltage-oriented control [2]. Faults in power systems can generally be
categorized as symmetrical and asymmetrical faults. An asymmetric fault occurs when
the voltage phases of the grid are unequally affected, creating an imbalance in the system,
resulting in different fault currents in each phase. Due to the unbalanced nature of asym-
metrical faults, they are more challenging to model and analyze. However, a symmetric
fault affects the three phases of the grid voltage equally, causing the fault current in all
three phases to be identical in magnitude and phase angle. Symmetrical faults are typically
the most severe type and generate the highest fault currents, but occur less frequently than
asymmetrical faults.

Most MGs connected to the grid are not of special concern for the conventional
power network, as they cannot influence its operating parameters (voltage and frequency).
However, when several MGs are integrated into a low- or medium-voltage network, the
stability and reliability of the larger grid can be compromised [4]. To ensure standard
operation, virtual inertias are often incorporated into droop control loops, allowing the
voltage and frequency magnitudes to be adjusted according to the active and reactive
power generated by the inverter using low-bandwidth communication. This approach can
effectively prevent voltage sagging while giving flexibility to transition between island-
connected and grid-connected operations through a phase-locked loop (PLL). Droop control
has a simple implementation; however, there are a few downfalls, such as a slow transient
response, circulating current between converters, and an imprecise power distribution
during grid faults [5]. Furthermore, most standalone industrial grid-interfaced power
converters are now required to have multiple fault ride-through (FRT) capabilities [6]. For
instance, IEEE Std. 2800-2022—“IEEE Standard for Interconnection and Interoperability
of Inverter-Based Resources (IBRs) Interconnecting with Associated Transmission Electric
Power Systems”—clearly specifies performance requirements for dynamic active and
reactive power support under abnormal frequency or voltage, negative sequence current
injection, and low voltage or high voltage ride-through operation. As such, the IBR plant
must be able to switch between multiple modes of operation when required [7].

Consequently, in the event of voltage imbalance faults at a particular node, the effect
is transmitted to power transformers, converters, and the larger microgrid, eventually
affecting the synchronization of inverters and sensitive loads. The protection system
of MGs, whether in grid-connected or islanded operation, must respond to abnormal
grid conditions. In comparison, the fault current in the connected mode of the grid is
10–50 times the full load per unit current due to the low impedance of the utility network,



Energies 2025, 18, 44 3 of 29

but in the islanded mode it is only 1.2–5 times higher [8]. As an ancillary service, negative
sequence currents need to be injected to compensate for any voltage imbalances at the node.
A complex proportional resonant controller can be designed to achieve this by sharing
negative sequence currents between participating inverters connected to an AC microgrid
using a communication link that transmits at 10 Hz [9]. However, the communication
link is prone to failure and low-bandwidth data transfer can increase communication
delays, resulting in deteriorated robustness during faults. In [10], an improved inverter
control technique based on a grid impedance estimation technique is proposed using a
Newton–Raphson algorithm implemented in the stationary reference frame that takes
into account positive sequence phasors as input. This method iteratively adjusts the
virtual impedance and stabilizes the inverter under unbalanced and harmonic-inflicted
grid voltages. Similarly, another method involves a positive–negative sequence synchro-
converter capable of limiting output currents to reduce power oscillations when subjected
to disturbances in the grid [11]. When the grid voltages abruptly differ from the nominal
operating set points, these control approaches have poor transients and a long settling time.

Moreover, to leverage the operation of smart inverters, low-voltage ride-through
(LVRT) capability is essential. An autonomous model predictive controller (AMPC), which
is an improvement over the classical MPC, can be adopted for adjustment of the injected ac-
tive and reactive powers of a grid-connected qausi-Z-source inverter during such scenarios.
Compared with conventional MPC, the trial-and-error design stage of the weight factor
is replaced with an auto-tuning objective normalization function. An additional benefit
of this method is the provision for a transition between maximum power point tracking
(MPPT) and FRT operation with ease based on the command of the grid operator or the grid
condition [12]. Intrinsically, it can sometimes be difficult to reduce inverter currents during
LVRT, as it adjusts the reactive current to support the voltage of the grid [13]. As such, [14]
proposes a method to reduce limit fault currents using phase angle adjustment and achieve
improved voltage support by embedding the network impedance in the current control
loop. In other works, a bridge-type fault current limiter (BFCL) is connected between the
distributed energy resources and the main grid at the point of common coupling (PCC) to
limit fault currents and provide reactive power support through cooperative control with
the voltage source converter [15]. For a switched resistance wind generator (SRWG), an
optimal proportional–integral (PI) voltage controller tuning method using the elephant
herd algorithm (EHA) is another way to provide LVRT capabilities according to the grid
code [16]. Further analysis of other existing grid fault-ride-through techniques is presented
in Table 1.

Table 1. Critical analysis of existing fault-ride-through methods.

Ref. System
Architecture

Type of Fault(s) Effects Adopted Mitigation
Technique

Advantages Remarks/Limitation

[17] Grid-connected
multi-modular
converter

Voltage swell Cause over-
modulation of
multi-modular
converter leading
to distortions in
current waveforms
and instability

Fundamental zero-
sequence voltage
injection

Gurrantees even
modulation mar-
gins in all three
phases. Improves
multi-modular
converter tolerance
during high voltage
ride-through

No provision for com-
pensating other major
types of fault in the net-
work

[18] Grid-connected
three-phase
four-wire in-
verter

Voltage sag
(symmetrical
and asym-
metrical) and
short-circuit
ratio variation

Significant increase
in current harmonics.
Significant drop in
inverter power at
severe sags. Oscil-
lation in DC-link
voltage

Constant average
active power/constant
active current/constant
peak current injection

Constant average ac-
tive power injection
can assure operated
at rated conditions
during faults

Does not offer smooth
transition to pre-fault
condition. Multiple
current references must
be specified for fault
ride-through
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Table 1. Cont.

Ref. System
Architecture

Type of Fault(s) Effects Adopted Mitigation
Technique

Advantages Remarks/Limitation

[19] Three-phase
energy storage
converter

Unbalanced
voltage sags

Causes drastic
changes in power
angle. Disruptions
in power supplied to
the grid.

Current droop control Provide reactive
power support.
Ability to limit
power angle
deviation. Does
not require power
calculations in the
outer control loop.

Modified control hin-
ders commanding
in terms of required
power. The battery
state of charge is not
considered during fault
ride-through.

[20] Modified
IEEE 9-bus
network with
solar, wind,
and battery
storage

Asymmetrical
and symmetri-
cal

Affects stability and
reliability of the en-
tire network.

Sliding mode lin-
earization recurrent
high-order neural con-
troller trained using an
extended Kalman filter

Allows mitigation of
nonlinear dynamics
due to parameter
variation or faults.
Reduced divergence
in the DC link
voltage and active
and reactive power
during abnormal
operating conditions.

The approach does not
consider nonlinear load-
ing (inductive or capac-
itive). The use of a re-
current high-order neu-
ral network, as well as a
sliding mode controller,
complicates the design
process.

[21] Doubly-fed
induction
generator-
based wind
turbine systems

Voltage sags,
asymmetrical
and
symmetrical

Increase in stator
currents which
leads to tran-
sient overshoots in
rotor currents due to
magnetic coupling.

Nonlinear sliding
mode controller for
bridge-type fault
current limiter

To overcome
the chattering
phenomenon,
an exponential
reaching law is
proposed for the
sliding surface
design. Current
limiting is
achieved during
the fault period.

There is a lack of stabil-
ity analysis as operating
margins of the proposed
control technique are not
specified. Does not ac-
count for scalability is-
sues that may arise for
larger wind farms.

[22] Standalone
inverter

Asymmetrical
and symmetri-
cal

Can damage the
semiconductor
switches. May
cause the inverter
to shut down,
depriving the
power supply to
critical loads.

Finite control set
model predictive
control

High-speed fault de-
tection. Ability to
limit total harmonic
distortion of currents
during faults. Fast
recovery to nominal
mode of operation.

Requires operation in
dual modes, nominal
and fault conditions.
The objective functions
need to be well defined
to suit the system. Re-
lies on accurate fault
modeling and system
parameters.

[23] Doubly-fed
induction
generator-
based wind
turbine systems

Asymmetrical
and symmetri-
cal

Current surge
in stator and ar-
mature winding.
Comprises drive-
train integrity due
to induced torque
transients.

Event-triggered
sliding mode con-
trol combined with
supplementary energy
storage support
interfaced via an
alternate active bridge
converter

Effectively regulates
the DC link voltage.
Low use of commu-
nication channels.

The use of supercapac-
itor banks, disturbance
observer, and additional
dual active bridge con-
verters complicates the
design process. Requires
supplementary energy
sources.

Recent advances in computational power density have led to the rise of numerous
applications of machine learning (ML) or artificial intelligence (AI) in demand-side en-
ergy management, distribution networks, and improving the stability of power converters
in MGs [24]. In an effort to advance the application of the Markovian jump stochastic
neural network, a framework is particularly necessary to model abrupt variation of the
system architecture and parameters in the context of stability and immunity to input distur-
bances [25]. The analysis of the Cohen–Grossberg bidirectional associative memory neural
network comprising time delay can be reconfigured to inverter control under uncertain-
ties [26]. In addition, synchronization of control systems techniques with sampled data
prior to additive delay has also been investigated in detail [27]. Such approaches can be
applied to improve the reliability and synchronization of multiple grid-connected inverters
for optimal power distribution. In addition, fast and accurate fault detection often relies
on appropriate data selection and feature extraction methods. High-quality hybrid feature
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selection based on correlated items applied in the context of classification can be used to
identify critical aspects of inverter performance by detecting voltage variation or unpre-
dictable changes in load [28–30]. Through careful evaluation and reduction of the feature
space with a focus on the most relevant data points, the computational cost for training and
deploying sophisticated algorithms such as the adaptive neural fuzzy interference system
for strategic decision-making in the energy sector has also been progressively advanced
due to improved overall reliability in dynamic environments [31,32].

In hierarchical control, machine learning-based approaches have induced significant
improvements in power system performance at all levels (primary, secondary, and tertiary)
and have been shown to be effective in load forecasting, generation prediction, and fault
diagnosis [33]. In a low-voltage grid, LVRT and constant reactive current injection during
voltage sags can be achieved through online detection of grid abnormalities based on
wavelet transforms and shallow neural networks and the resultant adjustments in the
power references. The fault identification technique reported a classification precision of
98.3% with PCC voltage and frequency as input data [34]. Terminal voltage regulation
is crucial during transitions between grid-connected and standalone operations. A DG
inverter can be controlled using a deep neural network (DNN) trained offline in conjunction
with a proportional integral derivative (PID) controller to ensure a smooth transition.
Additionally, a feedforward loop can be incorporated to mitigate harmonics for nonlinear
loads [35]. Battery energy storage systems (BESS) in MGs are commonly used for voltage
support and fault compensation. To address the issue of short circuit-induced voltage sags
in power lines using BESS in hybrid MG, a recurrent wavelet petri fuzzy neural network
(RWPFNN) can be used in the control loop for LVRT and fast voltage restoration [36]. Other
studies have employed neural networks with an extended Kalman filter to handle the
control of doubly fed induction generators during sensor failure on controlled variables of
back-to-back power converters [37].

In addition, reinforcement learning (RL) techniques have been extensively utilized to
design better secondary control (power and frequency) of power inverters. For unstructured
MGs with tidal power units and vehicle-to-grid connections, load frequency control is
extremely important to restore stability. A fractional gradient descent based on a fuzzy logic
controller can be implemented as the main frequency regulator with a deep deterministic
policy gradient (DDPG) composed of an actor–critic architecture to produce additional
control signals for frequency stabilization [38]. In [39], a quantum neural network (QNN) is
formulated to cooperatively control the frequency of an isolated MG. It combines DRL and
quantum machine learning to minimize the number of parameters and minimize training
requirements for a 13-bus network. A data set containing the frequency response of
unoptimized linear controllers is initially required to train the network through supervised
learning. In [40], a frequency regulation approach is proposed using deep reinforcement
learning (DRL), considering both the frequency performance and the economic operational
limits of the MG. The twin delayed deep-deterministic policy gradient (TD3PG) algorithm
is implemented based on historical data for adaptive selection of the best commands to
ensure frequency stability.

Moreover, a virtual inertia emulation technique is established in [41] using the twin
delayed deep deterministic policy gradient (TD3PG) reinforcement learning algorithm for
frequency regulation in weak grids with reduced inertia and damping capability. Verifica-
tion shows the ability of such controllers to better stabilize frequency in grid-connected
and standalone MGs. In another study, a Kuramoto-based consensus algorithm is used to
implement multi-agent reinforcement learning to handle frequency deviations. In [42], an
adaptive controller based on TD3PG is proposed to replace virtual synchronous generators
(VSG) in multilevel modular converter control. This approach reported better system
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strength and higher resistance to disturbances than conventional VSGs. Reinforcement
learning algorithms can also be used in designing parameters of existing controllers such
as proportional–integral, proportional–resonant, and fractional-order proportional–integral
regulators, etc. In [43], a deep Q network is adopted to adjust the parameters of the propor-
tional–integral controllers for a dual active bridge converter according to the modulation
phase shifted angles. This allows real-time mapping of phase-shift angles to the necessary
control parameters for stability.

Furthermore, reinforcement learning is applied to design Q-learning and TD3PG
current controllers in variable-speed doubly fed induction generators for the rotor and
grid-side inverters [44]. The performance of both agents is evaluated under dynamic
conditions, leading to the conclusion that Q-learning agents may not perform well under
significant disturbances compared to TD3 agents. In another study, the TD3PG agent is
utilized again to attain superior performance of permanent magnet synchronous machines
(PMSM) governed using the classical field-oriented control scheme (FOC). The agent works
in tandem with ESO-type speed observers, which allows sensorless FOC control through
online estimation of the machine speed. Multiple neural networks are used to obtain
the load torque with the TD3 agent performing a real-time estimated speed correction.
The results indicate a better reference tracking capability with the use of the RL TD3PG
agent [45]. DDPG agents have also been implemented in a similar way and have been
trained to work in parallel with the outer loop speed controller designed using sliding
mode control (SMC) to improve the load torque rejection capability in PMSM [46]. In this
work, it is shown that RL agents have the ability to directly manipulate control signals to
obtain the desired performance without a high computational or mathematical burden.
Although there are extensive applications of RL agents and other intelligent control methods
in machine control [47], there is limited literature that focuses on designing robust and
adaptive artificial-based controllers for inverters to withstand adverse grid disturbances.

With the increasing penetration of renewable energy into the electrical network and
the increasing demand for resilient inverter-based technology, there is a growing need to
develop advanced control methods to stabilize MGs under various dynamic conditions.
The expanding nature of the incorporation of DERs with utility and standard ancillary
practices makes the operation and control of voltage, frequency, and FRT mechanisms more
challenging. AI has the capability to bring about a new frontier in power engineering with
promising advances in processing density and improving deep learning algorithms [48].
If implemented appropriately, a self-governing, highly intelligent controller capable of
withstanding various grid abnormalities is definitely a possibility in MG applications.
Although the above-mentioned model-free control methods deliver promising results,
most depend on the type of data used during the training process. As such, considering
deep learning methods that do not require an exact MG model for efficient FRT and have
provision for transfer learning is desirable [49]. Evidently, during grid faults, such as
voltage swells, dips, unbalances, frequency disturbances, harmonics, asymmetrical, and
symmetrical faults, the current control loop on IBRs is important in regulating power
quality and ensuring stability. Most of the methods available in the literature often target
compensating for one or a few types of fault using a particular approach, while some
techniques require switching between multiple control modes depending on the induced
fault. Some classical FRT controllers perform additional computations to generate negative
sequence components for fault compensation; however, this requires exact plant modeling,
which makes the design process monotonous.

In addition, the current loop with cross-coupling terms in conventional voltage-
oriented control in inverter-based MGs causes instabilities during abnormal grid conditions,
which are attributed to poor proportional–integral controller dynamics and saturation lim-
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its. Based on the aforementioned constraints and inspired by reinforcement learning
techniques, a novel twin delayed deep deterministic policy gradient-based reinforcement
learning control approach is proposed to provide effective FRT operation and ensure
optimal current injection from RES. The main contributions of this research article are
as follows.

• A novel twin delayed deep-deterministic policy gradient agent is formulated and
trained to generate the voltages of the direct and quadrature axes in real time for
resilient operation of the inverter considering abnormal conditions of the grid based
on a set of observed states from the environment developed in MATLAB/Simulink®.

• A framework for training and deploying fully AI-based current controllers has been
established to achieve the optimal response of grid-interfaced inverters using a model-
free Markov decision process guided through a suitable reward function, thus elimi-
nating the need to design controllers based on uncertain operating parameters and an
accurate system model.

• Initially, the agent is trained for a single asymmetric phase-to-phase fault and then
applied to improve the inverter response for other asymmetric and symmetric grid
faults using transfer learning. This feature allows the controller to continuously
adapt to variations in operating conditions and be resilient despite deviations in grid
voltages without requiring complex deep neural network architectures and minimizes
computational or training costs.

Such control approaches have not been studied in depth in the field of inverter fault-
ride operation. Therefore, this article focuses on developing the actor–critic-based data-
driven control strategy, which has been thoroughly verified under asymmetric faults (L-L
and L-L-G) and symmetric faults (L-L-L). The proposed fault ride-through approach is also
compared with the standard positive sequence voltage-oriented control technique.

The organization of this paper is as follows. Section 1 provides a detailed background
and an extensive review of the literature on the subject. Section 2 covers the description of
the power conversion system, while Section 3 describes the traditional positive sequence
voltage-oriented control method. The novel design process for the twin delayed deep
deterministic policy gradient agent, intended for grid fault ride-through, is detailed in
Section 4. This includes specifics on the architecture of the deep neural network, the formu-
lation of the reward function, and the training procedure. Section 5 presents a comparative
evaluation of the proposed fault ride-through approach against the conventional control
method. The research considers three distinct fault scenarios, with the DC link voltage
response, post-fault recovery time, and cumulative integral-time error analysis serving
as primary evaluation metrics. Section 6 discusses the limitations of the study and future
research opportunities, and the article is concluded in Section 7.

2. System Description
The IEEE 13-bus network is a benchmark test case system used for research to imple-

ment new concepts in electricity generation, transmission, and distribution. For modeling
purposes, single AC generators are represented as the swing voltage source with a fixed
X/R ratio of 10. The classical 13 bus system has multiple predetermined single- and three-
phase loads connected to all buses. For this study, an inverter is connected to an existing
4160/415 V transformer between buses 633 and 634 to facilitate the integration of a 100 kW
solar system as shown in Figure 1.
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G/Swing
4160V

646 645 633 634

611 684 692 675

632

680

671
Fault

PV/100kW

Figure 1. Single line diagram of the IEEE 13 bus network with an interconnected solar system.

In the primary power conversion circuit (Figure 2), a three-phase two-level inverter is
connected to the IEEE 13 bus network between buses 633 and 634 with an LCL-type current
harmonic filter. A DC/DC boost converter is used to increase the voltage of the PV panels
to charge the DC link capacitors. The scheme follows a centralized inverter topology in
which a single inverter encompasses the entire power conversion circuit and controls the
power using a single DC link [50]. The incremental conductance (INC) maximum power
point tracking algorithm is used for optimum power extraction. INC requires measurement
of the array voltage and current to calculate the instantaneous conductance and update
the reference duty cycle accordingly. It has the benefit of faster adaptation to rapidly
changing climate conditions and fewer oscillations when attaining the MPP. The size of the
perturbation voltage step is set to 1 × 10−3 V to minimize tracking error after reaching the
desired operating point. Other parameters of the power conversion circuit are stated in
Table 2.

Table 2. Power conversion circuit and controller specifications.

Parameter Symbol Value Unit

Grid frequency ω 60 Hz
Rated PV power Pn 100 kW

Utility line voltage ELL 415 V
Rated DC bus voltage Vdc 700 V

Inverter switching frequency Fsw 15 kHz

Input capacitor Cin 10 µF
Boost Inductance L 2.4 mH
DC link capacitor Cdc 2000 µF

Boost switching frequency Fb 5 kHz

Damping resistor Rd 0.4 Ω
Filter capacitance C f 77 µF

Internal resistance of Lg Rg 18 mΩ
Internal resistance of Li Ri 28 mΩ

Grid side filter inductance Lg 177 µH
Inverter side filter inductance Li 280 µH

Current controller gains Kp = 0.6 Ki = 243
DC link controller gains Kp = 1.35 Ki = 395
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2-Level Inverter

PCC

PV Array

MPPT &
DC/DC Control

QSG+
DSOGI

DC link
Control

Current 
Control

Figure 2. Dual-stage photovoltaic power conversion circuit.

For this study, as a prerequisite, voltages and currents are normalized to per unit
values. The use of per-unit (p.u.) measurements significantly enhances scalability, making
it easier to design, analyze, and operate systems of varying sizes and complexities with
various control techniques. Using a base apparent power (Sbase) of 100 kVA and a nominal
AC phase-to-phase voltage (VAC) of 415 V, the voltage and current bases can be specified as

VAC(base) =

√
2
3
× VAC IAC(base) =

√
2
3
× Sbase

VAC
(1)

Thus, the instantaneous voltages and currents of the grid at each phase measured at
PCC are independently converted to their equivalents per unit using Equation (2). The
transformed voltages and currents are then fed to a phased-locked loop to extract their d
and q counterparts in normalized form.

Vabc(p.u.) =
VPCC

VAC(base)
Iabc(p.u.) =

IPCC
IAC(base)

(2)

Grid synchronization is crucial to maintaining quality power injection into the grid
despite the volatile nature of the grid. As such, the double second-order generalized inte-
grator phase-locked loop (DSOGI-PLL) is often used to synchronize the inverter voltages
with the main grid. DSOGI-PLL has established superior performance in stabilizing the
inverter under numerous disturbances of the grid [51,52]. It is based on an instantaneous
symmetric component method with two inbuilt quadrature signal generators (QSG) to filter
out additional harmonics present in the grid voltages in the first stage. Each QSG produces
two voltages on the quadratic axis (90◦ apart) that can be recombined to form positive
and negative stationary reference frame grid components using Clarke’s transformation of
the grid voltage at PCC (vα and vβ). Since in the case of a grid, the frequency is constant
under normal operating conditions, the filter bandwidth is essentially dependent on the
damping factor (Kγ), which is generally chosen as

√
2. This makes it also suitable for

variable-frequency applications [53].
Taking vα

′
, vβ

′
, qvα

′
, and qvβ

′
as QSG output, the decoupled positive and negative

sequence components of the grid voltage can be obtained by using the sequence calculation
in Equation (3). Thus, the corresponding positive and negative voltages on the d and q axes
can be easily obtained by Park’s transformation of the respective stationary reference frame
voltages with ωt as the estimated grid angle according to Equations (4) and (5). v+d gives
the amplitude of the input voltage, while v+q gives information on the phase error. A PI
controller is used as a loop filter to maintain v+d at zero and send it to the voltage-controlled
oscillator represented by the integrator, thus allowing the phase angle of the input signal to
be estimated [54]. Transformation of three-phase voltage and currents from their natural
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states (abc) into (dq) synchronous rotating frame DC quantities allows decoupled control of
grid-connected inverters in both positive and negative domains.

v+α = 1
2 (vα

′ − qvβ
′) & v+β = 1

2 (vβ
′
+ qvα

′)

v−α = 1
2 (vα

′
+ qvβ

′) & v−β = 1
2 (vβ

′ − qvα
′)

(3)

v+d = v+α sin(ωt)− v+β cos(ωt) & v+q = v+α cos(ωt) + v+β sin(ωt) (4)

v−d = v+α sin(−ωt)− v+β cos(−ωt) & v−q = v+α cos(−ωt) + v+β sin(−ωt) (5)

The approach can also be applied to the measured grid currents at PCC to obtain its
positive and negative sequence components. With iα and iβ as inputs to the dual QSG, the

corresponding outputs iα
′
, iβ

′
, qiα

′
, and qiβ

′
can be recombined and produce the positive

and negative current sequence components required for control purposes.

i+α = 1
2 (iα

′ − qiβ
′) & i+β = 1

2 (iβ
′
+ qiα ′)

i−α = 1
2 (iα

′
+ qiβ

′) & i−β = 1
2 (iβ

′ − qiα ′)
(6)

i+d = i+α sin(ωt)− i+β cos(ωt) & i+q = i+α cos(ωt) + i+β sin(ωt) (7)

i−d = i+α sin(−ωt)− i+β cos(−ωt) & i−q = i+α cos(−ωt) + i+β sin(−ωt) (8)

3. Conventional Voltage-Oriented Control
The positive sequence voltage-oriented control (PSVOC) is most famously used to

interface photovoltaic inverters with the grid. It has two cascaded control loops; the inner
loop regulates the inverter currents on the d and q axes, and the outer loop ensures the
stability of the DC link voltage, as shown in Figure 3. Normally, the DC link voltage
reference is kept constant, and a PI controller is used to generate the direct axis current
reference that corresponds to the net active power to be injected by the inverter into the
grid [55]. Transient conditions and variations in the DC bus voltage are regulated by the
capacitor’s charge-and-discharge process. In a grid-connected situation, the voltage can
fluctuate due to changes in solar irradiation or temperature levels of the photovoltaic array,
as well as oscillations in the AC power caused by grid imbalances.

THI
PWM

Figure 3. Conventional positive sequence voltage oriented control (PSVOC).

Injection of active power into the grid can be indicated by an increase in three-phase
currents at the PCC, assuming that the grid voltage remains steady during normal oper-
ation. The change in DC link voltage is determined by the power balance between the
solar panels and the currents injected into the grid. The reactive power supply can be
commanded directly by specifying the required amount and calculating the current on
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the quadrature axis. The error for both currents can be processed by inner-loop dual PI
controllers independently. Typically, the interconnecting filter transfer function is used to
tune the proportional (Kp) and integral (Ki) controller gains. The final inverter reference
voltage is the combined output of the current PI controllers, the grid voltages, and the
cross-coupling terms [56].

v∗+d =
(

Kp +
Ki
s

)(
i+dre f − i+d

)
+ ωLi+q + v+d

v∗+q =
(

Kp +
Ki
s

)(
i+qre f − i+q

)
+ ωLi+d + v+q

(9)

Decoupling allows independent control of active and reactive powers for grid-
connected inverters. According to instantaneous power theory, the active and reac-
tive powers on the AC side per unit can be evaluated using P+ = (v+d i+d + v+q i+q ) and
Q+ = (v+q i+d − v+d i+q ), respectively. It is evident that the active and reactive power pro-
duced by the inverter is directly proportional to the direct- and quadrature-axis currents
in the synchronous reference frame. Therefore, for the unity power factor, the reference
reactive power (Qre f ) can be kept zero. The PI controllers employ a fixed frequency free-
running carrier signal, resulting in a well-bounded current total harmonic distortion (THD)
with constant frequency inverter operation. This aids in instantaneous takeover of current
control and has the advantage of eliminating the effect of DC side ripple on the phase
currents of the inverter.

The third harmonic injection pulse width modulation (THIPWM) strategy is highly
desirable for producing IGBT gate pulses, as it can help improve inverter performance
under conditions of low DC link voltage. In THIPWM, a sine wave with a higher oscillating
frequency is added to the modulating signals, leading to a reduction in the peak of the
resulting modulating signal (m+

a , m+
b , and m+

c ). With v+a , v+b , and v+c as the amplitude of
the modulating signals of each phase and v3 as the amplitude of the third harmonic, the
positive sequence inverter modulating signals with the embedded third harmonic are given
in Equation (10). v3 is the amplitude of the third harmonic component, which is usually
between 0.15 and 0.2 [57]. The resulting modulating signals are compared with a higher-
frequency triangular wave generator to produce logic pulses for semiconductor devices.

m+
a = v+a sin(ωt) + v3 sin(3ωt)

m+
b = v+b sin(ωt − 2π

3 ) + v3 sin(3ωt)
m+

c = v+c sin(ωt − 4π
3 ) + v3 sin(3ωt)

(10)

The gains of the PI controller in such control approaches directly affect the stability of
the inverter and the response to abrupt changes in operating conditions. Although there
are many methods for designing these controller parameters, such as Ziegler–Nichols and
pole placement, many cannot guarantee the best performance during grid disturbances
and nonlinear loading conditions. For a more robust operation, metaheuristic-based algo-
rithms inspired by nature have gained popularity in inverter control applications [58–61].
For this article, the widely used genetic algorithm (GA) optimization algorithm is imple-
mented to iteratively determine the best set of PI values for the regulation of DC link voltage
and inverter current. GA has been adopted because it guarantees convergence given certain
constraint bands and does not require knowledge of derivatives, as the algorithm can
process with input–output mapping [62]. For the inner current loop, the PI values depend
on the transfer function of the LCL filter. With a cost function derived based on the integral
time absolute error (ITAE), a population size of 10, and lower/upper limits for PI values as
[0 500], 52 generations are sufficient for convergence to optimal values. Similarly, the DC
link transfer function established in [63] is utilized for optimization with the established
parameters. In this case, a total of 107 generations are required to achieve convergence
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to the optimum values. Thus, the PI values of the best fit for the current controller are
determined as Kp = 0.60 and Ki = 243, while for the DC link PI controller, Kp = 1.35 and
Ki = 395. All controllers are equipped with anti-windups to reduce the effect of saturation
and prevent large overshoots or oscillations.

4. Reinforcement Learning Agent Design for Grid Fault Ride-Through
Fault ride-through requirements state that all IBRs must remain connected to the grid

for a certain duration and wait for clearance to confirm that the fault is temporary. From
the inverter’s perspective, low voltage is simply a dip/sag in the voltage profile at PCC
causing a drop in the computed d and q axes components. Depending on the percentage of
dip and duration, the currents injected from the inverter may increase considerably. During
faults, conventional PI controllers suffer from poor performance and are unable to track the
designated current references in the synchronous reference frames. Prolonged symmetric
or asymmetric faults can cause DC link spikes, overcurrents, and deviations of active and
reactive powers. The dynamic response of the feedforward decoupled control approach
also deteriorates during fluctuations in grid voltages due to the presence of voltage terms
of the d and q axes in cross-coupling.

Although controller gains can be optimized, obtaining knowledge of the grid con-
dition and incorporating it into the process is difficult due to the grid’s dynamic nature.
Additionally, PI controllers are insensitive to changes in grid operating conditions and
pose a difficulty in maintaining inverter stability during abnormal grid conditions due to
predefined saturation limits. Due to the presence of the grid voltage in the cross-coupling
in the inner control loop, the PI controller tends to increase the inverter modulating volt-
ages, causing an increase in the supplied currents. Prolonged divergence of the inverter
currents results in the output of the PI controller reaching maximum thresholds, and thus
the inverter goes into overmodulation mode.

Most other types of controller, such as proportional resonant, deadbeat, and fractional-
order PI controllers, are inherently designed to provide a steady-state response and may not
respond rapidly to sudden variations during grid faults. Nonlinearities are often introduced
in the system due to disturbances in grid voltage and frequency and cause responses that
standard controllers struggle to handle effectively. Other advanced control techniques,
such as sliding mode and model predictive control, also encounter issues during grid
transients due to the chattering phenomenon, sensitivity to uncertain parameter variation,
tuning complexities, and dependency on accurate system models. As such, a twin delayed
deep-determined policy gradient (TD3PG) current controller is formulated and trained to
provide effective current control of inverter-based resources under various severities of
grid disturbances. The improved voltage-oriented control based on reinforcement learning
for effective fault management of grid-connected inverters is depicted in Figure 4.

Reinforcement learning is an effective tool that can greatly improve the design process
of power converter controllers. It provides various benefits, particularly in intricate and
dynamic environments where conventional control methods may face difficulties. RL
algorithms are capable of continually learning and adapting to changing operational
conditions, such as load variations or fluctuations in input voltage. This is particularly
advantageous in the control of grid-feeding inverters, where the power network can be
highly unstable. Inverters frequently demonstrate non-linear behavior, especially under
fault conditions. RL agents are anticipated to perform well in handling such non-linearity
without requiring explicit modeling, enabling more robust and flexible control mechanisms.
Traditional control techniques typically depend on precise mathematical models of the
inverter and its operational context. This model-free approach eliminates the need for an
explicit system model. Instead, it derives the control strategy directly through interaction
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with the environment, making it ideal for systems where precise models are hard to develop,
enhancing fault resilience.

TD3PG Agent THI
PWM

Figure 4. Twin delayed deep deterministic voltage-oriented control (TD3VOC) for inverter.

Twin delayed deep deterministic policy gradient is an advanced reinforcement learn-
ing algorithm that serves as an upgrade to the deep deterministic policy gradient algorithm.
RL can be applied to control systems to train deep neural networks by interacting with an
environment, enabling the achievement of tasks that are difficult to achieve using tradi-
tional control methods. The actor–critic agent is widely used in these applications, where
the actor neural network determines the actions to be taken and the critic network assesses
the effectiveness of those actions based on the rewards received from the environment
(Figure 5).

Actions

Q-Value State

Reward

EnvironmentActor

Critic

Figure 5. General reinforcement learning workflow.

Markov decision process (MDP) is a mathematical modeling tool that is used to
address decision-making problems involving an RL agent and its interaction with the
environment. It provides a framework for modeling sequential decision processes or a
continuous action space in uncertain states. Optimizing an agent involves finding the
best policy that maximizes the expected cumulative rewards for the agent using a suitable
algorithm such as Q-learning or policy gradient. In MDP, states (s) represent all the
information an agent receives from the environment, actions (a) are the array of numeric
input (continuous or discrete) applied in the environment determined by the actor, and (r)
is the cumulative reward obtained for the applied action. During training, the actor maps
the states and actions, eventually converging to a deterministic policy (π) after numerous
iterations [64].

4.1. Deep Neural Networks

To denote the primary indicators for selecting various actions in the subspace, [i+dre f ,

i+qre f , (i+dre f − i+d ), (i+qre f − i+q )] are relevant states that are chosen as observations for the agent,
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while the modulation voltages of the inverter [v∗+d , v∗+q ] are two actions required from the
actor network to provide enhanced stability to the inverter. The critic network has two
feature input layers (FILs): one for the states and the other for the corresponding actions.
Information measured via sensors is passed through two fully connected layers (FCLs), and
the output is summed together, forming a single feedforward path. The rectified linear unit
(ReLu) activation function performs a threshold operation before the data is inputted to
the next FCL, where all negative values are set to zero. The final FCL outputs the required
Q-value at each time step.

In a similar manner, the states are fed to the actor network using a FIL and passed
through an FCL with 64 outputs, which are given two separate but identical paths with
two FCLs. The outputs are summed and propagated through two more FCLs, and the
final modulation voltages are produced. In the actor network, the hyperbolic tangent
activation function (tanh) is employed between FCL due to its high performance and
naturally normalizes inputs in the range [−1, 1], which act as saturation limits for direct and
quadrature voltages. The deep neural networks of critics and actors are shown in Figure 6.
The ’Adam’ learning algorithm is used to train dual critic and actor networks, each with a
total of 3100 and 5800 learnable parameters, respectively. In general, both networks follow
a similar pattern in which the number of outputs in the FCL is progressively reduced up to
the output layer. This prevents overfitting and ensures a more stable training convergence.

FCL 1

FCL 2

FCL 3 FCL 5FCL 4

ReLu ReLu ReLu

FIL

FIL

64

64

32 16 2

Q-Value

FCL 1
FIL

FCL 2

FCL 4

FCL 3

FCL 5

tanh

FCL 6 FCL 7

tanh

ReLu ReLu

64

32 16

32 16

16 2

Critic

Actor

Figure 6. Critic and actor deep neural network architecture.

4.2. Reward Function

It is necessary to use a reward function that will allow the agent to learn the best
possible policy by encapsulating a function that minimizes the inverter current deviation
from the nominal set points at each discrete time step during abrupt disturbances on the
grid side. The reward function is derived on the premise of effectively controlling the
direct- and quadrature-axes currents based on the observed states. It is a combination
of the measured d and q current errors with respect to the reference, the integral square
error, and the negative sequence currents of the inverter, which must be minimized with
any imbalance induced in the grid voltage. The total episode reward is the sum of all
instantaneous rewards at each time step until the execution is terminated, given as
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ℜ =
T

∑
t=0


M
(∫

(i+dre f − i+d )
2dt +

∫
(i+qre f − i+q )

2dt
)
+

N
(
(i+dre f − i+d )

2
+ (i+qre f − i+q )

2
)
+

O
(
(i−d )

2
+ (i−q )

2
)

 (11)

The reward function assigns different weights to different aspects of the reward,
represented by the arbitrary gain values M, N, and O. In this case, N and O are set to −1
and M to −0.5. The weights are selected to guarantee quick convergence during training.
The adjustable gains permit customization of the significance assigned to each part of the
reward function. For example, the squared errors of the positive and negative sequence
currents are assigned the same gains so that both errors are equally minimized as the
injected inverter currents deviate during faults. In contrast, the cumulative error increase
over time is assigned a lower weight to ensure that it does not affect the real-time inverter
regulation under the usual grid conditions. In addition, an average reward is calculated
based on the length of the score averaging window. To simulate the agent’s adaptation, a
short-circuit fault is introduced between phases B and C at bus 633. The agent is expected
to adjust its behavior based on the defined reward function to minimize current deviations
in the inverter and improve the resilience of the inverter. All measurements are taken as
per unit values.

4.3. TD3PG Training Process

The agent training process involves systematically updating the parameters of the
actor–critic network. In TD3PG, two critic networks are present that help mitigate the issue
of overestimation bias of the DDPG agent and also incorporate delayed updates of the
target networks to stabilize convergence during training. The output of the critic networks,
known as the Q-value, is an important component of the training process and acts as an
indicator for the estimated cumulative reward given a set of observations and actions data
influenced by certain policies. The complete agent training process is shown in Figure 7,
and the general agent training pseudocode is presented as Algorithm 1.

MATLAB/Simulink
Environment 

(Power Conversion
Circuit + Control

Loops )

Gradient
Descent

Soft Update

Gradient
Ascent

Soft Update

Temporal Difference
Error

Policy Gradient

Min

Figure 7. Training process of TD3PG RL agent incorporating data flow and environment interactions.
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Algorithm 1: Pseudocode for training the TD3PG agent for inverter regulation

1 Setup the agent in the MATLAB/Simulink environment containing the
grid-following inverter topology with appropriate grid fault models

2 Initialize critic networks Q1, Q2 with random parameters ϕ, ψ

3 Initialize actor network µ with random parameters θ

4 Initialize target networks Q′
1, Q′

2, µ′ with ϕ′ and ψ′ and θ′

5 Set replay buffer R and exploration noise N
6 Define hyperparameters: discount factor, learning rates, target update rate,

regularisation, etc
7 for each episode do
8 Initialize environment and get initial state (st)
9 for each time step (t) in the episode do

10 Select action + exploration noise: a′t = a(st; θ) +N (µ, σ)

11 Execute action a in the environment and observe reward r and next state
st+1

12 Store transition (st, at, rt, s′t) in replay buffer R
13 if time to update then
14 for each update step do
15 Sample a random mini-batch of M transitions (si, ai, ri, st+1) from

R
16 Compute target Q-values using target networks and clipped

double Q-learning:
17 Compute target Q-values:

yt = rt + γ min(Q′
1(st+1, a′(st+1; θ′); ϕ′), (Q′

2(st+1, a′(st+1; θ′); ψ′))

18 Update the critic networks by minimising the loss:
19 L(ϕ) = 1

M∑n
i=1 (Q1(st, at, ϕ)− yt)

2 and
L(ψ) = 1

M∑n
i=1 (Q1(st, at, ψ)− yt)

2

20 Update critic parameters ϕ and ψ using gradient descent
21 ϕ → ϕ + αcritic∇ϕJ (ϕ, ψ) and ψ → ψ + αcritic∇ψL(ϕ, ψ)

22 if update step policy delay == 0 then
23 Update actor network by maximizing the Q-value:
24 ∇J(θ) ≈ Est∼R[∇θQ1(st, at; ϕ)|at=a(st ;θ)∇θa(st; θ)]

25 Update actor parameters θ using gradient ascent:
θ → θ + αactor∇θ J(θ)

26 Update target networks:
27 ϕ′ → ϕ′(1 − τ) + τϕ, ψ′ → ψ′(1 − τ) + τψ and

θ′ → θ′(1 − τ) + τθ

28 end
29 end
30 end
31 Update the state: st+1 → st

32 if the episode is done then
33 Break the loop
34 end
35 end
36 end
37 return The trained actor network or the final optimised policy (π)
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Denoting the parameters of the actor network as θ, the weight of the first critic network
(Q1) as ϕ, the weights of the second critic network (Q2) as ψ, and the parameters of the
corresponding target network as θ′, ϕ′, and ψ′. The actor is expected to maximize the
expected cumulative long-term reward by minimizing the negative Q-value function
given as

J (θ) = −Est ,at∼R[Q1(st, at; ϕ)] (12)

E represents the expectation operator that is associated with the stochastic property of
the transition probability and policy, π. Assuming a(st; θ) is the output of the actor network
given a state in a time interval (st) and specific weights and ∇θQ1(st, at; ϕ) is the calculated
gradient of the first critic network with respect to the action, the gradient ascent can be
used to update the parameters of the actor network using the chain rule applied to the
expected return objective according to the actor parameters [65].

∇J (θ) ≈ Est∼R[∇θQ1(st, at; ϕ)|at=a(st ;θ)∇θa(st; θ)] (13)

Therefore, the new weights of the actor network can be calculated using the return
objective and the actor learning rate (αactor) as follows.

θ → θ + αactor∇θJ (θ) (14)

Furthermore, critic networks are trained to reduce the Q-value output of critic net-
works (Q1 and Q2) and target critic networks Q′

1 and Q′
2. The targeted Q-value (yt) is

obtained by evaluating the minimum of the two Q-values of the target networks, which
also include the discounted reward (rt) and the predicted Q-values in the next state (st+1),
commonly calculated using the Bellman equation. Minimum operation ensures reduced
overestimation bias. A discount factor (γ), generally between 0 and 1, determines the
weight given to future rewards. High γ values give more importance to compounded
rewards, and a small value prioritizes immediate rewards, creating a trade-off between
past and instant rewards.

yt = rt + γ min(Q′
1(st+1, a′(st+1; θ′); ϕ′), (Q′

2(st+1, a′(st+1; θ′); ψ′)) (15)

The critic tends to reduce the difference between the target Q-value (from the Bellman
equation) and the estimated Q-values, known as the temporal difference error (TDE), using
a formulated loss function stated in Equation (8). Given M as the size of the mini-batch and
the set of state-action data from the stored experiences in the memory at each time step, the
critic networks obtain a better approximation for the true Q-value via minimization of this
loss function.

L(ϕ, ψ) =
1
M∑N

i=1 (Q1(st, at, (ϕ, ψ))− yt)
2 (16)

Eventually, both parameters of the critic network are updated using gradient descent
considering a reasonable learning rate (αcritic).

ϕ → ϕ + αcritic∇ϕJ (ϕ, ψ) (17)

ψ → ψ + αcritic∇ψL(ϕ, ψ) (18)

The target networks (Q′
1, Q′

2, and a′) are updated through a soft update process that in-
volves slowly evolving the network parameters with the current policy network parameters.
A predefined target smooth factor (τ) is used to provide a more stable learning process.
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θ′ → θ′(1 − τ) + τθ (19)

ϕ′ → ϕ′(1 − τ) + τϕ (20)

ψ′ → ψ′(1 − τ) + τψ (21)

During the training process, noise exploration data are often added to actions to allow
for more robust policy development. Sampled Gaussian noise N characterized by a normal
distribution with reasonable mean (µ) and standard deviation (σ) can be used to modify
the selected actions before being applied.

a′t = a(st; θ) +N (µ, σ) (22)

In this way, the agent can explore various regions of the action space via controlled
randomness. It prevents it from obtaining a suboptimal policy, which is especially crucial
in discovering effective continuous-deterministic actions. However, high values of µ and σ

lead to more exploration but may cause overfitting, resulting in less deterministic behavior.
Therefore, it is important to maintain balance without compromising training or policy
stability. In some cases, a standard deviation decay rate (ε) is used, allowing controlled
reduction in the amount of noise that is added as agents take progressive steps and helping
to shift from exploration to exploitation.

Furthermore, the TDP3PG agent offers several notable advantages that make it highly
suitable for improving the effectiveness of such control tasks. It is specifically designed to
handle problems with continuous action spaces, such as the regulation of power converters.
This design choice eliminates the need for sampling from a probability distribution, as
the agent can directly output continuous actions. Consequently, the complexity of deci-
sion making is reduced. Additionally, the use of the minimum operation in the Bellman
equation combined with clipped double Q-learning critic networks ensures a more stable
training process by mitigating issues related to overestimated Q-values and training diver-
gence. Moreover, delayed updates of critic networks, in comparison to the actor, result in
decorrelated target Q-values. This contributes to reducing variance and facilitates efficient
training [41].

5. Results and Discussion
Training is performed using the high-performance shared computational cluster

“Katana” with 64 GB of memory using a single CPU core. It takes approximately 22 h
for the training to be completed, with 3000 steps per episode. All training hyperparameter
specifications are provided in Table 3.

As a secondary training criterion, all agents that achieve an average of −500 reward
points or more are saved for further evaluation, resulting in a total of 833 being saved.
Training progress with the episode reward obtained, the average reward, and the Q-value
is depicted in Figure 8. Initially, the agent starts with a low reward (−15,000), but slowly
progresses to higher values as the actor neural network parameters become accustomed to
the objective based on the updated weights. It is observed that after 840 episodes there is a
sharp drop in the episode reward, after which a decline is noted in the training behavior.
This can be an indication of overfitting, as the actor may already have reached its optimum
policy. It may also be an indication that the actor is stuck in a local suboptimal policy that
causes a temporary decrease in reward due to too much or insufficient exploration.
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Table 3. TD3 agent training parameters.

Hyper Parameter Symbol Value

Sample time Ts 100 µs
Mini batch size M 64
Discount factor γ 0.99

Maximum episodes Emax 1000
Actor learning rate αactor 1 × 10−3

Critic learning rate αcritic 1 × 10−3

Target smooth factor τ 1 × 10−3

Policy update frequency ξ 1
L2 regularisation (actor) ρactor 1 × 10−4

L2 regularisation (critic) ρcritic 1 × 10−4

Experience buffer length R 1 × 106

Number of steps to look ahead n 1
Score averaging window length K 15

Standard deviation σ 0.1
Minimum standard deviation σmin 0.025
Standard deviation decay rate σdecay 1 × 10−6
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Figure 8. (a) Cumulative reward obtained and (b) Q-value progression at each successive iteration.

Since the actor–critic agent is deployed in a detailed time-varying environment con-
taining feedback signals with inverter switching noise, observations and action pairs in
the experience buffer length can also cause ambiguity, thus reducing training effectiveness
and reward accumulation. If this pattern continues, the final agent at the end of maximum
episodes may not perform well even if the learning rate is slow with a small regularization
parameter. Since the approach deals with inverter current control at the primary level, to
select the finest possible policy, the agent that attains the highest average reward is chosen
as the best contender for controlling the inverter during faults. Using this criterion, the
agent in episode 364 is adopted, which attains the highest reward of −151 with a Q-value
of −16.70.

Under all test conditions, the DC link reference is 1 p.u. while the reactive power
reference is kept at 0 p.u. It should be noted that the TD3PG agent is trained only for a
single asymmetrical fault between phases B and C across a 0.25 Ω resistor. However, its
effectiveness in mitigating other types of symmetrical and asymmetrical faults through
transfer learning has been verified. Using leverage of the pre-trained model significantly
reduces the training time, especially for various types of grid faults. Training the agent for
only one fault also allows the actor neural network to learn more generalized actions and
leads to better accuracy. In addition, applying transfer learning reduces the need for com-
putational resources, making the approach more efficient. The performance of the positive
sequence voltage-oriented control and the designed twin delayed deep deterministic policy
gradient voltage-oriented control is evaluated under both asymmetric and symmetric grid
faults based on the adaptation to faults and operation restoration time.
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5.1. Asymmetrical Fault: Short Circuit Between Phases B and C

In this test case, a phase-to-phase fault is induced between phases B and C (Figure 9a)
over a fault resistance of 75 mΩ between time 0.20 and 0.25 s on bus 633. In particular, the
trained agent has significantly reduced the post-fault recovery time of the inverter currents
with immediate settling after fault clearance. With PSVOC, the current waveform settles at
around 0.60 s. However, the proposed control approach takes only 0.06 s for the current to
return to nominal values, and the waveform is only distorted for the duration of the fault
without any significant increase in peak values, as shown in Figure 9b,c. This also helps
to maintain the integrity of the grid voltages, as prolonged injection of distorted currents
adds unwanted harmonics and may cause the inverter to isolate from the grid.
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Figure 9. (a) Grid voltages, three-phase current waveform with (b) PSVOC and (c) TD3VOC, (d) DC
link voltage, (e) active power, (f) reactive power, and negative sequence current on (g) direct and
(h) quadrature axis response during asymmetrical short circuit fault between phases B and C.

As seen in Figure 9d, with PSVOC, an overshoot in the DC link voltage is observed
during the fault. As the fault clears, an undershoot is seen as the maximum power point,
and the DC-link PI controller attempts to recover from the disturbance. During the recovery
period, the inverter consistently undergoes over- and undermodulation as a result of a
destabilized DC link reaching a maximum voltage of 1.85 p.u. Following a period of 0.35 s
after the fault has cleared, the nominal operating point is finally reached. However, the
trained agent is far better at stabilizing the DC link voltage and shows immediate post-fault
recovery. Consequent fluctuations in active and reactive powers (Figure 9e,f) are detected
with large overshoots using the conventional controller, and although a slight drop in
injected active power is observed with the TD3PG agent, the nominal operating point is
quickly restored without any overshoot, showing a more robust response despite deviations
during the fault. In addition, the TD3 agent performs well in minimizing negative sequence
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direct and quadrature axis currents during the fault and immediate retention after the
termination of the fault, as presented in Figure 9g,h.

5.2. Asymmetrical Fault: Phases A and B to Ground Fault

To further investigate the performance of the neural-based current controller, a double-
phase-to-ground fault is applied at the PCC voltage for 50 ms (Figure 10a). The fault
and ground resistance are assumed to be 50 mΩ. The three-phase currents experience
oscillations and take about 0.55 s to settle after fault clearance when PI-based VOC is
used. High current peaks are momentarily seen as the inverter attempts to recover from
the fault, as shown in Figure 10b. This effect is completely eliminated with the RL agent.
Although the current increases during the fault period, the inverter is quick to recover
and attains stability without any post-fault transients, as depicted in Figure 10c. The
superior response of the neural network is attributed to its fast input-to-output mapping.
A similar effect is seen in the negative sequence currents on the direct and quadrature
axes (Figure 10g,h). While the inverter is in overmodulation, the current oscillates and
has several overshoots and undershoots during recovery with the conventional control
approach. This problem is completely eliminated with the trained actor–critic neural
networks ensuring a robust response.

���� ���� ���� ���� ���� �����	
�������������������������	��������������

������� !���"#$�%& '()(*+,-./0123

4567"���8"�917:1�&;%<�;71=>?@���0���7A7:3571(##B#B��(C?A7�D71E6>1�'()(*�'()(*+,-./0123 ���

���� ���� ���� ���� ���� �����	
����������������������������������������������������������� ! "#$#%&'())*+,-& ./0'1-23

456*����'��7-*)-�!8 9�8*-:,;<���1���*+*)35*-#==>=>��#?;+*�@*-(6,-�"#$#%�"#$#%&'())*+,-& ./0'1-23 ���

���� ���� ���� ���� ���� �����	
����������������������������������������������������������� ! "#$#%&'())*+,-&./012'3-45

678*����'��9-*)-�!/ :�/*-;,<=���3���*+*)57*-#00>0>��#?<+*�@*-(8,-�"#$#%�"#$#%&'())*+,-&./012'3-45 ���

���� ���� ���� ���� ���� �����	
�������������������������	������� ������������� �� �!"���#$%�&' ()*)+,-./0123

4567#   8# 917:1 ';&< ;71=>?@ ��0�� 7A7:3571)$$B$B��).?A7 C71D6>1 ()*)+ ()*)+,-./0123 � �

���� ���� ���� ���� ���� �����	
���������������������������	������������� ������� ���!"#"!#"$%�!!&"'�() *+,+-.(/012

3456&###7&#80690#):(;#:60<=>?#!"/"!#6@692460+AABAB!"+C>@6#D60E5=0#*+,+-#*+,+-.(/012 !#!

���� ���� ���� ���� ���� �����	
����������������������������	������������� �� !"�#� !"$%&%$&%'(�$$)%*�+, -./.0123456

789:)&&&;)&<4:=4&,>+?&>:4@ABC&$%3%$&:D:=68:4.EEFEF$%.GBD:&H:4I9A4&-./.0&-./.0123456 $&$

���� ���� ���� ���� ���� �����	
�����������������������	 �� ����� ������������������� ���!�"�#$ %&'&()*+&,-./

0123!���4!�5-36-�$7#*�73-89:;���,���3<36/13-&==>=>��&+:<3�?3-@29-�%&'&(�%&'&()*+&,-./ ���

���� ���� ���� ���� ���� �����	
�����������������������	 �� ����� ������������������� ���!�"�#$ %&'&()*+&,-./

0123!���4!�5-36-�$7#*�73-89:;���,���3<36/13-&==>=>��&?:<3�@3-A29-�%&'&(�%&'&()*+&,-./ ���

Figure 10. (a) Grid voltages, three-phase current waveform with (b) PSVOC and (c) TD3VOC, (d) DC
link voltage, (e) active power, (f) reactive power, and negative sequence current on (g) direct and
(h) quadrature axis response during phases A and B to ground fault.

During this period, a drastic response is observed for the DC link voltage compared
with the previous case, reaching a peak of 2.25 p.u. It undergoes transients and settles
at 0.80 s, as seen in Figure 10d when the inverter is controlled using PSVOC. With the
TD3VOC, during the fault period, the voltage experiences slight oscillations but does not
diverge from the reference value. When using cascaded PI controllers, inverter stability
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depends on the accurate functioning of each loop. As such, a disturbance may cause the
entire system to respond in an unpredictable manner, even if the controllers are properly
tuned. This scenario is also seen in the active and reactive power response in Figure 10e,f,
where the active and reactive powers diverge considerably due to the unstable DC link.
Nevertheless, with the TD3 agent, immediate recovery is observed, as nominal operating
points are restored without transients.

5.3. Symmetrical Fault: Phases A, B, and C Short Circuit Fault

A severe symmetric three-phase fault is applied between phases A, B, and C on bus
633 across a fault resistance of 35 mΩ (Figure 11a). The conventional PSVOC approach
does not restore the inverter current waveform shown in Figure 11b due to the reaching of
controller saturation limits. As a result, high oscillations and distortions in the currents are
observed, even though they remain in phase with the grid voltage. Prolonged injection of
highly distorted currents would eventually trigger protection devices, causing the inverter
to disconnect from the grid, disrupting power transfer. In contrast, the RL agent can restore
the inverter currents within 0.05 s after the fault is cleared, as shown in Figure 11c. The
voltage diverges and reaches more than 2.5 times the nominal operating range, which will
eventually activate the circuit tripping mechanisms. In contrast, the difference is significant
when TD3VOC is used instead, leading to a much smoother response of the DC link voltage
without much divergence (Figure 11d).
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Figure 11. (a) Grid voltages, three-phase current waveform with (b) PSVOC and (c) TD3VOC, (d) DC
link voltage, (e) active power, (f) reactive power, and negative sequence current on (g) direct and
(h) quadrature axis response to a symmetrical short-circuit fault between phases A, B, and C.

Likewise, active power experiences disruptions during a fault, and a large overshoot
occurs as the inverter tries to restore power post-fault. This recovery time is reduced with
the proposed TD3PG current controller, as shown in Figure 11e,f. Although the active
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power is restored to nominal values, it is at the cost of a lower DC link voltage and an
overmodulating inverter. Due to not recovering from saturation and continuous operation
with a lower DC link voltage, the negative sequence currents suffer from high oscillations
after fault clearance when the inverter is controlled with PSVOC. However, the TD3VOC
scheme performs quite well in restoring and reducing negative sequence currents even
after severe disturbances (Figure 11g,h). It should be noted that although the agent was
not specifically trained for symmetrical faults, it still demonstrates a good response to such
severe disturbances, thus proving its adaptability through transfer learning.

5.4. Error Analysis

To accurately assess the performance of the proposed fault-tolerant agent-based control
method, calculating the integral-time absolute error (ITAE) is crucial. The ITAE metric
multiplies the absolute error by time, thereby giving greater importance to errors that occur
later in the system compared to those at the start. Minimizing ITAE is important to achieve
optimal performance during faults in inverter control applications. The error data for the
d and q axes currents obtained from the evaluation models have been analyzed under
the three types of faults, and the results are shown in Figure 12. With the conventional
controller, ITAE on the d and q axes increases significantly as faults become more severe.
During the phase-to-phase asymmetric fault between phases B and C, a maximum of 0.20
and 0.15 is reached for the d and q axes, respectively. However, this increases to 0.32 and
0.60 after a symmetric fault is induced in the system. With the proposed TD3PG current
controller, it is observed that during all test cases, the error remains below 0.10 and 0.03
for the d and q axes, respectively. This metric authenticates the viability of the formulated
agent in providing a reasonably better inverter response compared with the standard
control approach.

Figure 12. Integral-time error visualization for d and q axes currents using (a,c,e) PSVOC and (b,d,f)
TD3VOC for (a,b) asymmetric fault between phases B and C, (c,d) asymmetric phases A and B to
ground fault, and (e,f) symmetric short-circuit fault between phases A, B and C.

5.5. Summary

In summary, the key results obtained in this research for the existing voltage-oriented
control scheme and the redesigned TD3PG voltage-oriented control architecture are stated
in Tables 4 and 5. Key performance indicators were selected as the peak DC link voltage
magnitude during the fault period with a nominal value of 1 p.u., the post-fault recovery
time after fault clearance (PFRT), and ITAE on the d and q axes. In every scenario, the
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suggested TD3VOC exhibits a robust fault-ride-through capability in all evaluations by the
use of transfer learning. It exhibits minimized DC link voltage peaks during faults and
reduced post-fault system recovery time. A significant attribute that has directly affected
the performance of the TD3PG agent is its structural design. Bellman’s minimum equation
paired with clipped double Q-learning mitigates the overestimation bias found in other
continuous-time agents. The algorithm’s lower sensitivity to hyperparameter selection
is due to postponed policy updates and target smoothing. These sophisticated features,
along with its adaptability to unpredictable inverter operating conditions, make TD3PG an
exceptionally effective option to improve the control of grid-feeding photovoltaic systems
during grid disruptions. In addition, the per-unit system is beneficial in minimizing the
alterations needed to apply this method to larger power systems. It ensures that the neural
network generates modulation voltages in a consistent manner, regardless of the differing
power ratings in various systems.

Table 4. Performance of conventional positive-sequence voltage-oriented control.

Type of Fault Voltage (p.u.) PFRT (s) ITAE (d-axis) ITAE (q-axis)

Phase-to-phase (B to C) 1.85 0.35 0.20 0.15
Phase-to-ground (A, B to G) 2.25 0.55 0.50 0.28

Phases A, B and C short circuit >2.50 >0.80 0.60 0.32

Table 5. Performance of proposed twin delayed deep deterministic voltage-oriented control.

Type of Fault Voltage (p.u.) PFRT (s) ITAE (d-axis) ITAE (q-axis)

Phase-to-phase (B to C) 1.05 0.01 0.03 0.09
Phase-to-ground (A, B to G) 1.05 0.01 0.03 0.09

Phases A, B and C short circuit 1.25 0.02 0.03 0.09

6. Limitations and Future Works
Despite the impressive fault-resistant capabilities of the TD3VOC, it should be noted

that achieving the optimal policy for effective real-time inverter control still requires approx-
imately 20–25 h of episodic iteration. The duration of training is predominantly influenced
by the processor power, the number of CPU cores, and the available memory. In addition,
the environment plays a significant role in determining the required computational power.
In this study, we developed a highly detailed grid-interfaced photovoltaic inverter envi-
ronment in MATLAB/Simulink® with which the RL agent interacted. An average model
could also be used to train the agent; however, it is uncertain whether the same agent
would perform well when faced with a more elaborate model that includes switching noise
and variability in feedback signals.

The results presented in this article are obtained using the twin delayed deep-
deterministic policy gradient agent; however, there is the possibility of exploring other
continuous-time agents such as soft actor–critic, trust region policy optimization, model-
based policy optimization, etc. A comparative study can be conducted to determine the
best candidate for developing data-driven controllers based on training time, number
of hyperparameter selections, and adaptation of various grid conditions. It will also be
interesting to compare the formulated fault ride-through approach with other established
methods such as sliding mode and model reference adaptive controllers.

The proposed agent-based current controller can be trained and implemented for
various other grid-feeding inverter control applications in weak microgrids that require
a robust fault ride-through mechanism, such as wind energy conversion systems, grid-
forming battery energy storage systems, fuel cell systems, and other inverter control
schemes featuring an inner current loop. This direct design method can also be applied
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to develop robust data-driven controllers for electrical machines that are controlled using
cascaded field-oriented control or the direct torque control scheme to provide better torque
handling capabilities, smoother acceleration, and increased energy efficiency.

In addition, the experimental validation of such advanced control techniques is still a
subject of particular interest to numerous researchers today. Implementing RL agents for
optimal regulation of the inverter during dynamic grid conditions will require an embedded
system that involves a combination of advanced hardware and software features. It will
be necessary to utilize high-performance microcontroller units (MCUs), digital signal
processors (DSPs), or systems on chips (SoCs) capable of handling both RL algorithms and
real-time inverter control with appropriate communication interfaces. It is suggested to
use the Xilinx field-programmable gate array board, OPAL-RT technology, or DSPACE
Microlabbox due to compatibility with MATLAB/Simulink®, customized software options,
and expandable hardware. There is immense potential for RL-based current controllers to
enhance the performance and reliability of inverter systems in various domains, particularly
in the context of developing modern and intelligent energy systems.

7. Conclusions
In this paper, a robust data-driven grid fault ride-through approach is proposed

for photovoltaic inverters. A twin delayed deep-deterministic policy gradient agent is
embedded in the conventional voltage-oriented control scheme as an upgrade to the PI
controllers of the d and q axes and cross-coupling terms. Classical current controllers are
designed assuming a balanced and stable grid, which is not always the case due to the
presence of unpredictable fault conditions, and also suffer from dependence on controller
gains and predefined saturation limits. To address these issues, the reinforcement learning
workflow is adopted to train actor–critic deep neural networks to improve the inverter
current response under various grid conditions. A dual stage inverter environment with
a suitable reward function was set up to guide the training process. Initially, the agent is
trained for a single asymmetric fault between phases B and C. However, it is possible to
use the same agent to improve inverter stability across a wide spectrum of grid faults via
transfer learning. When using the PSVOC method, the DC link overshoots to 1.85 p.u. and
2.25 p.u. while a current post-fault restoration time of 0.35 s and 0.55 s for phase-to-phase
and phase-to-ground faults, respectively. With the developed TD3VOC technique, voltage
overshoot is limited to 1.05 p.u. with a current recovery time of 0.01 after fault clearance in
both cases. For a severe symmetric fault, the conventional control approach cannot restore
inverter operation with a voltage overshoot of more than 2.50 p.u. with integral-time
absolute errors of 0.60 and 0.32 on the d and q axes, respectively. The proposed agent-
based control method limits the voltage overshoot to 1.25 p.u. and achieves a cumulative
error of 0.03 and 0.09 on the d and q axes, respectively. The proposed control approach is
implemented using per-unit measurements to allow for scalability and can be extended to
grid-connected wind turbine generators, grid-forming inverters, and other inverter-based
resources that require robust fault ride through operation.
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List of Acronyms
MG Microgrid
IBR Inverter Based Resources
INC Incremental Conductance
FRT Fault-Ride Through
MDP Markov Decision Process
PFRT Post-fault Recovery Time
TD3PG Twin Delay Deep Deterministic Policy Gradient
PSVOC Positive Sequence Voltage-Oriented Control
TD3VOC Twin Delay Deep Deterministic Voltage-Oriented Control
PV Photovoltaic
DER Distributed Energy Resource
QSG Quadrature Signal Generator
PCC Point of Common Coupling
DRL Deep Reinforcement Learning
ITAE Integral-time Absolute Error
DDPG Deep Deterministic Policy Gradient
DSOGI Double Second Order Generalized Integrator
THIPWM Third Harmonic Injection Pulse Width Modulation
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