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Abstract: Efficient path planning is vital for multi-UAV inspection missions, yet the com-
parative effectiveness of different optimization strategies has not received much attention.
This paper introduces the first application of the Genetic Algorithm (GA) and Hill Climb-
ing (HC) to multi-UAV inspection of indoor pipelines, providing a unique comparative
analysis. GA exemplifies the global search strategy, while HC illustrates an enhanced
stochastic local search. This comparison is impactful as it highlights the trade-offs between
exploration and exploitation—two key challenges in multi-UAV path optimization. It also
addresses practical concerns such as workload balancing and energy efficiency, which are
crucial for the successful implementation of UAV missions. To tackle common challenges
in multi-UAV operations, we have developed a novel repair mechanism. This mechanism
utilizes problem-specific repair heuristics to ensure feasible and valid solutions by resolving
redundant or missed inspection points. Additionally, we have introduced a penalty-based
approach in HC to balance UAV workloads. Using the Crazyswarm simulation platform,
we evaluated GA and HC across key performance metrics: energy consumption, travel dis-
tance, running time, and maximum tour length. The results demonstrate that GA achieves
a 22% reduction in travel distance and a 23% reduction in energy consumption compared
to HC, which often converges to suboptimal solutions. Additionally, GA outperforms
HC, Greedy, and Random strategies, delivering at least a 13% improvement in workload
balancing and other metrics. These findings establish a novel and impactful benchmark for
comparing global and local optimization strategies in multi-UAV tasks, offering researchers
and practitioners critical insights for selecting efficient and sustainable approaches to UAV
operations in complex inspection environments.

Keywords: autonomous; multi-UAV; path planning; inspection; genetic algorithm

1. Introduction
Multi-UAV systems have attracted considerable interest in recent years because they

can be used adaptably in different fields, such as environmental monitoring, disaster
management, and multi-UAV inspection missions [1,2].

The inspection robot market is projected to experience a significant growth rate of
30.9% due to the growing emphasis on worker safety and the implementation of smart
construction, which involves using autonomous systems and vehicles on construction
sites [3]. UAV inspections, in particular, have been growing tremendously since 2010 [4],
representing 45% of the total market value for UAVs [5].
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Inspection tasks of UAVs can vary, such as inspection of bridges, powerlines, pipelines,
and vessels [4,6,7]. One of the critical inspection applications is pipeline inspection mis-
sions [6]—particularly the inspection of pipelines and sprinkler systems in indoor infrastruc-
tures. Many countries around the world have regulations that require properties to install
fire detection and sprinkler system pipelines, as indicated by the National Fire Protection
Association (NFPA) in the US, the UK, and European standards like BS EN 12845 [8,9].

Efficient path planning is among the most challenging and core parts of multi-UAV
missions, performing all kinds of tasks [10]. Optimal path planning is crucial to the success
of multi-UAV inspection missions [3], which not only provides better coverage but also
saves overall travel distance and, thus, energy. Drones may overlap their paths or miss
critical inspection points, and they could run out of power before the end of a mission
unless advanced navigation strategies are used. Moreover, optimal path planning and
obstacle avoidance ensure no UAV collides with the others while operating together, adding
safety to the mission.

Recent studies focus on finding the best methods to utilize UAVs’ existing energy
resources. For this reason, pipeline inspection missions involving multiple UAVs should
prioritize reducing their energy consumption [11].

In our previous work, we introduced a dataset designed to support research in UAV-
based pipeline inspection missions. The dataset contains 1300 samples of corrosion defects
in pipelines categorized by two different maps [12]. Each instance corresponds to a different
level of defect severity. The dataset provided the necessary data to design and evaluate
algorithms that improve the performance of multi-UAV inspection missions.

In this study, we utilize this dataset to evaluate the performance of a Genetic Algorithm
(GA) implemented within the CrazySwarm platform for multi-UAV path planning in
pipeline inspection missions. To our knowledge, this is the first application of GA for
optimizing path planning in multi-UAV pipeline inspection missions, providing novel
insights into its performance compared to benchmarks.

The primary contributions of this study can be described as follows:

• Adapt Genetic Algorithm (GA) and Hill Climbing (HC) for a multi-UAV inspec-
tion mission:
This includes developing a novel, problem-specific repair mechanism to ensure that
crossover and mutation operations produce valid chromosomes and avoiding issues
like duplicate or missing inspection locations, which are critical in real-world UAV
inspections to ensure all areas are covered efficiently.

• Introduce a penalty computation to the HC algorithm:
This aims to maintain balanced solutions regarding UAV tour lengths, which is impor-
tant for distributing workloads evenly across UAVs, preventing overburdening of any
UAV, and ensuring longer operational lifetimes.

• Compare the performance of GA and HC using different performance measures:
This comparison is crucial for understanding the strengths and weaknesses of each
algorithm in various scenarios, helping researchers and practitioners choose the best
method based on specific requirements like efficiency or robustness.

• Analyze energy consumption through simulation results:
Given the growing importance of energy efficiency in UAV operations, this objective
contributes to a deeper understanding of how different algorithms impact energy
usage, with implications for sustainable and efficient UAV deployments.

The rest of this paper is organized as follows: Section 2 presents the related work;
Section 3 presents the problem formulation, assumptions, and implementation details
for GA and HC; and the environment used to simulate the parameters is defined in the
Experiment section. In the Results and Discussion section, we provide the results and
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compare GA with HC algorithms against other benchmarks in terms of traveled distance,
max tour length, running time, and energy consumption. Finally, the Conclusion section
summarizes this study’s findings and suggests further research.

2. Related Work
A review of the related literature reveals various applications of Genetic Algorithms

(GA) in optimizing complex problems, including multi-UAV path planning. GA are
evolutionary algorithms based on the process of natural selection, and they can be used to
solve complex optimization problems. They work with a cycle of selection, crossover, and
mutation to get closer and closer in an iterative manner toward the population whole of
candidate solutions. GAs keep the population diverse, and by mixing parts of the strongest
individuals, they can traverse a vast search space to avoid solutions falling into local optima.
The traversing makes them well suited to jobs like multi-UAV path planning, where the
best route optimized for minimal travel distance and energy usage is crucial. GA generates
high-quality solutions for search and optimization problems [13]. GA path planning can
greatly aid UAVs. First, GA efficiently explores large solution spaces, making them ideal for
complex problems with many answers. They also have the flexibility to incorporate various
mission objectives and unanticipated conditions. GA’s constant solution improvement
provides robustness under challenging situations [14].

Several studies have applied GA to different inspection and maintenance tasks. For
instance, Zheng et al. [15] used GA to automatically inspect metallic surfaces using images.
Their work presents an experimental system for inspecting metallic surfaces with machine
vision and proposes an intelligent approach using morphology and GA to detect structural
defects on bumpy surfaces.

Haladuick et al. [16] applied GA to the inspection and maintenance planning field.
The GA effectively determined the best inspection and maintenance plan for a pressure
vessel system by evaluating the plans using the failure-to-repair cost ratio. Similarly, Moura
et al. [17] applied GA to find the best inspection plan considering the inspection’s cost and
the probability of failure. They tested their approach on oil and gas separator vessels.

Dedeurwaerder et al. [18] employed a GA to address the issue of navigating indepen-
dent climbing robots for inspecting steel truss bridges. The robots, dispatched from four
depots at the four corners of the bridge, must traverse each component of the bridge truss
while limiting the distance traveled and ensuring an equitable distribution of tasks among
the robots.

In 2019, Cao et al. [19] introduced a GA-based approach for multi-UAV path planning
in cooperative reconnaissance missions. The topic was analyzed in the scenario where
each UAV has a distinct base or starting point. Graph theory was employed to convert
this problem into a combinatorial optimization problem focused on finding the shortest
path. The goal was to shorten the duration of occupancy in order to detect adversary
radars effectively. However, they neglected to assess their approach compared to the
proposed algorithm.

Hill Climbing (HC) is chosen as a comparison algorithm to GA because it represents
a contrasting approach to optimization. HC’s simplicity and efficiency in finding local
optima through incremental improvements make it a suitable baseline against the more
complex global search strategy of GA [20]. This comparison highlights the trade-offs
between an enhanced stochastic local search (HC) and a stochastic global search (GA),
providing insights into their performance in multi-UAV path planning. Evaluating both
methods reveals the strengths and weaknesses of locally focused versus globally oriented
optimization strategies, illustrating their practical relevance in real-world scenarios. Recent
research also highlights the potential of hybrid optimization approaches that combine the
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strengths of multiple algorithms. For example, a hybrid optimization approach combining
Particle Swarm Optimization (PSO) and GA for multi-UAV path planning was developed
by Haghighi et al. [21]. Their method, HPSOGA, capitalizes on the strengths of PSO for
escaping local minima and GA for solution refinement, improving both computational
efficiency and solution quality. HPSOGA demonstrates superior performance in reducing
computational time and enhancing path quality, especially in complex multi-agent sce-
narios. Similarly, Ali et al. [22] developed a hybrid metaheuristic algorithm combining
Maximum–Minimum Ant Colony Optimization (MMACO) and Differential Evolution
(DE) to optimize the selection of the most suitable colony for targeting designated areas
in dynamic environments. By dividing the ant colony into sub-colonies for localized opti-
mization and employing DE for global refinement, the MMACO-DE algorithm successfully
addressed collision avoidance and coordination challenges in complex terrains. Wang
et al. [23] further proposed an improved Genetic Algorithm integrated with Simulated An-
nealing (GAISA) to solve multi-UAV task allocation problems modeled as MTSPs. GAISA
combines the fast convergence of GA with SA’s ability to avoid local optima, achieving
superior task allocation results in simulations.

While hybrid methods like HPSOGA exhibit great potential, the focus of this study is
on exploring the standalone capabilities of GA to establish a baseline for its application
in multi-UAV path planning. Unlike hybrid approaches such as HPSOGA, MMACO-DE,
and GAISA, our study uniquely focuses on the original GA approach to establish a robust
baseline for optimizing multi-UAV inspection tasks, particularly in pipeline networks, an
area yet to be explored. A detailed comparison of the proposed work with existing studies
is presented in Table 1, which highlights the methodologies, objectives, problem domains,
and key results of each study for better understanding.

Table 1. Comparison of existing studies in the literature, highlighting the methodologies, objectives,
problem domains, and key results.

Study Methodology Objective Problem Domain Key Results

Zheng et al. [15] Genetic Algorithm (GA) Inspect metallic surfaces
using machine vision

Surface inspection
tasks

Proposed an intelligent approach
using GA for detecting structural

defects on bumpy surfaces.

Haladuick et al. [16] Genetic Algorithm (GA) Plan inspections and
maintenance

Pressure vessel
inspection and
maintenance

Determined optimal inspection
and maintenance plans based on

failure-to-repair cost ratio.

Moura et al. [17] Genetic Algorithm (GA) Optimize inspection plans Oil and gas
separator vessels

Developed cost-effective
inspection plans considering

probability of failure.

Dedeurwaerder
et al. [18] Genetic Algorithm (GA) Navigate robots for

bridge inspection
Steel truss bridge

inspection

Optimized task allocation to
minimize travel distance and

ensure equitable task distribution.

Cao et al. [19] Genetic Algorithm (GA) Plan paths for cooperative
UAV reconnaissance

Multi-UAV
reconnaissance

missions

Employed graph theory to
optimize routes, reducing duration
of occupancy for radar detection.

Haghighi et al. [21] HPSOGA (Hybrid
PSO-GA)

Enhance path quality and
reduce computation time

Multi-UAV
path planning

Demonstrated superior
computational efficiency and

solution quality in
multi-agent scenarios.

Ali et al. [22] MMACO-DE (Hybrid
Metaheuristic)

Optimize colony
path selection

Multi-UAV path
planning in dynamic

environments

Achieved robust collision
avoidance and reduced travel
distances in complex terrains.

Wang et al. [23]
GAISA (Genetic

Algorithm + Simulated
Annealing)

Task allocation for
multi-UAVs

Multi-UAV MTSP
problem

Outperformed standalone GA and
SA, achieving better task allocation

and avoidance of local optima.

According to recent reviews on UAVs and path planning, such as the one by Saadi
et al. [24] and Israr et al. [25], GA has not been applied to multi-UAV path planning without
hybridization with other algorithms, and HC has never been applied to a problem like ours.
Unlike previous works that primarily focus on hybrid GA models or different applications



Energies 2025, 18, 50 5 of 22

of GA, our work uniquely applies the original GA to optimize path planning in complex
multi-UAV inspection tasks, particularly in pipeline networks, a domain that has not yet
been explored.

3. Method
This study addresses the same multi-UAV path planning inspection mission problem

described in our previous work [26]. The objective is to optimize the inspection paths for
multiple UAVs to minimize the total travel distance while ensuring complete coverage of
the inspection area.

3.1. Path Planning Model

Before tackling the problem of multi-UAV path planning for an inspection mission, it
is necessary to establish some fundamental assumptions:

1. UAVs travel in straight lines.
2. Altitude layering [27]: Pipes and other unmanned aerial vehicles (UAVs) can collide.

Therefore, UAVs must operate at altitudes either above or below the level of pipes.
UAVs employ altitude layering upon takeoff. Subsequently, the z dimension remains
unchanged following the takeoff of the UAV. It is important to note that takeoff and
landing times are negligible.

3. The dimensions of the cell are either smaller or equal to the detection range of the UAV.
4. UAVs can identify defects within a specific range of the pipe.
5. The battery swapping time is disregarded [5].
6. To prevent collisions, the number of operational UAVs must be limited to one per

location [28].
7. Due to the nature of this indoor inspection mission, UAVs are not affected by

weather conditions.

The variables of the proposed model are as follows:

U—total number of UAVs;
u—index of a UAV;
Di,j—distance traveled by UAV between the ith waypoint and jth waypoint;
Nu,w—number of waypoints in a viable route for UAV u;
Pathu—viable path for a UAV u;
CostPathu —total distance traveled associated with Pathu;
δm—starting energy of every UAV;
δu—UAV’s energy at a given time;
ri,j—energy consumption between the ith waypoint and jth waypoint;
∑j ru,j—total energy consumption of the uth UAV;
µ¯coefficient to denote energy consumption.

In this model, the solution Pathu is represented as a sequence of three-dimensional
waypoints [29].

Equation (1) defines Pathu:

Pathu =
(
wu,1, wu,2, . . . , wu,Nu,w

)
(1)

Each waypoint (wu,i) of Pathu represent the i-th waypoint of UAV u path.
We state our problem as a variant of the singly constrained traveling salesman problem

(TSP) [30], where there might be more than one salesmen in which case it becomes NP-hard.
Moreover, the energy constraint was added to the path selection decision. The UAV u
cannot choose a path that exceeds its energy limit, δu.
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Our objective (FObjective) focuses on improving the quality of trajectory planning by
reducing total UAV flight distance.

Equation (2) describes the above model.

FObjective =


min

((
∑U

i=1 CostPathi

))
s.t.


∑j r1,j < δ1

. . .
∑j rU,j < δU

(2)

Assuming the velocity is 1 m/s, we computed the energy consumption r as follows [30–32]:

ri,j = µ ∗ Di,j (3)

The following Equation (4) explains this relationship mathematically as the summation
of distances covered by trajectory to Pathu. As a result, the equation finds the cost associated
with each trajectory.

CostPathu = ∑Nu,w−1
j=1 DWu,j ,Wu,j+1 (4)

To solve this multi-UAV path planning optimization problem efficiently, it is essential
to select algorithms capable of addressing its multi-objective and multi-agent nature, which
involves minimizing energy consumption and balancing UAV workloads across dynamic
environments. While A* is widely used for single-agent shortest-path problems, its reliance
on heuristics for a single goal state makes it unsuitable for multi-objective optimization
tasks, such as those in multi-UAV path planning or TSP problems. A review of the literature
and initial implementation attempts revealed no admissible heuristic capable of addressing
multiple goals simultaneously. This limitation has likely contributed to A* not being widely
used as a benchmark for TSP or multi-UAV path planning problems.

Similarly, Particle Swarm Optimization (PSO) is less effective for discrete problems like
TSP due to its reliance on a velocity update mechanism designed for continuous solution
spaces [33,34]. While adaptations like discrete PSO have been proposed, studies, including
Clerc’s influential work [34], have shown it to be less efficient compared to other algorithms.
Recent benchmarks confirm that PSO performs poorly on TSP tasks, delivering less effective
results than other metaheuristics [35]. These limitations further justify our focus on GA and
HC, which are better suited for the discrete and multi-objective nature of the multi-UAV
path planning problem.

In contrast, GA and HC offer robust alternatives for addressing the objectives of this
study. GA excels in global exploration and maintaining solution diversity, avoiding local
optima, and handling complex, non-linear search spaces. HC complements GA with its
computational efficiency and ability to refine local solutions. Together, these algorithms are
well-suited for the dynamic and multi-objective nature of multi-UAV inspection missions,
where balancing workloads and minimizing energy consumption are critical.

3.2. Genetic Algorithm

We adopted the grouping-based GA chromosome representation [36], reviewed in [37],
and detailed in Table 2, which outlines the algorithmic process:

• Initial population

- Generate an initial population of random chromosomes.
- Calculate the fitness of each chromosome in the population.
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Table 2. Steps of Genetic Algorithm (GA).

Step Description

1 - Initialize Population
- Generate an initial population of random chromosomes.
- Calculate the fitness of each chromosome in the population.

2 Repeat Until Termination Criteria Are Met
a. Selection: Select two parent chromosomes.
b. Crossover:

- Choose two random crossover points.
- Perform crossover to generate offspring chromosomes.
- Apply problem-specific repair heuristics to ensure validity.
- Add repaired offspring to the population.

c. Mutation:
- Randomly select one UAV tour from a chromosome.
- Swap two distinct locations within the selected tour.

d. Replacement:
- Combine parents and offspring into an expanded population.
- Sort the population by fitness values.
- Keep the best chromosomes to return the population to its original size.

3 - Stop the algorithm if the fitness stagnates for 30 generations or a maximum of
1000 generations is reached.

4 - Return the best chromosome as the solution.

• Selection

The GA employs a rank-based roulette-wheel selection strategy. This strategy gives
a higher probability to chromosomes with lower fitness, making them more likely to be
chosen as parents for the crossover step.

• Crossover

Two crossover points are chosen at random after selecting two different chromosomes
as parents. This operation generates offspring chromosomes, which may not always be
valid for the multi-UAV inspection mission. Specifically, the crossover operation can
produce infeasible chromosomes, which violate the problem’s essential constraints.

To address this, we developed a problem-specific repair heuristic to ensure the validity
and feasibility of the resulting chromosomes after the crossover operation. This repair
process is critical to maintaining the integrity of the solution, as it corrects common viola-
tions that arise in the multi-agent UAV inspection context. A chromosome is considered
infeasible if it exhibits one or both of the following violations:

- Location Duplication: A location is inspected by more than one UAV, leading
to redundancy.

- Location Omission: A location is not assigned to any UAV, resulting in incomplete coverage.

Our repair mechanism is designed to handle these cases efficiently:

- Location Duplication Handling: The repair mechanism scans all UAV tours, starting
with the first UAV, and maintains a record of all inspected locations. If a location
appears more than once across different tours, it is deleted from the duplicate tour(s),
ensuring that only one UAV inspects each location.

- Location Omission Handling: Once duplicates are removed, the mechanism checks
for missing locations that have not been assigned to any UAV. The nearest UAV (based
on the most recent inspected location) is identified for each missing location, and the
missing location is added to its tour, ensuring complete coverage of the inspection area.
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This repair process ensures that the crossover operation results in manageable solu-
tions, which is crucial in adapting the Genetic Algorithm to multi-UAV path planning.
After applying the repair heuristics, we may find that some tours must be in order. To
address this, we shuffle the affected tours randomly to restore a valid order, ensuring that
the algorithm continues to explore diverse solutions.

By employing this novel repair mechanism, our approach effectively prevents the
generation of infeasible solutions, maintaining both the completeness and correctness of
the UAV tours. This contribution is particularly significant in the multi-UAV context, where
each location must be inspected precisely once, and violations in the chromosome structure
could otherwise compromise the quality of the solution.

Finally, the population includes both parents and offspring produced by the crossover.
We implemented an efficient hashing-based data structure to sort the population using
fitness values as keys, facilitating efficient selection and replacement processes.

• Mutation

In the mutation of the chromosome, one of the chromosome’s UAVs is chosen at
random and selected to swap two distinct locations in the UAV’s tour.

• Replacement

Our approach will expand the population after the crossover and mutation because
we will keep both the parents and offspring. However, the population must be minimized
to the original population size before evaluating the termination criteria. In other words,
the chromosomes with the lowest fitness values in the original population will be replaced
with those with higher fitness values.

• Termination criterion

Since the original paper [36] used a time constraint as the stopping criteria, we used
either one of two stopping criteria as the paper [38]. The number of generations is 1000 as
in [39–41], and we terminate the execution once the fitness does not improve for more than
30 generations.

The parameters for the GA were carefully chosen based on insights from the existing
literature (see Table 3). The number of generations was set to 1000, following recommenda-
tions in [36], which demonstrated its effectiveness in achieving high-quality solutions for
similar optimization problems. The population size was also guided by [36], ensuring suffi-
cient diversity to explore the solution space effectively while maintaining computational
efficiency. The crossover and mutation rates were set to 0.9 and 0.03, respectively, based on
the findings of [42], which emphasize their importance in preserving genetic diversity and
avoiding local optima.

Table 3. Genetic Algorithm parameters.

Population size 100

Crossover rate 90%

Mutation rate 3%

Generations number 1000

3.3. Hill Climbing Algorithm

The Hill Climbing (HC) algorithm begins with an initial solution and iteratively moves
to a neighboring solution whenever an improvement in fitness is observed [20]. This step
is crucial in the algorithm’s progression.

The solution representation was based on the single-chromosome GA representation
described in [36], using a permutation-based approach. Our algorithm is shown in Table 4.
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We generate new solutions from neighbors by permuting two places in a UAV tour, inter-
change locations between two different UAV tours, and directing a place from one tour
to another.

Table 4. Steps of Hill Climbing algorithm.

Step Description

1 Set parameters(Maximum iterations, initial penalty factor, and penalty
reduction rate)

2 Generate an initial solution (balanced tour lengths between UAVs)

3 Set the initial solution as the current

4 Loop until Maximum iteration is reached

5 - Calculate the fitness of the solution

6 - Generate new solutions from the neighbors of the current solution

7 - Set the current solution as the new one if it has a better fitness value

8 - Reduce the penalty factor over time

9 Return the solution

We introduce stochastic elements into the search process using different methods to
generate neighbors. This randomness, which includes the random selection of locations
to swap or move, enables HC to investigate a broader range of solutions. Additionally, it
generates neighbors through multiple methods, increasing variability and the potential to
discover optimal solutions by avoiding deterministic pitfalls.

However, moving locations between tours can alter the balance between different UAV
tours, particularly in terms of tour lengths. To address this, the fitness function incorporates
a penalty mechanism to account for the difference between the maximum and minimum
tour lengths, promoting more balanced solutions.

The steps of penalty calculations are shown in Figure 1. The overall fitness score
combines travel distance and workload imbalance, where the following apply:

• Higher scores represent more efficient travel routes and better workload distribution.
• Lower scores indicate less efficient or poorly balanced solutions.

The penalty mechanism consists of the following components:

• Initial Penalty Factor: Starts at a high value to penalize imbalances in early itera-
tions strongly.

• Minimum Penalty Factor: Defines the minimum value of the penalty factor so that it
does not decay away.

• Penalty Reduction Rate: Defines the minimum value of the penalty factor so that it
does not decay away.

The imbalance penalty is calculated as follows:

Imbalance Penalty = [max (tour length)− min (tour length)] ∗ penalty f actor (5)

In order to redirect the algorithm’s focus from workload balancing to optimizing total
travel distance in subsequent iterations, the penalty factor is progressively reduced over
time using the following equation:

Penalty f actort+1 = max(Minumum Penalty f actor, Penalty f actort × Penalty Reduction Rate) (6)

The overall fitness function used in the fitness method combines both the total distance
and the imbalance penalty.
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This approach ensures that the penalty remains significant during the early iterations,
gradually diminishing as the algorithm progresses. By doing so, it balances the trade-off
between exploration and exploitation—in other words, between emphasizing workload
balancing (exploration) and refining efficient routes (exploitation).

Table 5 illustrates how the penalty factor dynamically reduces workload imbalance
over iterations, improving the distribution of locations (tour lengths) among UAVs. Initially,
with a high penalty factor of 20.00, the workload imbalance is significant at 40.00. As
iterations progress, the penalty factor gradually decreases, leading to a more balanced
distribution of locations. By iteration 5, the workload imbalance drops to 32.58, and by
iteration 15, the imbalance further improves to 20.53 as the penalty factor reduces to 9.75.
This gradual reduction in penalty ensures that the HC algorithm encourages workload
balance while maintaining exploration across the search space.

Table 5. Penalty factor reduction over iterations and its effect on workload imbalance, showing
improved balance as iterations progress.

Iteration Penalty Factor Workload Imbalance

0 20.00 40.00

1 19.00 40.00

5 15.48 32.58

7 14.70 32.58

10 11.97 26.54

12 11.38 26.54

14 10.27 26.54

15 9.75 20.53



Energies 2025, 18, 50 11 of 22

The parameters of the HC algorithm, such as the Initial Penalty Factor, Minimum
Penalty Factor, and Penalty Reduction Rate, were chosen empirically and are listed in
Table 6.

Table 6. Parameters of HC.

Initial Penalty Factor 20

Minimum Penalty Factor 5

Penalty Reduction Rate 0.95

Iterations 2000

4. Experiment
Our experiments employed Crazyswarm, a quadrotor research platform framework

that integrated well-tested hardware and software components for an autonomous aerial
robotics study [43]. It seamlessly transitions from simulation to real-world implemen-
tation [44]. In our work, we implemented all algorithms in Python 3.9 and performed
simulations on Google Colab Pro+. We modeled the UAVs using the Crazyflie quadrotor
and used Crazyswarm to simulate their behavior. From this, we selected a sensor for the
mission and UAV, meticulously ensuring that the parameters reflected real-world condi-
tions. For our experiments, we used the Crazyflie drone equipped with an ultrasonic sensor
(LV-MaxSonar-EZ2), capable of detecting objects within a range of 0–254 inches (~6.75 m),
as used in previous work [45]. The Crazyflie UAV is shown in Figure 2 and the ultrasonic
sensor is displayed in Figure 3.
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We also considered Crazyflie’s properties [46,47] to evaluate the UAVs’ energy con-
sumption. Table 7 gives a summary of what UAV energy parameters involve.
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Table 7. Energy-related parameters.

Parameter Value

Speed 1 m/s

δm 2430 J

µ 5.8 J/s

The corrosion defects dataset, originally introduced in [12], was utilized to evaluate the
performance of the proposed GA for the inspection mission. This dataset was specifically
designed to address the lack of publicly available datasets for indoor steel pipe inspection,
as highlighted in [12]. It consists of 1300 samples of corrosion defects derived from a
realistic fire sprinkler system template. This template accurately simulates the typical
layout and complexity of real-world sprinkler systems, ensuring the relevance of the
dataset to practical inspection scenarios.

To create the dataset, the sprinkler system template was preprocessed into an oc-
cupancy matrix, a grid-based representation commonly used in robotics and path plan-
ning [48]. Corrosion defects were then distributed across the map using a polar coordinate
method to simulate hotspots, mimicking the clustered and unpredictable nature of corro-
sion in real-world pipelines. The severity of corrosion varied from 1% to 30% of the pipe’s
surface area. These severity levels represent the percentage of the pipe’s surface covered
by corrosion, ranging from minor surface rust (1%) to significant structural damage (30%).
This range reflects the diverse levels of damage typically encountered in real-world pipeline
inspections. For this study, we used map#1 and map#2, representing two different configu-
rations of the sprinkler system. We used instance#1 for each map and each severity level
(simple, average, and advanced). This dataset, with its realistic representation of corrosion
defects and pipeline layouts, provides a robust platform for assessing the effectiveness of
the proposed GA in optimizing multi-UAV inspection missions.

The dataset consists of 1300 samples of corrosion defects and was employed in
various inspection scenarios to assess the optimization of drone path planning within
the Crazyswarm platform. We used map#1 and map#2, which were based on real-life
pipeline systems. We used instance#1 for each map for each severity level (simple, average,
and advanced).

For this study, we use performance metrics obtained from recent work to evaluate
the effectiveness of our method. Example metrics are the total cost/fitness value (which
corresponds to distance traveled), the maximum tour length, the running time, and average
energy consumption. All scenario executions were performed 30 times to lessen the
variability in performance measurements [49].

In this study, we specifically focus on evaluating the performance of the newly intro-
duced GA and HC algorithms. We plot them against random and greedy algorithms.

The Greedy Algorithm for UAV path planning operates by having each UAV select
the nearest unvisited location from its current position. Starting from an initial point,
the UAV continuously chooses the closest unvisited location, typically using Euclidean
distance, until all locations are covered. On the other hand, the Random Strategy for UAV
path planning involves each UAV selecting its following location randomly from the set
of unvisited locations. Starting from an initial point, the UAVs make decisions without
considering distance or other optimization criteria, resulting in paths that vary significantly
in length and efficiency. In all our simulations, we control the number of UAVs, which
varies between 2, 4, 6, 8, 10, 12, 14, and 16.
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5. Results and Discussion
We conducted at least 30 trials for each experiment and plotted the results with a linear

x-axis for the number of UAVs and a logarithmic base-2 y-axis to represent performance
metrics. Performance Indicators were the total traveled distance, the maximum tour
length, execution time per mission, and average energy consumption, shown in Figure 4,
Figure 5, Figure 6, and Figure 7, respectively. For Map#1, with 1785 locations, and Map #2
(996 locations), the experimental results notice common characteristics among different
performance measures that are discussed below.

5.1. Total Traveled Distance

The total traveled distance increases with the number of UAVs for all algorithms.
Nonetheless, GA consistently achieves lower total traveled distances than HC, the Greedy
Algorithm, and the Random Strategy. This result fulfills the objective of optimizing UAV
paths, as GA demonstrates a superior ability to minimize traveled distance. The Greedy
Algorithm, while better than the Random Strategy, performs worse than GA because it
makes locally optimal choices that do not always lead to globally optimal solutions. As
expected, the Random strategy has the highest total traveled distances due to its lack of
optimization criteria [30].
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5.2. Max Tour Length

Only GA yields modestly maximum tour durations (the furthest any single UAV
traverses) better than all the other benchmarks. It limits the work for each UAV so that no
single UAV is overloaded. The Greedy strategy, which performed better than HC and the
Random start, also produced a higher maximum tour than GA.

The GA application gives a more balanced path distribution. This may be because GA
performs better than HC in finding the optimal path because it can explore a broad range of
solutions and, therefore, avoid the local optimal [50]. A weakness of the HC implementation
is that it often became caught in local optima and led to longer individual tours.

A notable observation is that HC’s implementation, despite using a method to ma-
nipulate tour lengths by reallocating locations between tours, the max tour length of the
HC performance remains steady. This shows the importance of the penalty mechanism
introduced to HC, as described in our objectives, in maintaining more balanced solutions.
The random strategy, as expected, performs the worst in balancing the tour lengths.
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5.3. Average Energy Consumption per UAV

GA minimizes average energy consumption per UAV, achieving higher path opti-
mality by avoiding unnecessary flights [50]. The Greedy Algorithm performs moderately
better than HC and the Random Strategy but still falls short of GA. HC’s average energy
consumption is higher and more variable due to its inefficiency in avoiding local optima.
With its random path selections, the Random Strategy results in the highest and most incon-
sistent energy consumption. These findings align with our study’s objective, showing GA’s
superior performance across multiple performance metrics, including energy efficiency.
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5.4. Running Time

The computational complexity of HC remains relatively stable as the number of UAVs
increases, showing lower computation costs compared to GA. Although GA is a robust
heuristic algorithm that excels in path planning for multi-UAV systems, it requires signifi-
cantly more computational time [14,24,30]. This is particularly noticeable in larger maps
(Map#1), where path optimization becomes more computationally intensive. Although HC
terminates faster, its early convergence due to getting trapped in local optima often leads
to inconsistent optimization results [51]. In contrast, GA’s use of crossover and mutation
allows for a more thorough exploration of the solution space, maintaining diversity in solu-
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tions and delivering more consistent and optimized results over time. The GA technique
helps progress steadily and gives more consistent optimization results than HC [52].
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This analysis shows that GA excels in energy efficiency and path optimization, espe-
cially in scenarios where computational overhead is not the primary concern. The use of
GA demonstrates superior performance in optimizing UAV paths, balancing workloads,
and minimizing energy consumption. These strengths validate its suitability for complex
multi-UAV path planning tasks, making it a candidate when high-quality optimization
is essential.

GA demonstrates its scalability and robustness, as observed in various map sizes
or the number of UAVs. In addition, the crossover and mutation by GA help maintain
solution diversity, preventing premature solution convergence. Thus, it ensures a more
thorough exploration of the search space. Maintaining solution diversity is especially useful
in dynamic environments, wherein the problem landscape might change with time. These
properties render GA a robust tool in current path-planning tasks and make it a proven
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choice for more complex multi-UAV operations. As the computational cost is negligible
compared to its gains in optimization quality, this trade-off fully justifies GA as a candidate
of choice over other techniques for application in realistic conditions where both efficiency
and effectiveness are essential.

While GA consistently outperforms HC regarding path optimization, energy con-
sumption, and solution robustness, HC still has its merits in specific contexts. For instance,
HC demonstrates a faster runtime and lower computational cost, particularly in smaller
map sizes or scenarios where computational efficiency is prioritized over solution quality.
These characteristics make HC a viable option in simple environments where the problem
size and complexity are limited. However, this efficiency diminishes as the problem scale
increases, revealing HC’s inherent limitations.

Scalability remains a critical consideration for both algorithms in more complex envi-
ronments. While HC is efficient for small-scale problems, its localized search mechanism
becomes computationally expensive in larger scenarios, and its dependence on the initial
solution increases the likelihood of less effective results in high-dimensional solution spaces.
Similarly, GA, despite its robustness and scalability, requires substantial computational
resources to maintain population diversity and handle larger generations, which can pose
challenges for its application in large-scale real-world scenarios.

Additionally, transitioning these algorithms to real-world applications presents sev-
eral challenges, such as sensor inaccuracies due to environmental factors like temperature
and humidity variations, which affect the speed of sound, and surface properties of ob-
jects, like irregular or absorptive materials, which can weaken or misdirect the reflected
signal. These observations underscore the need for scalable algorithmic enhancements
to ensure their adaptability to increasingly complex multi-UAV inspection missions and
real-world environments.

Moreover, coordinating multiple UAVs in dynamic environments requires robust com-
munication systems. Issues such as latency, signal interference, and network congestion
could impair coordination, especially in large-scale missions. Implementing decentralized
communication protocols or fault-tolerant strategies could improve system resilience. Fur-
thermore, real-world environments are subject to unpredictable changes, such as weather
conditions or moving obstacles, necessitating the development of adaptive path-planning
algorithms that can dynamically respond to these changes and ensure mission continuity.
These considerations highlight the importance of future work to validate our algorithms in
real-world conditions and explore enhancements to address these practical challenges.

To further substantiate the robustness of our results, we calculated the Confidence
Intervals (CIs) for each performance metric across all experiments. The CIs are represented
in the format “Mean ± MOE,” where MOE (Margin of Error) is derived based on the
variability in the results at a 95% confidence level. This representation provides a clear
indication of the uncertainty associated with the reported mean values, offering valuable
insights into the consistency and reliability of the algorithms under different scenarios. The
CI results for the total cost, maximum tour length, and average energy consumption are
summarized in Tables 8 and 9 for map#1 and map#2, respectively. These tables reinforce
the analysis of the performance metrics presented earlier.

The inclusion of MOE highlights the stability of GA and HC, with GA exhibiting
tighter CIs, indicating greater reliability in its performance metrics. For Greedy, zero
variability (MOE = 0) aligns with its deterministic behavior, whereas for Random, a higher
MOE is expected due to its stochastic nature. This detailed CI analysis underscores the
robustness of GA and HC, as well as the predictable and variable characteristics of Greedy
and Random algorithms, respectively.
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Table 8. Confidence Intervals (CI) for Map#1 across performance measures (Total Cost, Max Tour
Length, and Avg Consumed Energy) for algorithms (GA, HC, Greedy, and Random) with vary-
ing UAVs.

Performance Measure #UAVs Random Algorithm Greedy Algorithm Genetic Algorithm Hill Climbing
Algorithm

Running Time 2 4.2368 ± 0.0009 11.2477 ± 0.0006 26,525.7415 ± 2.3460 285.5000 ± 0.2892
4 4.3919 ± 0.0003 11.8995 ± 0.0005 26,392.6020 ± 6.8387 225.9625 ± 0.0278
6 4.4072 ± 0.0003 12.0419 ± 0.0010 26,226.7910 ± 2.7771 286.1125 ± 0.3214
8 4.3631 ± 0.0010 11.9587 ± 0.0010 26,328.6515 ± 3.5733 274.7678 ± 0.2702

10 4.4035 ± 0.0005 12.0037 ± 0.0012 26,439.6750 ± 3.3961 258.2400 ± 0.1844
12 4.3625 ± 0.0011 11.9776 ± 0.0023 26,381.7405 ± 1.9944 297.5850 ± 0.2543
14 4.3945 ± 0.0004 11.9866 ± 0.0016 25,809.1295 ± 2.2412 293.0946 ± 0.3242
16 4.3595 ± 0.0010 12.0160 ± 0.0011 25,672.7115 ± 6.8501 218.7625 ± 0.0093

Total Cost 2 168,879.84 ± 739.03 1680.03 ± 0.00 1720.86 ± 84.39 2076.89 ± 293.92
4 168,611.57 ± 773.37 3070.13 ± 0.00 2236.27 ± 295.71 3300.75 ± 60.49
6 168,927.01 ± 696.49 3263.52 ± 0.00 3170.09 ± 222.96 4105.14 ± 161.66
8 169,032.47 ± 795.13 4718.36 ± 0.00 3771.74 ± 186.21 5163.81 ± 264.72

10 169,005.85 ± 708.78 6229.98 ± 0.00 4958.38 ± 343.22 6727.07 ± 539.13
12 169,752.68 ± 646.68 6629.35 ± 0.00 5294.08 ± 322.36 7353.05 ± 539.18
14 169,315.10 ± 698.07 8321.55 ± 0.00 6185.52 ± 540.74 8859.71 ± 499.18
16 169,850.51 ± 695.18 8273.02 ± 0.00 6751.72 ± 430.67 9560.68 ± 245.21

Max Tour Length 2 85,142.34 ± 425.38 886.00 ± 0.00 932.90 ± 49.74 1073.54 ± 160.03
4 43,504.05 ± 301.62 955.69 ± 0.00 682.36 ± 98.84 984.98 ± 64.32
6 29,351.65 ± 190.57 628.20 ± 0.00 613.10 ± 52.34 783.67 ± 176.03
8 22,322.10 ± 173.71 765.59 ± 0.00 612.51 ± 17.23 855.75 ± 141.95

10 18,096.78 ± 144.78 782.40 ± 0.00 660.27 ± 83.77 873.80 ± 99.37
12 15,222.27 ± 145.60 659.20 ± 0.00 619.34 ± 36.60 840.69 ± 90.98
14 13,187.58 ± 99.60 766.85 ± 0.00 587.59 ± 48.18 843.94 ± 70.24
16 11,753.79 ± 139.32 696.28 ± 0.00 585.66 ± 40.87 846.88 ± 74.80

Avg consumed Energy 2 6611.65 ± 28.93 65.77 ± 0.00 67.37 ± 3.30 81.31 ± 11.51
4 3300.57 ± 15.14 60.10 ± 0.00 43.78 ± 5.79 64.61 ± 1.18
6 2204.50 ± 9.09 42.59 ± 0.00 41.37 ± 2.91 59.13 ± 4.16
8 1654.41 ± 7.78 46.18 ± 0.00 36.92 ± 1.82 50.54 ± 8.22

10 1323.32 ± 5.55 48.78 ± 0.00 38.82 ± 4.69 53.25 ± 6.61
12 1107.64 ± 4.22 43.26 ± 0.00 34.54 ± 2.10 45.15 ± 2.29
14 946.96 ± 3.90 46.54 ± 0.00 34.59 ± 3.67 48.53 ± 1.17
16 831.21 ± 3.40 40.49 ± 0.00 33.04 ± 4.52 49.01 ± 4.07

Table 9. Confidence Intervals (CI) for Map#2 across performance measures (Total Cost, Max Tour
Length, and Avg Consumed Energy) for algorithms (GA, HC, Greedy, and Random) with vary-
ing UAVs.

Performance Measure #UAVs Random Algorithm Greedy Algorithm Genetic Algorithm Hill Climbing
Algorithm

Running Time 2 2.3897 ± 0.0009 4.2910 ± 0.0006 8799.4350 ± 2.3460 72.4250 ± 0.2892
4 2.4477 ± 0.0003 4.3827 ± 0.0005 8777.0790 ± 6.8387 80.2750 ± 0.0278
6 2.4513 ± 0.0003 4.3817 ± 0.0010 8738.5140 ± 2.7771 96.6589 ± 0.3214
8 2.4421 ± 0.0010 4.3850 ± 0.0010 8667.7805 ± 3.5733 92.4875 ± 0.2702

10 2.4413 ± 0.0005 4.3825 ± 0.0012 8833.7792 ± 3.3961 100.5500 ± 0.1844
12 2.4459 ± 0.0011 4.3737 ± 0.0023 8707.0840 ± 1.9944 97.6500 ± 0.1665
14 2.3747 ± 0.0004 4.2675 ± 0.0016 8740.5770 ± 2.2412 98.5500 ± 0.3242
16 2.4446 ± 0.0010 4.3898 ± 0.0011 8786.2005 ± 6.8501 109.6219 ± 0.0093

Total Cost 2 62,320.87 ± 739.03 1142.63 ± 0.00 1178.01 ± 46.64 1378.11 ± 66.40
4 62,572.60 ± 773.37 2102.51 ± 0.00 1618.68 ± 166.61 2197.20 ± 272.45
6 62,806.81 ± 696.49 2734.81 ± 0.00 2330.71 ± 186.50 3154.82 ± 442.40
8 63,021.98 ± 795.13 3861.83 ± 0.00 2808.42 ± 182.34 3677.63 ± 377.96

10 63,056.04 ± 708.78 4770.64 ± 0.00 3529.25 ± 163.20 4346.53 ± 677.32
12 63,045.09 ± 646.68 5145.81 ± 0.00 3494.82 ± 236.37 5201.45 ± 570.51
14 63,191.68 ± 698.07 6055.33 ± 0.00 4936.81 ± 200.75 5879.40 ± 663.79
16 63,394.84 ± 695.18 7241.23 ± 0.00 4473.31 ± 239.03 6390.34 ± 580.70

Max Tour Length 2 31,679.04 ± 425.38 614.81 ± 0.00 629.74 ± 45.73 748.06 ± 23.45
4 16,245.85 ± 301.62 636.65 ± 0.00 512.53 ± 60.19 637.11 ± 46.48
6 11,154.48 ± 190.57 564.26 ± 0.00 470.27 ± 34.73 649.31 ± 81.51
8 8576.03 ± 173.71 599.32 ± 0.00 470.17 ± 30.30 595.96 ± 64.31

10 6896.86 ± 144.78 628.52 ± 0.00 472.95 ± 5.10 587.33 ± 44.48
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Table 9. Cont.

Performance Measure #UAVs Random Algorithm Greedy Algorithm Genetic Algorithm Hill Climbing
Algorithm

12 5786.41 ± 145.60 544.65 ± 0.00 461.49 ± 43.00 618.58 ± 68.10
14 5128.19 ± 99.60 598.99 ± 0.00 425.23 ± 25.45 564.08 ± 85.53
16 4519.97 ± 139.32 576.18 ± 0.00 407.42 ± 51.54 552.16 ± 99.44

Avg consumed Energy 2 2439.86 ± 57.87 44.73 ± 0.00 46.12 ± 1.83 53.95 ± 2.60
4 1224.86 ± 60.55 41.16 ± 0.00 31.69 ± 3.26 43.01 ± 3.62
6 819.63 ± 54.54 35.69 ± 0.00 30.42 ± 2.43 41.17 ± 5.77
8 616.83 ± 62.26 37.80 ± 0.00 27.49 ± 1.78 35.99 ± 8.03

10 493.73 ± 55.50 37.35 ± 0.00 27.63 ± 1.28 34.03 ± 2.41
12 411.37 ± 50.64 33.58 ± 0.00 25.41 ± 4.10 38.81 ± 4.50
14 353.42 ± 54.66 33.87 ± 0.00 26.21 ± 2.46 32.88 ± 3.71
16 310.24 ± 54.43 35.44 ± 0.00 24.09 ± 3.19 31.27 ± 5.09

6. Conclusions
This study presented the first application of a Genetic Algorithm (GA) for path plan-

ning in multi-UAV aerial inspection missions, comparing its performance to benchmarks.
GA demonstrated improved performance compared to Hill Climbing (HC) for optimizing
path planning in multi-UAV inspection missions.

In contrast, HC exhibited inconsistent running times due to frequent entrapment in
local optima, leading to suboptimal performance. However, HC showed potential in sce-
narios where computational efficiency is more important than solution quality, particularly
in smaller problem spaces or when quick, feasible solutions are sufficient.

This study highlights GA’s key advantages in multi-UAV operations, particularly
when optimizing path-planning tasks in complex and dynamic environments. GA excels
in maintaining solution quality and adapting to changing conditions, making it a highly
effective tool for multi-UAV path planning.

Future work should include a systematic sensitivity analysis of GA parameters to
understand their impact on performance and robustness. This would provide insights into
optimizing parameter settings and guide the development of adaptive mechanisms that
dynamically adjust parameters. Exploring hybrid approaches that combine the strengths of
GA and HC could lead to quicker solutions with improved overall quality. For example, HC
could be used to refine solutions generated by GA, leveraging its efficiency in local search
while addressing GA’s higher computational overhead. This approach aligns with previous
studies that have demonstrated the effectiveness of hybrid GA-HC techniques in improving
convergence speed and solution quality. For instance, hybrid GA-HC approaches have
been shown to outperform standalone GA or HC in timetabling problems by leveraging
HC’s capability to refine local solutions, thus avoiding local optima and achieving fast
convergence. The hybrid algorithm GA_HC in the literature [53,54] highlights that the
hybrid GA-HC algorithm supports the idea that combining GA’s global search capabilities
with HC’s local search efficiency results in better solutions than using either algorithm alone.

To further validate these strategies, it would be beneficial to test hybrid GA-HC algo-
rithms in real-world field operations under diverse conditions. The proposed hybridization
strategies aim to improve computational efficiency and robustness in dynamic multi-UAV
inspection missions, where adaptability to changing environmental conditions and task
requirements is crucial. However, real-world scenarios may present additional challenges,
such as UAVs depleting their battery power during missions or encountering unexpected
obstacles. To address these edge cases, future work could incorporate dynamic energy
constraints, enabling UAVs to autonomously return to charging stations when battery levels
are critically low. Furthermore, integrating real-time obstacle detection and replanning
mechanisms would enhance the system’s robustness by allowing UAVs to dynamically
adjust their paths in response to unforeseen impediments. Additionally, flying intruders,
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such as birds entering the facility, and maintenance equipment, such as scaffolding, could
disrupt operations, requiring UAVs to dynamically navigate around these unexpected
obstacles to ensure mission continuity and safety. Emerging advanced methods in machine
learning could further enhance UAV mission performance and adaptability. Incorporating
reinforcement learning and neural networks presents exciting opportunities for innova-
tion. These methods could enable UAVs to adapt to unforeseen changes and optimize
mission performance in complex, dynamic environments. RL’s ability to learn optimal
strategies through interaction with dynamic environments could enable UAVs to adapt to
unforeseen changes, such as moving obstacles or variable weather conditions. Meanwhile,
neural networks excel in processing complex, large-scale data, such as sensor inputs or
high-dimensional state spaces, to make real-time decisions and predictions. Integrating
these advanced methods could further optimize mission performance, ensuring scalability,
adaptability, and enhanced energy efficiency in real-world UAV operations.

Finally, to further enhance the dataset and minimize potential biases, future work will
focus on incorporating a wider range of environmental conditions and corrosion types.
This includes simulating factors like temperature, humidity, and soil acidity, as well as in-
troducing various forms of corrosion, such as pitting, crevice, and stress corrosion cracking.
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