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Abstract: The inherent variability of solar energy presents a significant challenge for
grid operators, particularly when it comes to maintaining stability. Studying ramping
phenomena is therefore crucial to understanding and managing fluctuations in power
supply. In line with this goal, this study proposes a new classification approach for
solar irradiance ramps, categorizing them into four distinct classes. We have proposed a
methodology including adaptation and extension of a wind ramp classification to solar
ramp classification titled the Irradiance-Based Extreme Day Identification method. Our
proposal includes an agglomerative algorithm to find new ramp class boundaries. The
strength of the proposed method relies on that it allows its generalization to any dataset.
We assessed it on three datasets from distinct geographic regions—Oregon (northwestern
United States), Hawaii (central Pacific Ocean), and Portugal (southwestern Europe)—each
with varying temporal resolutions of five seconds, ten seconds, and one minute. The class
boundaries for each dataset results in different limits of Z score value, as a consequence of
the different climatic characteristics of each location and the time resolution of the datasets.
The “low” class includes values less than 0.62 for Portugal, less than 2.17 for Oregon, and
less than 2.19 for Hawaii. The “moderate” class spans values from 0.62 to 3.51 for Portugal,
from 2.17 to 5.01 for Oregon, and from 2.19 to 5.88 for Hawaii. The “high” class covers
values greater than 3.51 and up to 6 for Portugal, greater than 5.01 and up to 10.72 for
Oregon, and greater than 5.88 and up to 8.01 for Hawaii. Lastly, the “severe” class includes
values greater than 6 for Portugal, greater than 10.72 for Oregon, and greater than 8.01 for
Hawaii. Under cloudy sky conditions, it is observed that the proposed algorithm is able to
classify the four classes. These thresholds show how the proposed methodology adapts to
the unique characteristics of each regional dataset.

Keywords: solar ramps classification; solar irradiance; photovoltaics; agglomerative clustering

1. Introduction
The increasing integration of renewable energy sources into electricity systems

presents significant challenges for grid operators. Among these challenges, variability
and uncertainty in solar power generation are major obstacles to maintain the stability and
reliability of the electricity supply [1]. Solar irradiance ramp events, which are characterized
by abrupt changes in energy production, are particularly difficult to forecast and manage.

The analysis generally used in the study of ramps to address their negative impact
is a binary classification method (ramp/no ramp) based on a threshold, which is defined
according to the magnitude and duration of the event [2]. There are different strategies
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to attack the ramping problem, devices in the network [3], forecast algorithms [4], post-
processing tools [5], etc.

In [3], the authors proposed to optimized solar photovoltaic power generation, affected
by climatic variations, by improving the energy storage system. To achieve this, they
analyzed the ramps, classifying them as ascending and descending ramps. The system
remains active only during descending ramps, providing time for recovery and enhancing
its responsiveness. They state that the challenge is to find the power ramp rate limit that
achieves balance in the network. For their particular case, they varied it dynamically.

Other authors who have addressed the binary classification of ramps are [6–8]. In [6],
Wellby et al. classified ramps as positive and negative following an evaluation of different
extreme climatic conditions. Abuella et al. [7] evaluated a set of machine learning methods
to classify ramps as either up or down, and subsequently categorize each classification
as low or high. They use up to 15 features as input to the models, selecting subsets of
features specific to each algorithm, with the series of calculated ramps being the only
feature consistently used across all methods.

Previous research, such as the study by Eltohamy et al. [9] on wind power ramps, has
shown that these events have a considerable impact on the flexibility required to balance
supply and demand in power systems with high renewable energy penetration. However,
most previous studies have focused on binary classifications or arbitrary classification
methods that do not fully capture the complexity and diversity of these events [10,11]. In
addition, there is no clear consensus on the definition and categorization of ramps [2,8],
which makes it difficult to compare results between different research.

In [9], the authors have proposed a new technique for classifying power ramps based
on a standard deviation score. In this way, ramps are classified according to this score into
low, moderate, high, and severe. This technique has been evaluated for wind data, but the
authors state that it is generalizable to solar data.

This research performs a critical analysis of the method proposed in [9], evaluating
weaknesses found in its implementation to classify irradiance ramps: (1) the authors did
not define the criteria followed to establish the limits of the classes; (2) the cause for labeling
the classes as low, moderate, high, and severe is not determined; and (3) using the proposed
value limits given by the authors, a class remains empty. From this analysis, we introduce
an improvement to identify the boundaries for the classes, adding to the classification
procedure a clustering method with the aim of establishing new limits, which better fit the
classification of solar irradiance ramps.

The contributions of this study are as follows:

1. A new methodology for the classification of solar irradiance ramps is proposed: the
Irradiance-Based Extreme Day Identification method.

2. The proposed method has its strength in the agglomerative clustering algorithm that
allows its generalization to any dataset.

3. Impact assessment is carried out on three different time resolution datasets, two of
which are public and could be used for comparison.

The document is structured in sections. Section 2 describes in detail the proposed
methodology, including the clustering algorithm and the standard deviation scoring tech-
nique used. Section 3 focuses on datasets used in this paper. Section 4 outlines the results
obtained applying this methodology to real solar irradiance datasets, evaluating its effec-
tiveness and accuracy and Section 5 addresses a comparison between all results. Section 6
presents conclusions and suggestions for future research.
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2. Materials and Methods
The method proposed in [9] called “Power ramp classification technique based on

standard deviation score” is described first.

2.1. Power Ramp Classification Technique Based on Standard Deviation Score

For a time interval identified as ∆t, the power ramps, ∆pn, of the historical N measure-
ments of the series are calculated as shown in Equation (1).

∆pn = P(tn + ∆t)− P(tn), n = (1, . . . . . . , N) (1)

The ramps are classified as ascending ∆p ↑ or descending ∆p ↓ according to their
positive or negative value and are counted. The symbol n+ represents the number of
ascending ramps and the symbol n− represents the number of descending ramps. Only
the equations for the calculations with ascending ramps are shown; for descending ramps,
they would be similar equations changing to the symbols n− and ↓.

Next, the average number of ascending ramps and the average number of descending
ramps are calculated separately in Equation (2).

∆pavg ↑= 1
n+

n+

∑
i=1

∆p ↑ (i) (2)

The standard deviation of the ascending and descending ramps is calculated also for
each particular case as shown in Equation (3).

σt ↑=

√√√√ 1
n+ − 1

n+

∑
i=1

(
∆p ↑ (i)− ∆pavg ↑

)2 (3)

The standard deviation score is represented by Z and calculated as shown in Equation (4).

Z ↑ (i) =

(
∆p ↑ (i)− ∆pavg ↑

)
σt ↑

(4)

Finally, the limits proposed by the authors on the Z values are applied to find the
classes. The ramps with Z values below zero belong to the low classification, the moderate
class includes values between 0 and 1, the high class includes values between 1 and 2, and
the severe class includes values greater than 2.

The method based on standard deviation score can be summarized by the following
Algorithm 1:

Algorithm 1. Original standard deviation score procedure

1. Calculate the ramps
2. Quantify the ascending and descending ramps.
For ascending ramps calculate:

Average
Standard deviation
Standard deviation score

For downward ramps calculate:
Average
Standard deviation
Standard deviation score

3. Rank the ramps according to the limits set by the authors for the absolute value of
the standard deviation score.
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The algorithm starts by calculating the ramps using a time series of irradiance. For
each pair of values, the difference between the irradiance at the current time step and the
previous one is calculated, with the time interval between the two values (e.g., 10 s) being
considered for each subtraction, and this process is repeated for the entire series. Then,
the ramps are quantified and denoted into ascending and descending ramps. For each of
these groups of ramps, the average and the standard deviation are calculated, and the score
based on the standard deviation Z is computed. Each of the ramps obtained in the first
step has associated a Z score value after that step. The absolute value of these values is
calculated. As a last step, the ramps are classified using the limits set by the authors into
the four defined classes (low, moderate, high, and severe).

2.2. Problems Encountered in Its Application to Solar Irradiance

When applying the method described in the previous section to global irradiance
values, it was found that (1) the authors did not define the criteria followed to establish the
limits of the classes used in step 3 of the algorithm; (2) the cause for labeling the classes
as low, moderate, high, and severe was not determined; and (3) using the proposed value
limits given by the authors, a class remains empty. Figure 1 shows an example of the
classification produced by this method, where the green color represents the low class, the
orange color the high class, and the red color the severe class. In this figure only, three
classes can be distinguished, because the moderate class is unrepresented. This problem
can be observed in most of the time series we have analyzed.
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2.3. Methodology for Ramp Irradiance Classification Using Irradiance-Based Extreme Day
Identification Method

Considering the limitations encountered in classifying ramp classes when using the
described method based on standard deviation scoring, it was concluded that a method-
ology for assigning class boundaries for irradiance should be developed. As a result, the
following methodology was proposed which includes in steps 6 to 9 the method based
on standard deviation score, but adds new mechanisms to tackle the task of finding class
boundaries for any irradiance dataset.

The methodology relies on including a method capable of responding to the weak-
nesses outlined in the previous section, the Irradiance-Based Extreme Day Identification
(IBEDI) method (Algorithm 2). The most important condition that the method fulfils is
that of creating class boundaries from the data of the specific problem. This condition
would facilitate its generalization, decoupling the application of the method from fixed
predefined bounds.
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Algorithm 2. Methodology for ramp irradiance classification using IBEDI method

1. Data Collection and Preprocessing:

2. Collect solar irradiance data.
3. Verify and clean data to remove outliers or incomplete data that may affect

the accuracy of the analysis.

4. Compute extraterrestrial irradiance and clearness index data by location.

5. Visualization and Exploratory Analysis:

• Generate plots of all days in the dataset to visualize temporal variability
of solar irradiance (To be employed in small datasets).

6. Calculate the ramps
7. Quantify the ascending and descending ramps.
8. For ascending ramps calculate:

• Average
• Standard deviation
• Standard deviation score

9. For downward ramps calculate:

• Average
• Standard deviation
• Standard deviation score

10. Calculate the class boundaries based on the evaluated data:

• Classify days whether they are clear, partially cloudy, or cloudy.

• Identify extremely clear and cloudy days.

• Execute the agglomerative algorithm for the days selected in the
previous step.

• Obtain class limits.

11. Rank the ramps according to the limits set in the previous step for the absolute
value of the standard deviation score.

The Algorithm 2 begins with data collection and preprocessing, which involves gather-
ing solar irradiance time series and verifying it to ensure accuracy by removing outliers and
incomplete entries. Extraterrestrial irradiance and clearness index data are then computed
based on the specific location. Following this, visualization and exploratory analysis are
conducted by generating plots to illustrate the temporal variability of solar irradiance,
particularly useful for smaller datasets.

For the analysis, solar irradiance ramps are first calculated. Then, both upward and
downward ramps are quantified. For both upward and downward ramps, the average, stan-
dard deviation and standard deviation score are calculated, following the same statistical
evaluation process in both directions.

We split the irradiance time series in days and then classify them as clear, partially
cloudy, or cloudy based on the clearness index, using established measurement limits from
previous irradiance studies for automated classification. Three groups are created, one for
each classification.

To identify the most representative days within each group, a method is employed
to automatically select extremely clear and cloudy days. This method uses the Root
Mean Square Deviation (RMSD) to measure the difference between global irradiance and
extraterrestrial irradiance. Finally, the selection is refined to ensure that the chosen days
accurately represent both typical and extreme solar irradiance conditions.
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The agglomerative clustering algorithm is used to determine class boundaries. As
input to the agglomerative, we use the Z value of the extreme days selected in the previous
step. Values are already scaled. As a final step, we classify the ramps using the Z score
values and the limits found with the agglomerative. Our approach aims to be scalable,
accommodating datasets of varying sizes. The next section explains this algorithm in the
context of the IBEDI method.

2.3.1. Agglomerative Clustering Algorithm

A method of unsupervised machine learning is used to implement the proposal raised
in the previous section. In particular, clustering is employed because of the advantage of
creating groups without prior knowledge of the data to be grouped. Within the clustering
methods, there are different types: density-based, distance-based, distribution-based,
centroid-based, or hierarchy-based methods.

The hierarchy-based algorithm organizes the data points in a tree structure (hierarchy)
and follows a bottom-up process of grouping based on the similarity between the data
points. In particular, we use the agglomerative clustering consisting of splitting the dataset
into individual nodes and merging the current pair of nodes closest to each other step by
step into a new node until there is a final node comprising the entire dataset [12], which
is constructed in the form of a dendrogram as shown in Figure 2. To create the clusters, a
level of the dendrogram is selected and pruned; depending on the level chosen, the clusters
can be more or less compact.
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The agglomerative algorithm is an option to consider for clustering for several key
reasons. First, it is simple and efficient to apply, as it starts with each data point as an
individual cluster and progressively merges the closest clusters. This makes it intuitive and
easy to apply. Secondly, it adapts well to data with different cluster shapes and sizes, which
is useful when the data do not follow a uniform distribution. In addition, the agglomerative
approach offers flexibility in the choice of distance metrics, allowing it to adapt to different
types of data, including numerical, categorical, or mixed data. Finally, unlike other methods,
agglomerative clustering does not require random initialization, which ensures consistent
results without the risk of poor starting points affecting the final result.

To choose the best configuration of parameters for the agglomerative algorithm, exper-
iments were carried out with each of the configurations and evaluated with the silhouette
score, using a combination of metrics and linkages. For the metrics parameter, the following
values were tested: “Euclidean” and “Manhattan”. Euclidean and Manhattan distances
offer distinct approaches for quantifying the separation between data points in a space.
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Euclidean distance computes the shortest path or direct line between two points, capturing
the geometric distance as a straight line. In contrast, Manhattan distance calculates the
cumulative distance by summing up the absolute differences along each axis. For the
linkage parameter, the following values were tested: “ward”, “complete”, “average”, and
“single”. The “ward” method minimizes the variance within clusters as they are merged,
while the “average” method calculates the mean distance between each observation in
the two sets. The “complete” linkage approach uses the maximum distance between all
observations of the two sets, whereas the “single” linkage method relies on the minimum
distance between observations from each set.

The silhouette score is a metric used to assess the quality of clustering results. It
measures how well each data point is clustered by considering both the cohesion and
separation of clusters. Cohesion evaluates how similar a point is to other points within
the same cluster, calculated as the average distance between the point and all other points
in the same cluster. Separation measures how similar the point is to points in the nearest
cluster that is not its own, calculated as the average distance to all points in the nearest
neighboring cluster. The silhouette score for a data point is given by Equation (5):

s(i) =
b(i)− a(i)

max(a(i), b(i))
(5)

where a(i) is the cohesion, the average distance to points in the same cluster, and b(i) is
the separation, the average distance to points in the nearest cluster. The score ranges from
−1 to 1. Values close to 1 indicate that the point is well clustered, meaning it is closer to
points in its own cluster than to points in other clusters. Values close to 0 suggest that the
point is on the boundary between clusters, showing that it is roughly equidistant from
clusters. Negative values indicate that the point might be misclassified, as it is closer to a
different cluster than its own. The average silhouette score across all points provides an
overall measure of clustering quality.

2.3.2. Classified and Cluster Days Based on Clearness Index

Days can be classified as clear, partially cloudy, or cloudy based on the daily clearness
index (Ktd), the ratio between global horizontal irradiance, and the irradiance at the top of
the atmosphere (Equation (6)).

Ktd =
GHId

I0d
(6)

In their literature review, Reno and Hansen [13] highlight how different clearness
index limits have been used to obtain clear and cloudy days. Values above 0.6 or 0.65 or
0.7 have been taken as clear days in different studies. Other studies used four intervals for
classification: cloudy sky, partially cloudy sky, partially clear sky, and clear [14,15]. In this
study, we use only three classifications (clear, partially cloudy, or cloudy) and a threshold of
0.65 as presented in [16] for clear days. The imprecision may arise from choosing different
values for this threshold arising because Ktd is not a pure function of cloudiness [17];
therefore, this was considered in the next step of the methodology, where most extreme
days were selected from these a priori formed groups.

The classification used for IBEDI is defined as follows:

• Clear days: Days with a Ktd value ranging between 0.65 and 1.0 are considered clear.
These days typically exhibit minimal cloud cover, allowing for a high proportion of
solar radiation to reach the Earth’s surface.

• Partially cloudy days: Days with a Ktd value ranging from 0.3 to 0.65 fall into the
partially cloudy category. On these days, intermittent cloud cover causes signifi-
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cant fluctuations in the amount of solar radiation received, resulting in moderate
irradiance levels.

• Cloudy days: Days with a Ktd value between 0 and 0.3 are classified as cloudy. These
days are characterized by extensive cloud cover, which significantly reduces the
amount of solar radiation that reaches the surface, leading to lower irradiance values.

For the classification of days, the daily Ktd was calculated with Equation (6), where
GHId is the daily average of global irradiance on the horizontal plane and I0d is the daily
average of top-of-atmosphere irradiance on the horizontal surface and has been calculated
using “Solar Geometry 2” library [18].

Figure 3 shows the distribution of clear, partly cloudy, and cloudy days obtained using
the clearness index.
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2.3.3. Identification of Extremely Clear and Cloudy Days

The RMSD metric (Equation (7)) is used to identify extreme days, classified as either
clear or cloudy. This metric compares the irradiance measured at the Earth’s surface with
the extra-atmospheric irradiance (theoretical in the absence of atmosphere). RMSD is used
here as a “distance” metric similar to the Euclidean, measuring the deviation between
observed and theoretical values. The larger this distance, the more extreme the daytime
condition (whether clear or cloudy) is considered, facilitating accurate identification, which
can be expressed with the following equation:

RMSD =

√
1
n

n

∑
i=1

(GHI − I0)
2 (7)

3. Data
This section provides a detailed description of the datasets analyzed in the study,

along with an outline of the key preprocessing steps applied to each dataset.

3.1. Datasets
3.1.1. Portugal Dataset

The first dataset used in this research is from a photovoltaic power station previously
described and analyzed in [19,20]. The station data include global irradiance in the horizon-
tal plane measured by a pyranometer, global irradiance in the generator plane measured
by a calibrated cell, and wind speed. The data were measured with a time resolution of
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5 s. A total of 168 complete days are available from 2010 to 2013. The year 2012 is the least
represented with 4 days and the year 2013 is the most represented with 143 days.

3.1.2. Oregon Dataset

The second dataset is from the Solar Radiation Monitoring Laboratory (SRML) at the
University of Oregon [21]. It is public and provided by the National Renewable Energy
Laboratory (NREL). The SRML is a network of high-quality and low-quality stations. High-
quality stations measure all irradiance components, at a 1 min resolution. The Global
CMP22 and LI-200R pyranometers measure global irradiance, direct, and diffuse radiation.
Low-quality stations measure at an hourly frequency. The dataset also includes other
meteorological variables. It is updated daily and has been available since August 2016. For
the study to be carried out, raw data for the year 2023 was downloaded.

3.1.3. Hawaii Dataset

The third dataset used in this study is a public dataset and was selected from the
NREL [22]. It has 17 irradiance sensors on Oahu Island, Hawaii in approximately one
square kilometer. The time resolution is 1 s global horizontal irradiance (GHI) measured in
the period (March 2010 through October 2011).

3.2. Preproccesing Data

In addition, a selection of variables was made, working only with the pyranometer
data, leaving the inverter data for future work.

The astronomical variables (irradiance at the top of atmosphere, extra-atmospheric
irradiance, and solar elevation angle) required for the irradiance analysis were retrieved
from the “Solar Geometry 2” library [18] for the three datasets. The GHI values for the
three datasets were taken for solar elevation angles greater than 2◦ [23].

During the initial data analysis for Hawaii data, information related to the AP3
sensor was excluded due to missing data, resulting in a dataset comprising information
from 16 sensors. As part of the data pre-processing, the dataset was resampled at 10 s
intervals [24].

After the preprocessing for each dataset, we have two variables to use as input of the
methodology: GHI and irradiance at the top of atmosphere. For the Portugal dataset, we
have 168 days with a resolution of 5 s. In the case of the Hawaii dataset, we will use the
GHI from the DH3 station with 600 days and a resolution of 10 s. The Oregon dataset has
365 days of GHI with a resolution of one minute. As a threshold to calculate the ramps, we
will use the temporal granularity of each dataset.

4. Results
This section presents the results of the application of the proposed methodology.

We start with the search for the best parameters for the agglomerative algorithm. Then,
we cluster all the days present in the dataset based on the clearness index. To find the
representative days, the next step was to find the significant days to be used with the
agglomerative algorithm with the IBEDI method. After applying the method, the minimum
amount of data needed to find the class boundaries with the agglomerative clustering
algorithm is calculated. The limits found are applied and the irradiance ramps are classified.
The results are described for each of the datasets analyzed with the methodology.

4.1. Comparison of Different Configurations of the Agglomerative Clustering Algorithm

The silhouette score was used to compare different configurations of the agglomerative
algorithm. Table 1 shows the results. The ward linkage method was only tested with the
Euclidean distance because it has the condition that it excludes the use of ward with any
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metric other than Euclidean, since ward is only compatible with the Euclidean metric. This
configuration has the lowest silhouette score with 0.94 and the combinations with average
and single for both Euclidean and Manhattan are the best with 0.97.

Table 1. Silhouette scores for different linkage methods and distance metrics for the agglomerative
algorithm.

Linkages
Metric

Euclidean Manhattan

ward 0.94 -
complete 0.96 0.96
average 0.97 0.97
single 0.97 0.97

In this particular problem, we have selected the configuration that combines the
Euclidean distance with the linkage average method. This study implemented the Scikit-
learn library [25]. The creation of four groups was used as a stopping mechanism for
the algorithm, so that the number of groups would coincide with the method based on
standard deviation score. The classes followed the same naming pattern: low, moderate,
high, and severe.

4.2. Cluster Days Based on Clearness Index

Figure 4 presents a sample of the result of the clustering by clearness index method
for the complete Oregon dataset. It is shown with three subplots. The subplot on the
left represents a clear day and the RMSD in a per-unit scale data was recorded on 3 June
2023. The time series is plotted in blue and shows a pattern characteristic of a clear day,
with steady increases and decreases in irradiance throughout the day. The center subplot
represents a partially cloudy day, the RMSD in a per-unit scale data was recorded on 14
August 2023. On the other hand, the right subplot represents a cloudy day, the RMSD in a
per-unit scale data was recorded for 25 September 2023. Subplots (b) and (c) show a ramp
pattern, indicative of fluctuating cloudiness throughout the day.
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Figure 4. Sample of days classified using the clearness index for the Oregon dataset. The left subplot
represents a clear day (a) GHI data recorded on 3 June 2023. The center subplot represents a partially
cloudy day, (b) GHI data recorded on 14 August 2023. The right subplot represents a cloudy day,
(c) GHI data for 25 September 2023.

4.3. Identifying Extreme Days

Figure 5 presents the result of the IBEDI method for the identification of extreme days.
The figure represents two specific days in January; from the Oregon dataset, each represent
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different weather conditions. The left subplot displays a clear day, data measurements
were recorded on 16 January 2023. The day was characterized by clear sky conditions
with RMSD in a per-unit scale value of 0.07, reflected in the consistent pattern. The
right subplot represents a cloudy day, data were recorded for 1 January 2023. This plot
shows more variability with RMSD in a per-unit scale value of 0.16, indicative of cloudy
weather conditions.
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day, GHI data for 18 January 2023.

We consider that the IBEDI method for the identification of extremely clear and cloudy
days has good results because it obtains well-differentiated days. This is important to
obtain groups of classes with an adequate distance because the agglomerative algorithm
relies on distance to create the groups. These distances are clearly marked in cloudy days
with more variability and clear days with a smoother curve.

4.4. Results of Ramp Clasification for Portugal Dataset

For this particular dataset, only the first two steps of the methodology are used because
it is possible to determine which days had more or less variability by visual inspection of
the plots for each of the days. This is due to the small size of the dataset. After selecting
the most representative days, we start with one day and gradually increase it until no
substantial changes are observed in the class limits reached. In this particular time, the
limit of days used remains at ten. It is important to note that the temporal resolution of
the data is 5 s, so only one day has 12,961 irradiance records from 3 a.m. to 9 p.m. Because
of this, with ten days, the algorithm has enough elements to consider. In addition, the
evaluation of the quality of the algorithm’s output can be reinforced by visual inspection of
the achieved classes.

Figure 6 shows the differences between the relative frequencies found between one
day and ten days with the agglomerative algorithm. The image on the left shows that,
with increasing data, the algorithm defined clearer boundaries between high and moderate
classes, as opposed to one day of data (image on the right Figure 6).

By applying the modified algorithm to this particular problem, we have found that
the low class includes values below 0.62, the moderate class includes values between 0.62
and 3.51, the high class includes values between 3.51 and 6, and the severe class includes
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values greater than 6. Figures 7 and 8 show the result of applying the proposed algorithms
for days with and without clouds.
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In an ideal environment with clear sky (Figure 7), both algorithms demonstrate the
ability to classify global irradiance without drawbacks. Under cloudy sky conditions, it
is observed that while the method based on standard deviation score classifies only three
classes, the proposed algorithm is able to classify four (Figure 8). Although the results
indicate that the classification is more accurate with the newly identified boundaries, it
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is crucial to further investigate the classification and its correspondence to the reality of a
power grid.
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Table 2 summarizes the relative frequency by class for each year. The low class is the
most frequent for all years, followed by the severe class. The moderate and high classes,
although also present, have a low frequency compared to the other two classes. The high
class is the least frequent.

Table 2. Relative frequency by class and by year of the modified algorithm for Portugal dataset.

Year Low Moderate High Severe

2010 0.74 0.058 0.007 0.189
2011 0.73 0.037 0.006 0.224
2012 0.69 0.103 0.008 0.200
2013 0.58 0.137 0.006 0.271

Average 0.68 0.080 0.007 0.221

Figure 9 shows the results of the relative frequency analyzed for the year 2013, consid-
ering the interval from 0600 in the morning to 1800 in the evening. It can be seen that the
method based on standard deviation score leaves one class empty (left of Figure 9), while
the proposed modification includes all four classes (right of Figure 9).

4.5. Results of Ramp Clasification for Oregon Dataset

For this dataset, we use a method based on irradiance comparison for the identification
of extremely clear and cloudy days to determine the most representative days. In order to
ensure that the sample of classes had the best possible representation in terms of the seasons
of the year, after grouping all the days in the dataset according to whether they were clear,



Energies 2025, 18, 243 14 of 21

partly cloudy, or cloudy, the method was applied. As a result of this selection, 10 days
were used for the input to the agglomerative model. This yielded the following limits for
the four classes tested. The “Low” class includes values under 0.23, the “moderate” class
covers values from 0.23 to 0.55, the “High” class spans from 0.55 to 1.18, and the “Severe”
class comprises values above 1.18.
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Figure 10 presents the results of the relative frequency analysis for the period from
January to December 2023, based on Oregon data. The analysis considers the interval from
0800 in the morning to 1700 in the evening and includes all four ramp classes. During
the central hours of the day, the “low” and “moderate” classes are the most prevalent. In
contrast, “severe” and “high” classes while present exhibit the lowest overall frequency.
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Table 3 presents the relative frequency of ramps categorized as low, moderate, high,
and severe across the months of 2023 in Oregon. On average, the most prevalent class is
“low”, with a frequency of 0.91 (91%), while the “moderate” class is less common, appearing
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with an average frequency of 0.07 (7%). The “high” and “severe” classes are rare, with
mean frequencies of 0.01 (1%) each, being more frequent during spring and autumn. In
the winter and summer months, the frequency of “low” conditions is highest (between
0.95 and 0.97), while “severe” conditions only occur in low proportions during spring and
autumn, reflecting a seasonal distribution of higher intensities.

Table 3. Relative frequency for the year 2023, data from Oregon.

Month Low Moderate High Severe

January 0.95 0.04 0 0
February 0.9 0.08 0.01 0

March 0.87 0.1 0.02 0.01
April 0.82 0.13 0.03 0.02
May 0.87 0.08 0.02 0.03
June 0.91 0.07 0.01 0.01
July 0.97 0.02 0.01 0

August 0.95 0.04 0.01 0.01
September 0.88 0.09 0.02 0.01

October 0.91 0.07 0.01 0.01
November 0.95 0.05 0 0
December 0.97 0.03 0 0
Average 0.91 0.07 0.01 0.01

4.6. Results of Ramp Clasification for Hawaii Dataset

When applying the methodology to select the representative days in this dataset. the
resulting days for each of the sensors were practically the same except for sensor DH2
which varied by two months and sensors DH7 and DH1 which varied by one month.
Because of this. it was decided to work only with the data from sensor DH3. Through the
application of the proposed algorithm to this specific problem, we identified that the “low”
class encompasses values below 1.078, the “moderate” class ranges from 1.078 to 3.54, the
“High” class covers values between 3.54 and 7.158, and the “severe” class includes values
exceeding 7.158.

Figure 11 shows the results of the relative frequency analyzed for the period from
April 2010 to March 2011 for DH3 sensor data. Considering the interval from 0600 in the
morning to 1700 in the evening, it can be seen that the figure includes all four classes. In
the central hours of the day, the moderate, high, and severe classes are the most frequent.
On the contrary, in the hours of sunrise and sunset, the most frequent classes are low and
moderate. The severe class has the lowest frequency.

The data provided in Table 4 reflects the relative frequency of classes found (low, mod-
erate, high, severe) from April 2010 to March 2011 in Hawaii. The “low” class consistently
dominates with values ranging from 0.69 to 0.863, indicating that the majority of cases
or events fall into this category throughout the year. Notably, the months of January and
February exhibit the highest relative frequencies in the “low” class, suggesting a significant
prevalence of low-intensity occurrences during these months. Conversely, the “moderate”
and “high” classes show much lower frequencies across all months, indicating that mod-
erate to high occurrences are less common. In contrast, the “severe” class demonstrates a
noticeable increase as the year progresses, particularly from August to December, where
the frequency rises from 0.169 to 0.279, the highest observed value for the period. This
trend suggests a seasonal pattern where severe cases or events are more frequent towards
the end of the year. The average values for the year further emphasize this distribution with
the “low” class maintaining the highest average (0.779) and the “severe” class following as
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the second most frequent (0.174), highlighting a distinct pattern of severity intensifying
towards the latter months of the year.
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Figure 11. Relative frequency using a logarithmic scale, grouped by time of day for the classes found
for the period of April 2010 to March 2011 in Hawaii dataset for DH3 sensor data.

Table 4. Relative frequency by month from April 2010 to March 2011 data from Hawaii dataset.

Month Low Moderate High Severe

April 0.794 0.04 0.015 0.151
May 0.801 0.044 0.018 0.138
June 0.8 0.053 0.022 0.125
July 0.794 0.049 0.02 0.137

August 0.762 0.048 0.021 0.169
September 0.752 0.038 0.016 0.194

October 0.721 0.031 0.01 0.238
November 0.69 0.023 0.007 0.279
December 0.716 0.01 0.002 0.273

January 0.845 0.018 0.005 0.132
February 0.863 0.017 0.003 0.117

March 0.813 0.039 0.016 0.132
Average 0.779 0.034 0.013 0.174

5. Discussion
5.1. Impact of Proposed Methodology

Sections 4.4–4.6 present the results of applying the methodology proposed in
Section 2.3 to the datasets studied. For each dataset, different class boundaries were
obtained after applying the proposed method. For this study, 10 days were used as input
to the agglomerative for all datasets.

Table 5 presents the class boundaries for the absolute value of Z score across three
datasets: Portugal, Oregon, and Hawaii. Each row represents a class (low, moderate, high,
severe), showing the specific Z score range for each dataset. This layout allows for a quick
comparison, highlighting how each location has distinct thresholds to define the ramp
within each class. Figures 12 and 13 show the ramp classifications represented for one day
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from the Oregon and Hawaii datasets. On both days, the four classes are found, although
for their classification, the limits used were different.

Table 5. Class boundaries determined after application of the proposed methodology.

Class
Dataset

Portugal Oregon Hawaii

Low Z < 0.62 Z < 2.17 Z < 2.19
Moderate 0.62 ≤ Z ≤ 3.51 2.17 ≤ Z ≤ 5.01 2.19 ≤ Z ≤ 5.88

High 3.51 < Z ≤ 6 5.01 < Z ≤ 10.72 5.88 < Z ≤ 8.01
Severe Z > 6 Z > 10.72 Z > 8.01
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Different datasets of different temporal resolutions and from different geographic
locations have been worked with, and for each of them, the limits found with the proposed
methodology have been different. It is therefore to be expected that for a new dataset,
the limits will be new. The limits depend directly on the selected extreme days, and the
classification of the days is a function of the climate of the region.

The relative frequency of the severe class in the Portugal and Hawaii datasets is high
compared to the Oregon dataset which is almost zero. In the first two datasets, the temporal
resolution is seconds while the other dataset has a resolution of one minute; this influences
the classification of the ramps because the ramp depends directly on the ∆t used to calculate
it initially [26]. Moreover, the number of ramps to be classified in these datasets is higher.
However, for the moderate and high classes, the relative frequency maintains a similar
behavior in the three datasets. The low class has a lower relative frequency in the Hawaiian
and Portuguese datasets compared to the one found in the Oregon dataset. The severe class
shows expected behavior when compared to the lower class.

The proposed IBEDI method allows for the generalization of the irradiance ramp clas-
sification to any irradiance dataset, because the method establishes the means to calculate
the limits specific to each dataset in question.

5.2. Solar Irradiance Variability and the Impact of Photovoltaic Systems on Electrical Grids

The variability of solar irradiance is the cause of fluctuations in the power produced
by photovoltaic systems. Several studies have analyzed the performance of photovoltaic
systems from this perspective, observing that the variability present in solar irradiance is
attenuated both by the spatial dispersion among systems and within a photovoltaic system
itself [27,28].

On the one hand, it can be stated that the spatial dispersion of different photovoltaic
systems connected to the same grid attenuates the combined variability. The level of
attenuation primarily depends on the meteorological characteristics of the area and season,
and the distance between the systems [26,29–31].

On the other hand, the attenuation of variability also occurs within photovoltaic
systems [19,32,33]. The analysis of the time series of power delivered by a set of DC/AC
inverters belonging to the same large-scale plant is consistent with the description of a
photovoltaic system as a low-pass filter: high frequencies are attenuated because there is no
correlation between the different time series; low frequencies remain unchanged because
the correlation reaches values close to unity; and the attenuation of intermediate frequencies
depends on the distance between the inverters and on the daily fluctuation level.

Nevertheless, because maintaining an instantaneous balance between generated and
consumed power is crucial for electrical grid operation, the combined variability of mul-
tiple photovoltaic systems can have a significant impact. This impact has resulted in the
formulation of regulations and recommendations for photovoltaic system integration.

To quantify this impact, an analysis of the interaction between the electrical grid,
consumption elements, and photovoltaic systems is required. This analysis is conducted
through the development of comprehensive models that incorporate variations across these
three domains. These models account for intrinsic component characteristics (e.g., PV
system power output, consumption node demand), temporal variability (e.g., industrial
and domestic consumption profiles, radiation models), and spatial factors (e.g., inter-system
and node distances, diverse climatological conditions at generation sites).

An illustrative example of this analytical approach is presented by Uruel and Per-
piñan [34], who performed a steady-state power-flow analysis on multiple electrical distri-
bution networks integrating consumption nodes and distributed photovoltaic generation.
Their model considers wire characteristics, electrical network topology layout, hourly en-
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ergy consumption profiles, and hourly PV-system generation profiles. However, assessing
the impact of variability requires consideration of shorter time scales and thus an analysis of
the network’s transient behavior. A detailed investigation of this transient-state power-flow
analysis is outside the scope of our work and is reserved for future study.

6. Conclusions
In this study, a new methodology for an irradiance classification ramp have been

proposed. A ramp classification method found in the literature has been used, improving
the proposal with methods generalizable to any irradiance dataset. The used method stated
that although the standard deviation-based score ranking technique was presented for
wind data, it was generalizable to solar data.

The methodology covers the series of steps necessary to find class boundaries based
on the data and the specific problem. To do this, it was proposed to use an agglomerative
clustering method on a subset of the data. This would calculate the class boundaries to
be used using the absolute value of the score proposed in the method based on standard
deviation score.

The main contribution is that, by establishing a new method for finding the class
boundaries, the classes are better matched to the classification. Furthermore, the observa-
tions made to the method based on standard deviation score are resolved, since no class is
empty. For this purpose, the methodology has grouped the days of the dataset according
to whether they are clear, partially cloudy, or cloudy and this groups are used to find
representative days to be used like input in the agglomerative algorithm. The proposed
method identifies the extreme days using the RMSD metric between global irradiance and
extraterrestrial irradiance.

Three datasets from distinct geographic regions—Oregon (northwestern United States),
Hawaii (central Pacific Ocean), and Portugal (southwestern Europe)—each with varying
temporal resolutions of five seconds, ten seconds, and one minute—were analyzed.

The class boundaries for each dataset resulted in different limits compared to those
produced by the method based on standard deviation score. With the new limits, represen-
tation was found in all four classes for all datasets.

Future research will address the translation of this classification to photovoltaic sys-
tems interconnected with electrical grids, evaluating the impact of each of them on the
stability of the network.
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