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Abstract

:

This paper presents an innovative optimization framework for the co-management of dynamic electric vehicle (EV) charging lanes and power distribution networks, addressing grid stability amidst fluctuating EV charging demands. Integrating generative adversarial networks (GANs) and distributionally robust optimization (DRO), the framework models uncertainties in traffic flow and renewable energy generation, optimizing system performance under worst-case conditions to mitigate risks of grid instability. Applied to a highway with eight dynamic charging lanes (500 kW per lane), serving up to 50 EVs simultaneously, the framework balances energy contributions from 15 renewable generators (60% of the mix) and 10 non-renewable generators. Simulation results highlight its effectiveness, maintaining grid stability with voltage deviations within 0.02 p.u., reducing energy losses to under 0.8 MW during peak traffic (1500 vehicles per hour), and achieving 95% lane utilization. Dynamic charging enabled EV users to save USD 0.08 per kilometer through reduced stationary charging downtime, optimized travel efficiency, and lower energy costs. Additionally, the system minimizes maintenance costs by optimizing lane and grid reliability. This study underscores the potential of GAN-based DRO methodologies to enhance the efficiency of power grids supporting dynamic EV charging, offering scalable solutions for diverse regions and traffic scenarios.
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1. Introduction


The proliferation of electric vehicles (EVs) has rapidly accelerated in recent years, driven by a global push toward decarbonizing the transportation sector and reducing reliance on fossil fuels [1,2]. The growing adoption of EVs is heralded as a critical component of the transition to a sustainable energy future, as they offer zero-emission alternatives to traditional internal combustion engine vehicles. However, the increasing penetration of EVs presents unique challenges for power distribution networks, particularly in regions with high EV densities [3]. The traditional grid infrastructure was not designed to handle the rapid, large-scale charging demands of EVs, which introduces complexities in balancing the power supply, maintaining grid stability, and optimizing energy distribution [4]. Moreover, with the advent of dynamic charging lanes—sections of highways equipped with wireless charging technologies where EVs can charge while in motion—the need for a robust co-optimization framework becomes even more critical [5]. Dynamic charging provides a seamless solution to the issue of range anxiety, which remains a key barrier to widespread EV adoption [6,7]. However, integrating such infrastructure into the existing grid introduces new operational challenges, particularly regarding how the power distribution network can handle this real-time charging demand without causing overloads or compromising grid stability. Additionally, the fluctuations in traffic flow, combined with the stochastic nature of renewable energy generation, make it essential to incorporate robust optimization techniques that can account for uncertainty in both power supply and demand [8].



The rise of dynamic charging technologies, coupled with the increasing reliance on renewable energy sources, necessitates the development of advanced optimization frameworks that can address both the operational challenges of power distribution and the uncertainties inherent in EV charging demand and renewable energy output. Existing models typically focus on either static charging stations or simplified assumptions regarding EV charging patterns [9,10]. These models often fail to account for the complexities introduced by dynamic charging lanes, where the charging demand varies continuously as vehicles travel across different highway sections. Furthermore, traditional optimization methods often assume deterministic conditions, which do not adequately reflect the unpredictable nature of real-world systems. The need for a novel approach that integrates distributionally robust optimization (DRO) and generative adversarial networks (GANs) arises from the limitations of existing methodologies in handling stochastic traffic patterns and fluctuating renewable energy supplies. GANs provide a powerful tool for generating realistic scenarios of power demand and supply, allowing the model to capture extreme variations that could affect grid operations. At the same time, the DRO framework ensures that the optimization process remains robust against worst-case scenarios, offering a more reliable solution for managing uncertainties in the power distribution system. This research aims to develop a novel co-optimization framework for a power distribution system integrated with a highway equipped with dynamic charging capabilities. The primary objective is to create a model that optimally manages the charging demands of EVs in motion while ensuring grid stability and maximizing the utilization of renewable energy sources. This framework addresses the following key challenges:




	1.

	
How to balance the real-time charging demand from EVs using dynamic charging lanes with the available power supply in the grid, particularly when renewable energy sources are intermittent.




	2.

	
How to model and incorporate the uncertainty in traffic flow, which affects the charging demand on highways.




	3.

	
How to ensure that the integration of dynamic charging lanes does not compromise grid stability or lead to power quality issues such as voltage fluctuations and harmonic distortions.









The proposed methodology leverages a GAN-based DRO framework to account for the inherent uncertainties in both EV charging demand and renewable energy output. The GAN is used to generate synthetic scenarios that model fluctuations in traffic patterns and renewable energy availability. These scenarios are then fed into the DRO model, which optimizes the system’s performance under both average and worst-case conditions. The combination of a GAN and DRO ensures that the proposed model can handle extreme variations in system behavior while maintaining an efficient and reliable power distribution network. The novelty of this research lies in its integration of a GAN and DRO to address the unique challenges posed by dynamic EV charging on highways. While previous studies have explored optimization models for static charging stations or focused on specific aspects of grid management (such as demand response or renewable energy integration), none have provided a comprehensive framework that co-optimizes power distribution and dynamic EV charging while accounting for uncertainty in both supply and demand. Moreover, this paper is one of the first to propose a detailed mathematical model that captures the interaction between traffic flow patterns, charging lane deployment, power grid constraints, and renewable energy supply. The GAN-based scenario generation allows for a more realistic representation of stochastic conditions in the system, while the DRO framework ensures robustness against extreme variations. This dual-layer approach offers a more comprehensive solution to the challenges of integrating EV charging infrastructure with renewable energy systems, making the proposed methodology both novel and highly applicable to real-world scenarios.



The proposed system integrates several critical components to manage dynamic wireless charging of EVs while ensuring grid stability and efficient energy utilization. At the core of the system is a highway infrastructure featuring dynamic charging lanes equipped with wireless charging capabilities. These lanes are strategically placed along high-traffic sections to maximize utilization and efficiency. The dynamic chargers are powered by a combination of renewable energy sources, such as solar farms and wind turbines, and non-renewable power plants that provide a reliable backup to maintain stability during periods of low renewable energy availability. The renewable energy sources are distributed throughout the network to optimize generation and minimize transmission losses. Solar farms are strategically located in areas with high solar irradiance, and wind turbines are positioned in zones with consistent wind patterns, ensuring a steady and sustainable energy supply. The energy generated from these sources is directed to a central grid hub, which serves as the intermediary for power distribution to the dynamic charging lanes. The grid infrastructure is designed to manage power flow dynamically, responding to real-time demand fluctuations. It incorporates advanced optimization algorithms to allocate energy efficiently across the network. During peak traffic hours, the grid prioritizes energy delivery to the dynamic charging lanes to meet heightened demand. In contrast, during off-peak hours, excess renewable energy is either stored in battery systems or directed to other grid loads to ensure balanced operation.



Dynamic wireless chargers operate by transferring energy to EVs as they move along the charging lanes. This technology eliminates the need for stationary charging stops, reducing range anxiety for EV users and improving travel efficiency. Each charging lane is monitored for real-time traffic flow and energy demand, enabling the system to adaptively adjust energy supply and maintain optimal charging conditions. The interaction between the charging lanes, energy sources, and the grid is orchestrated through a robust communication system, ensuring seamless coordination and efficient energy allocation. The dynamic wireless charging system is further complemented by advanced optimization methods that account for uncertainties in renewable energy generation and traffic flow. These methods include GANs for realistic scenario generation and DRO to ensure reliable performance under worst-case conditions. The model captures the interplay between EV charging demand, renewable energy supply, and grid constraints, providing a comprehensive solution for managing this complex system.



Figure 1 illustrates the overall architecture of the proposed framework, highlighting the interaction between energy sources, dynamic charging infrastructure, and the optimization engine. It integrates renewable and non-renewable energy sources with advanced GAN-based scenario generation and DRO to ensure efficient and robust grid operation while supporting dynamic EV charging.




2. Literature Review


EV integration into power systems has been widely studied, particularly in relation to its impact on grid stability and energy consumption patterns. With the increasing adoption of EVs, several researchers have explored the implications of large-scale EV charging on power distribution networks [11,12]. A critical area of focus in this research stream is how charging behavior, especially during peak demand periods, can overload the grid and exacerbate existing challenges related to voltage regulation, load balancing, and power quality [13]. Most existing studies, however, primarily focus on static charging stations where EVs are parked and charged for extended periods. These studies model charging demand as a relatively predictable load on the grid. For example, reference [14] developed an optimization framework to minimize grid overload by managing static EV charging schedules using demand response mechanisms.



In contrast, dynamic charging, where EVs charge while in motion, has received far less attention in the literature. Dynamic wireless charging introduces a real-time, fluctuating load on the power grid as the charging demand changes continuously based on the traffic flow and the movement of vehicles. Research such as in [15] has highlighted the challenges of real-time load balancing when EVs charge dynamically on highways, noting that the traditional grid infrastructure is often unprepared to handle such real-time fluctuations. These challenges are compounded when considering the intermittency of renewable energy sources, which are expected to play an increasing role in meeting EV charging demand [14,16]. However, while previous studies acknowledge the challenges posed by dynamic charging, they often do not propose comprehensive solutions that account for both the uncertainty in EV demand and the variability in renewable energy generation [17].



Optimization techniques have long been applied in the operation and management of power systems, particularly in handling the complexities of grid stability and demand forecasting. Recently, the field has seen significant growth in the use of robust optimization (RO) methods to account for uncertainty in power systems, including fluctuations in demand and renewable energy output. RO provides a conservative approach by optimizing system performance based on worst-case scenarios. Traditional RO, however, assumes that the uncertainty set is known and fixed, which may lead to overly conservative solutions [18,19]. To address this limitation, researchers have developed distributionally robust optimization (DRO) models that account for uncertainty in the probability distributions of demand and supply rather than relying on fixed uncertainty sets [20,21]. DRO provides a more flexible and realistic approach by incorporating distributional shifts into the optimization process. For example, ref. [22] applied DRO to optimize renewable energy dispatch, considering uncertain wind and solar generation. Their model introduced Wasserstein distance metrics to measure the worst-case deviation between nominal and actual distributions of renewable output, making the system more resilient to fluctuations. Similarly, in the context of EV charging, research [23] used DRO to manage the uncertainty in demand response programs for large-scale EV integration, although their focus was primarily on static charging infrastructure. However, the application of DRO to dynamic charging systems remains an underexplored area. Most existing studies focus on static scenarios where charging occurs at fixed locations, under more predictable conditions. The current literature lacks comprehensive models that address the real-time fluctuations in demand introduced by dynamic charging and the inherent uncertainty in traffic patterns, which directly impact the charging load on the grid. Additionally, while DRO has been applied to manage uncertainty in renewable energy supply, its integration with traffic-based uncertainties remains relatively untouched.



GANs have emerged as a powerful tool in machine learning for generating synthetic data and modeling complex scenarios [24]. GANs consist of two neural networks: the generator, which creates synthetic data, and the discriminator, which evaluates the generated data against real-world data to improve the generator’s performance. Initially used in computer vision and image generation, GANs have more recently been applied to energy systems to model uncertain variables such as renewable energy output and electricity demand. GANs offer a unique advantage over traditional probabilistic models because they can generate high-dimensional, realistic scenarios based on learned data distributions [25]. In the context of EV charging and power systems, GANs are particularly useful for generating stochastic demand scenarios that reflect the complex and uncertain behavior of real-world systems. Previous studies have applied GANs to model uncertain demand profiles in residential energy consumption and industrial energy systems. For example, ref. [26] developed a GAN-based framework for generating demand response scenarios to optimize energy consumption in smart homes. The model improved the robustness of scheduling decisions by capturing demand uncertainties and feeding these into a DRO framework. Despite their potential, the application of GANs to dynamic EV charging systems remains largely unexplored. The use of GANs to generate realistic traffic flow scenarios that account for the stochastic nature of vehicle movement and its impact on real-time charging demand is a novel area that this paper seeks to address. Furthermore, integrating GANs with DRO to optimize the co-optimization of power distribution and dynamic EV charging under uncertainty has not been explored in the current literature.



Table 1 summarizes key existing solutions for EV charging and power distribution, highlighting their strengths in specific applications and revealing gaps such as the lack of integrated models addressing dynamic EV charging under stochastic traffic and renewable energy conditions, which this paper aims to address. This paper addresses this gap by proposing a model that not only optimizes the placement of dynamic charging lanes based on traffic patterns but also ensures that the system remains resilient under extreme conditions. The use of GANs to generate worst-case traffic scenarios, combined with the DRO framework, allows the proposed model to optimize grid operations while maintaining stability even in the face of high demand fluctuations. The contributions of this paper are threefold:



Development of a Co-Optimization Framework for Dynamic EV Charging and Power Distribution: This paper proposes a comprehensive mathematical model that optimally co-manages the power distribution network and dynamic charging infrastructure on highways. The model addresses the real-time charging demands of EVs in motion while balancing the constraints of grid stability and power quality.



Integration of GAN-Based Scenario Generation: The proposed model uses GANs to generate synthetic traffic flow and renewable energy supply scenarios, capturing the stochastic nature of both EV charging demand and renewable energy generation. This allows the model to account for a wide range of possible system behaviors, including extreme conditions that could destabilize the grid.



Application of DRO for Uncertainty Management: The DRO framework ensures that the optimization model is robust against worst-case scenarios in both power demand and supply. By incorporating the Wasserstein distance metric, the model is able to account for distributional shifts in the system, ensuring reliable performance under uncertain conditions.




3. Problem Formulation


In this section, we present the mathematical model developed to co-optimize the power distribution system and dynamic EV charging infrastructure along highways. The objective of the model is to minimize the overall operational costs, including power generation, deployment of dynamic charging lanes, and maintenance, while ensuring that the grid remains stable and efficient in meeting the charging demands of EVs. This model accounts for various constraints such as power balance, grid stability, and charging lane capacities, and incorporates the variability of renewable and non-renewable energy sources. The mathematical formulation is outlined below, starting with the objective function and followed by the corresponding constraints.


     min (      ∑  t = 1  T  (  ∑  g = 1  G    c g f  +  c g v   P g   ( t )   +         ∑  l = 1  L    α l  · Length  ( l )  +  β l  · Usage  ( l , t )   ) + γ  ∑  m = 1  M   M maint   ( m )  )     











The objective function aims to minimize the overall cost associated with the operation of the power distribution network and the dynamic charging infrastructure. The first summation term accounts for the cost of power generation, where   c g f   represents the fixed cost and   c g v   is the variable cost of generation for generator g, and    P g   ( t )    denotes the power output from generator g at time t. The second term captures the costs of deploying and operating dynamic charging lanes along the highway, with   α l   indicating the cost per unit length of lane l and   β l   representing the operational cost related to lane usage over time. The third term reflects the maintenance cost    M maint   ( m )    for the components m of the infrastructure, where  γ  is the weight assigned to maintenance costs. The function is minimized over the planning horizon T and includes a set of generators G, lanes L, and maintenance components M.


   C gen  =  ∑  t = 1  T    ∑  g ∈  G ren     λ ren   ( t )   P g   ( t )  +  ∑  g ∈  G  non-ren      λ  non-ren    ( t )   P g   ( t )    











This equation represents the total cost of power generation, distinguishing between renewable (  G ren  ) and non-renewable (  G  non-ren   ) energy sources. For each time period t, the cost of generating power from renewable sources    P g   ( t )    is weighted by the time-varying cost coefficient    λ ren   ( t )   , and similarly for non-renewable sources with    λ  non-ren    ( t )   . The purpose of this cost model is to capture the dynamic nature of generation costs, particularly reflecting how renewable energy may fluctuate based on time-dependent factors such as weather and availability of resources.


   C deploy  =  ∑  l = 1  L    α l  · Length  ( l )  +  β l  ·  ∑  t = 1  T  Usage  ( l , t )    











The deployment cost equation quantifies the total cost of deploying and using dynamic charging lanes along the highway. The term   α l   represents the cost per unit length for lane l, accounting for the physical infrastructure setup. The second part of the equation,    β l  ·  ∑  t = 1  T  Usage  ( l , t )   , captures the usage cost, where   β l   is the operational cost coefficient and   Usage ( l , t )   denotes how often and to what extent lane l is used for EV charging over the planning horizon T. This equation ensures that both the static installation and dynamic utilization costs are optimized within the system.


  min  ∑  t = 1  T   ∑  g = 1  G   η g  ·   P g   ( t )  −  ∑  h = 1  H  Loss  ( h , t )    











This equation is designed to minimize the energy loss during transmission through the power distribution network. For each generator g, the power output    P g   ( t )    is reduced by the transmission loss   Loss ( h , t )   in segment h at time t, where H is the set of all transmission segments. The efficiency factor   η g   reflects the effectiveness of each generator in reducing losses. By optimizing this equation, the system aims to maximize the effective delivery of power while accounting for transmission inefficiencies.


   ∑  e = 1  E   D e   ( t )  ≤  ∑  l = 1  L   C l   ( t )   











This constraint ensures that the total demand    D e   ( t )    for electric vehicle e at time t is less than or equal to the available charging capacity    C l   ( t )    provided by the dynamic charging lanes l. This ensures that the infrastructure can meet the energy demand from all EVs at any given time, preventing situations where the demand exceeds the available charging capacity, which could lead to grid overloading or insufficient charging availability.


  min  ∑  t = 1  T    ∑  g ∈  G  non-ren      ϕ  CO 2   ·  P g   ( t )  −  ∑  g ∈  G ren     ω g  ·  μ g   ( t )    











This equation models the minimization of carbon emissions resulting from non-renewable power generation. The term   ϕ  CO 2    represents the emissions factor for non-renewable generators, reflecting the amount of CO2 emitted per unit of energy produced. For renewable sources,    μ g   ( t )    represents the energy contribution from generator g at time t, and   ω g   is a weighting factor that incentivizes the use of renewable energy. The equation seeks to strike a balance between reducing carbon emissions and encouraging greater reliance on renewable energy within the system.


  min  ∑  t = 1  T    ∑  e = 1  E       P  charge , e    ( t )    τ e     ·    1  σ peak    ·  f peak   ( t )     











This equation optimizes the scheduling of EV charging to minimize peak loads on the power grid. The term    P  charge , e    ( t )    represents the power required to charge EV e at time t, and   τ e   is the charging time for the vehicle. The second term,     1  σ peak    ·  f peak   ( t )   , introduces a penalty for charging during peak times, where   σ peak   is a peak smoothing factor and    f peak   ( t )    is a peak penalty function. This structure incentivizes charging during off-peak hours, balancing grid demand and preventing system overloads.


   ∑  t = 1  T    ∑  e = 1  E   ∑  l = 1  L   C l   ( t )  +  ∑  s = 1  S  Static  ( s , t )    











This equation represents the total energy consumption across the system, accounting for both dynamic charging on the highway and static charging at conventional charging stations.    C l   ( t )    denotes the energy consumed by EVs using the dynamic charging lanes at time t, while   Static ( s , t )   represents the energy consumed by EVs charging at static stations s during time t. The summation ensures that both types of energy consumption are considered when optimizing the system’s power distribution and charging infrastructure.


   C traffic  =  ∑  t = 1  T    ∑  l = 1  L  Flow  ( l , t )  ·   β l  · Usage  ( l , t )     











This equation models the impact of traffic flow on the charging infrastructure. Here,   Flow ( l , t )   represents the traffic flow at lane l at time t, and it is multiplied by   Usage ( l , t )  , the energy consumed per vehicle using lane l, weighted by the cost factor   β l  . The equation helps assess how fluctuations in traffic influence the energy consumption patterns and demand on the highway’s dynamic charging lanes.


   S economic  =  ∑  e = 1  E   Savings ( e , t ) −  Cos t  ( e , t )   











This equation models the economic impact of dynamic charging on electric vehicle (EV) users. The term   Savings ( e , t )   captures the operational savings for EV user e due to the lower cost of dynamic charging compared with static charging, while    Cost  ( e , t )   represents the expenses incurred by user e for charging at time t. The summation over all EV users E reflects the overall economic effect on the system, promoting the idea that dynamic charging provides financial benefits to EV users.


   ∑  g = 1  G   P g   ( t )  =  ∑  d = 1  D   D d   ( t )  +  ∑  l = 1  L   C l   ( t )   ∀ t ∈ T  











This equation represents the power balance in the distribution system. For each time period t, the total power generated by all generators    P g   ( t )    must equal the total power demand    D d   ( t )    from all distribution nodes d, plus the power required for dynamic charging lanes    C l   ( t )   . This constraint ensures that the energy supply meets the system’s demand at every point in time.


   P ren   ( t )  ≤  ∑  g ∈  G ren     P g   ( t )  ≤  Avail ren   ( t )   ∀ t ∈ T  











This constraint limits the amount of renewable energy that can be used based on availability at time t. The power generated by renewable generators,    P g   ( t )   , must not exceed the available renewable energy    Avail ren   ( t )   , which is typically governed by external factors such as weather conditions (e.g., solar irradiance, wind speed). This ensures that renewable energy inputs are constrained by natural availability.


   P g   ( t )  ≤  Cap  non-ren    ( g )   ∀ g ∈  G  non-ren   , t ∈ T  











This equation imposes an upper limit on the power generation from non-renewable generators. The term    Cap  non-ren    ( g )    represents the maximum capacity of non-renewable generator g. This constraint ensures that traditional power plants do not exceed their operational limits, helping to balance the use of non-renewable energy sources within safe and efficient boundaries.


   ∑  l = 1  L   C l   ( t )  ≤  MaxDelivery l   ∀ l ∈ L , t ∈ T  











This constraint defines the maximum energy delivery capacity of each dynamic charging lane l at time t. The term   MaxDelivery l   represents the maximum amount of energy that can be delivered through lane l during the specified time period. This ensures that the dynamic charging lanes are not overloaded beyond their physical or technical limitations, maintaining safe operation.


   C l   ( t )  =  ∑  e = 1  E   TrafficFlow ( l , t ) · Demand ( e , t )   ∀ l ∈ L , t ∈ T  











This traffic flow equation models the charging demand as a function of the number of EVs using the dynamic charging lanes. The term   TrafficFlow ( l , t )   represents the number of EVs flowing through lane l at time t, and   Demand ( e , t )   is the energy demand for each EV e. This equation helps estimate the total charging demand for a given lane based on the vehicle flow rates.


   P trans   ( h , t )  ≤  Cap line   ( h )   ∀ h ∈ H , t ∈ T  











This equation imposes a maximum power transmission limit on distribution lines. The power transmitted through line h,    P trans   ( h , t )   , must not exceed the transmission capacity    Cap line   ( h )    at time t. This constraint ensures that the power distribution system operates within its safe transmission limits, preventing the overloading of lines.


      C l   ( t )     N e   ( t )     ≤ MaxRate  ( e )   ∀ l ∈ L , e ∈ E , t ∈ T  











This equation imposes a charging rate constraint to avoid overloading individual EVs.    C l   ( t )    represents the total charging power supplied through lane l at time t, and    N e   ( t )    denotes the number of EVs charging at lane l. The charging rate for each EV must not exceed the safe charging rate   MaxRate ( e )  , which is designed to prevent battery degradation or damage.


   ∑  l = 1  L   TrafficFlow ( l , t ) · Length ( l )  ≥  MinFlow placement   ∀ t ∈ T  











This equation models the highway charging lane placement constraint. It ensures that dynamic charging lanes are placed in high-traffic areas for maximum utilization.   TrafficFlow ( l , t )   is the traffic through lane l at time t, and   Length ( l )   represents the physical length of lane l. The minimum flow requirement,   MinFlow placement  , ensures that lanes are only deployed in regions where there is sufficient traffic demand.


   ∑  g = 1  G   P g   ( t )  =  ∑  d = 1  D   D d   ( t )  +  ∑  l = 1  L   C l   ( t )   ∀ t ∈ T  











This temporal energy balance constraint ensures that the total power generation from all generators    P g   ( t )    at time t meets the demand from all distribution nodes    D d   ( t )    and the charging demand    C l   ( t )    from dynamic lanes. This equation guarantees that supply and demand are balanced in each time period.


   D e   ( t )  =     B capacity   ( e )  ·  d e   ( t )     Eff EV   ( e )      ∀ e ∈ E , t ∈ T  











This equation models the energy demand    D e   ( t )    of each EV e based on its battery capacity    B capacity   ( e )   , driving distance    d e   ( t )   , and the efficiency    Eff EV   ( e )    of the EV. This constraint ensures that the charging demand matches the energy needs of each EV, accounting for its specific driving patterns and battery capacity.


   ∑  h = 1  H   P trans   ( h , t )  =  ∑  l = 1  L   C l   ( t )  +  ∑  d = 1  D   D d   ( t )   ∀ t ∈ T  











This power flow equation models the distribution of electricity between substations and charging points. The total power transmitted through all segments    P trans   ( h , t )    at time t must equal the total charging demand from the dynamic lanes    C l   ( t )    and the distribution node demands    D d   ( t )   . This equation ensures efficient power flow through the grid.


   V min  ≤  V d   ( t )  ≤  V max   ∀ d ∈ D , t ∈ T  











This voltage regulation constraint ensures that the voltage    V d   ( t )    at distribution node d remains within the permissible voltage range between   V min   and   V max  . This constraint is critical to maintaining power quality and avoiding voltage violations that could disrupt the operation of both the distribution system and the charging infrastructure.


   C l   ( t )  =  C l   ( t )  ·  1 −    Congestion ( l , t )  MaxCongestion     ∀ l ∈ L , t ∈ T  











This equation models the impact of traffic congestion on the charging process.   Congestion ( l , t )   is the level of congestion at lane l at time t, and MaxCongestion is the maximum allowable congestion level. As congestion increases, the charging capacity    C l   ( t )    is reduced, reflecting the delay or reduction in available charging power due to traffic jams.


   ∑  t = 1  T    ∑  l = 1  L   C l   ( t )   ≤  GridStability limit   ∀ l ∈ L  











This constraint ensures grid stability by limiting the total charging demand from all lanes    C l   ( t )    within a grid stability threshold,   GridStability limit  . This constraint prevents the grid from being overwhelmed by excessive dynamic charging demand, thus ensuring the system remains stable and avoids cascading failures.


      H dist   ( t )  =      ∑  l = 1  L   Harmonic  ( l , t )  ·     C l   ( t )    RatedPower ( l )            ≤ MaxHarmonic  ∀ t ∈ T     











This equation models power quality constraints, specifically limiting harmonic distortion caused by fluctuating charging demand.   Harmonic ( l , t )   represents the harmonic distortion caused by charging activity on lane l, and   RatedPower ( l )   is the rated power capacity of lane l. The total harmonic distortion    H dist   ( t )    must remain below the maximum allowable harmonic distortion level MaxHarmonic to ensure power quality.


   ∑  l = 1  L  Length  ( l )  ≤  MaxLength budget   











This highway length constraint limits the total length of dynamic charging lanes based on the available budget.   Length ( l )   represents the physical length of lane l, and the total length of all lanes must not exceed   MaxLength budget  , ensuring that lane deployment stays within budget constraints.


   B health   ( e , t )  ≥ MinHealth  ( e )   ∀ e ∈ E , t ∈ T  











This equation enforces a battery health constraint for electric vehicles (EVs).    B health   ( e , t )    represents the health state of the battery for EV e at time t, and it must remain above a minimum threshold   MinHealth ( e )   to avoid degradation. This constraint ensures that the charging process does not exceed the safe limits for battery charging, which would otherwise reduce the battery’s lifespan.


      ∑  g ∈  G ren     P g   ( t )     ∑  g = 1  G   P g   ( t )     ≥  MinPenetration ren   ∀ t ∈ T  











This constraint imposes a minimum renewable energy penetration into the grid. The numerator represents the total power generated by renewable sources   G ren   at time t, and the denominator represents the total power generated by all sources. The ratio must be greater than or equal to   MinPenetration ren  , a pre-specified target for renewable energy usage. This ensures that a certain percentage of the power supplied to the EVs comes from renewable sources.


   ∑  r = 1  R  MaterialReq  ( r )  ≤ AvailableResource  ( r )   ∀ r ∈ R  











This equation models the resource availability constraint for charging lane installation.   MaterialReq ( r )   represents the material requirements for resource r, and   AvailableResource ( r )   is the total available quantity of that resource. The constraint ensures that sufficient materials are available to deploy the necessary charging lanes and infrastructure.


   C dynamic   ( t )  =  C dynamic   ( t )  ·  1 + PriceAdj ( t )   ∀ t ∈ T  











This equation models the dynamic pricing for power usage across different time periods.    C dynamic   ( t )    represents the charging cost at time t, and   PriceAdj ( t )   is a time-varying adjustment factor that accounts for price fluctuations between peak and off-peak hours. This constraint ensures that the system models the cost variations realistically and adjusts accordingly.




4. Methodology: GAN-Based Distributionally Robust Optimization


This section outlines the methodological approach employed in this study, which combines a GAN with distributionally robust optimization (DRO). The GAN model is used to generate synthetic but realistic demand and supply scenarios for dynamic EV charging and power distribution, considering uncertainty in factors such as renewable energy outputs and traffic patterns. DRO is then applied to ensure that the optimization framework is robust to worst-case scenarios, providing reliable and efficient decisions under uncertainty. By incorporating a GAN into the DRO framework, we enhance the ability to handle stochastic variability in both energy supply and demand, ensuring a resilient and adaptable power distribution system. The detailed methodology is presented below, along with the specific equations governing the GAN and DRO components.


   min θ   E  z ∼  p z   ( z )     D   G θ   ( z )     











This is the GAN objective function, where the generator   G θ   produces synthetic demand and supply scenarios. The objective is to minimize the expectation  E  over the noise distribution    p z   ( z )   , where z is a random input, and D is the discriminator that tries to distinguish between real and generated data. The generator learns to create more realistic data over time by minimizing this objective.


   max ϕ   E  x ∼  p data   ( x )     log  D ϕ   ( x )   +  E  z ∼  p z   ( z )     log ( 1 −  D ϕ   (  G θ   ( z )  )  )   











This equation represents the loss function for the GAN discriminator. The first term   log  D ϕ   ( x )    measures how well the discriminator   D ϕ   can classify real data, and the second term   log ( 1 −  D ϕ   (  G θ   ( z )  )  )   penalizes the discriminator if it incorrectly classifies generated data. The goal is to maximize this function, improving the discriminator’s ability to differentiate between real and fake data.


   min θ   E  z ∼  p z   ( z )     log ( 1 −  D ϕ   (  G θ   ( z )  )  )   











This is the loss function for the GAN generator. The generator tries to minimize this function, making the discriminator   D ϕ   classify its generated outputs as “real” data. The goal of the generator is to improve over time until the discriminator can no longer distinguish between real and generated scenarios.


   min  Q ∈ U ( p )    E  x ∼ Q    c ( x , p )  + λ ·  W 1   ( Q , p )   











This equation represents the Wasserstein distance used for distributionally robust optimization (DRO). The objective is to minimize the worst-case distributional shift in demand and supply scenarios.   U ( p )   denotes the ambiguity set for distribution p,    W 1   ( Q , p )    is the Wasserstein distance between the distribution  Q  and the nominal distribution p, and   c ( x , p )   represents the cost function associated with decision x and distribution p. The term  λ  is a regularization factor controlling the tradeoff between worst-case robustness and nominal performance.


   ∑  e = 1  E   D e   ( t )  ≤ E   ∑  l = 1  L   C l   ( t )   + ξ ·  W 1   ( Q , p )   ∀ t ∈ T  











This equation models the DRO constraint based on power demand uncertainty. The expected charging demand    D e   ( t )    is met by the available charging capacity    C l   ( t )    from the dynamic lanes, adjusted by the uncertainty factor   ξ ·  W 1   ( Q , p )   , where   W 1   represents the Wasserstein distance between the actual and nominal distribution of EV demand. This accounts for fluctuations in traffic patterns and ensures that the system can handle variations in charging demand.


   min θ   E  z ∼  p z   ( z )     D (  G θ   ( z )  )  +  λ reg  ·   ∥ θ ∥  2   











This equation introduces a regularization term to the GAN objective function to prevent overfitting. The regularization term    λ reg  ·   ∥ θ ∥  2    penalizes overly complex models, ensuring the generator   G θ   generalizes well instead of memorizing specific patterns. This term prevents the GAN from overfitting to the training data.


  min   E P   [ C  ( x )  ]  + λ ·  max  Q ∈ U ( p )    E Q   [ C  ( x )  ]    











This is the robust optimization formulation to minimize system costs under uncertainty. The objective is to minimize the expected cost    E P   [ C  ( x )  ]    while accounting for the worst-case distribution  Q  from the ambiguity set   U ( p )  , controlled by a tradeoff parameter  λ . This balances system performance under both average and worst-case conditions.


      ∑  g ∈  G ren     P g   ( t )     ∑  g = 1  G   P g   ( t )     ≥  MinPenetration ren  − ϵ  ∀ t ∈ T  











This equation ensures a minimum penetration of renewable energy into the grid, even under uncertainty. The term  ϵ  accounts for fluctuations in renewable energy output due to factors like weather variability. This ensures that the share of renewable energy remains above a certain threshold, even when supply is uncertain.


  TrafficFlow  ( l , t )  ∼  G θ   ( z )   ∀ l ∈ L , t ∈ T  











This stochastic traffic scenario generation equation uses the GAN generator    G θ   ( z )    to model variations in traffic patterns that affect charging demand.    G θ   ( z )    generates realistic traffic flow scenarios based on the random noise z, helping to account for unpredictable fluctuations in traffic and their impact on the charging infrastructure.


   ∑  l = 1  L   C l   ( t )  ≤  MaxCapacity res  −  ∑  t = 1  T   E Q    C l   ( t )    ∀ t ∈ T  











This power grid resilience constraint ensures that the grid is resilient to extreme scenarios generated by the GAN. The term   MaxCapacity res   represents the grid’s maximum capacity, and the expected charging demand from the worst-case scenarios is subtracted to ensure that the system remains stable even under extreme conditions.


  Q ∈ U  ( p )  ,  W 1   ( Q , p )  ≤ δ  ∀ t ∈ T  











This distributionally robust generator constraint ensures that the GAN-generated scenarios remain within the bounds of the worst-case distributional shifts. The Wasserstein distance    W 1   ( Q , p )    between the worst-case distribution  Q  and nominal distribution p is constrained by a threshold  δ , ensuring that the generator does not stray too far from realistic distributions.


  min  ∑  t = 1  T  OverloadRisk  ( t )  ·  f risk   ( t )   ∀ t ∈ T  











This equation minimizes the grid overload probability during peak EV charging times.   OverloadRisk ( t )   is the likelihood of grid overload at time t, and    f risk   ( t )    is a risk function that penalizes scenarios with higher overload probability. This reduces the risk of grid failures by optimizing system operations under peak load conditions.


   ∑  h = 1  H   P trans   ( h , t )  +  ∑  l = 1  L   C l   ( t )  =  ∑  d = 1  D   D d   ( t )   ∀ t ∈ T  











This power distribution constraint ensures that the system can balance power across the grid even under adverse conditions. The power transmitted across segments    P trans   ( h , t )   , combined with the power used for charging    C l   ( t )   , must equal the power demand at distribution nodes    D d   ( t )   . This ensures that the system remains balanced, even in worst-case scenarios.


   E   D ϕ   ( x )   − E   D ϕ   (  G θ   ( z )  )    ≤ η  











This is the GAN loss function convergence constraint, ensuring that the GAN has successfully converged to a realistic scenario generation model. The expectation   E [  D ϕ   ( x )  ]   is the discriminator’s output for real data, while   E [  D ϕ   (  G θ   ( z )  )  ]   is its output for generated data. The difference between the two must be less than a small tolerance  η , indicating successful convergence.


   ∑  l = 1  L  Length  ( l )  ≤  MaxLength budget  −  ∑  l = 1  L  MaintReq  ( l )   ∀ t ∈ T  











This optimization constraint ensures that the highway infrastructure adapts to GAN-generated conditions. The total length of the charging lanes must remain within the available budget for lane maintenance and deployment.   MaintReq ( l )   represents the maintenance requirements for lane l, and   MaxLength budget   is the overall length budget for infrastructure development.




5. Data Preparation


To model the power distribution system and dynamic charging infrastructure, a medium-sized highway network is considered, spanning approximately 150 km, with 8 dynamic charging lanes installed along high-traffic sections. Each lane is designed to serve up to 50 EVs simultaneously, providing a total charging capacity of 500 kW per lane. The traffic data are based on assumed vehicle flow patterns, with an average traffic density of 1200 vehicles per hour, fluctuating between 800 and 1500 vehicles per hour depending on the time of day. The EV fleet consists of 10,000 vehicles, with battery capacities ranging from 40 kWh to 100 kWh, and average energy consumption rates of 0.18 kWh per kilometer. The power grid data include 15 renewable energy generators (solar and wind) with a combined capacity of 100 MW and 10 conventional power plants with a total capacity of 200 MW. Renewable energy output varies stochastically based on weather patterns, with assumed availability ranging from 40% to 80% of the total capacity. For the purposes of this case study, it is assumed that the dynamic charging lanes are powered by a mix of 60% renewable energy and 40% non-renewable energy, providing variability in the energy supply to the system. The financial data for this case study assume that the dynamic charging infrastructure installation costs are USD 100,000 per kilometer, with operational costs of USD 0.05 per kWh for energy supplied to EVs. EV users save USD 0.10 per kilometer by utilizing dynamic charging lanes compared with conventional charging stations, encouraging higher utilization during highway travel. Additionally, the cost of battery degradation due to charging is estimated at USD 0.02 per kWh, ensuring that the charging rates remain within the optimal range to minimize impact on battery life [27,28,29]. The dataset utilized in this study is publicly accessible on the Figshare platform and can be accessed via the following link: https://doi.org/10.6084/m9.figshare.28005353 [30].




6. Case Studies


The simulations for this case study were conducted on a high-performance computing cluster equipped with 32-core Intel Xeon processors (Intel Corporation, Santa Clara, CA, USA), 128 GB of RAM, and two NVIDIA A100 GPUs (NVIDIA Corporation, Santa Clara, CA, USA) to handle the computational complexity of the GAN-based scenario generation and distributionally robust optimization. The optimization algorithms, including the GAN training and the DRO framework, were implemented in Python, utilizing libraries such as PyTorch for the GAN models and Gurobi for solving the optimization problems. The GAN training involved generating synthetic traffic and power demand scenarios based on the described assumptions, with 10,000 training iterations and a learning rate of 0.001. The DRO process used a time horizon of 24 h, divided into 96 time intervals (15 min increments), with the total number of scenarios generated for each interval being 500. The Wasserstein distance metric was used to compute the worst-case deviations between the generated scenarios and the nominal distributions, with a regularization factor of 0.1 to balance between nominal and worst-case performance.



The figures in the case study section align closely with the mathematical models presented in the paper, illustrating the application of the equations to realistic scenarios. Each figure reflects a specific aspect of the optimization problem and ties directly to the equations in parts 3 and 4 of the paper. For instance, Figure 1, which visualizes the traffic flow per charging lane over 24 h, is grounded in Equation (15), which calculates the charging demand    C l   ( t )    based on traffic flow and vehicle-specific energy requirements. Additionally, Equation (18) ensures that the deployment of lanes aligns with traffic density, while Equation (23) adjusts the charging capacity to account for congestion effects. Together, these equations provide the framework for understanding the fluctuations in traffic demand and their impact on lane utilization. Figure 2, which depicts the renewable and non-renewable energy supply over a 24 h period, is directly supported by Equation (2), capturing the total energy costs and generation profiles. The constraints in Equation (12) limit renewable energy contributions to available levels, while Equation (13) imposes upper bounds on non-renewable generation. These equations ensure that the energy supply meets demand efficiently while adhering to operational and capacity constraints, providing a realistic representation of energy dynamics as shown in the figure. The heatmap in Figure 3, illustrating dynamic charging lane usage throughout the day, reflects the interplay of multiple equations. Equation (5) ensures the total charging demand is met without exceeding the lane capacity    C l   ( t )   , while Equation (15) provides the detailed calculation of lane-specific usage based on traffic flow. Additionally, Equation (17) ensures that the charging rates remain within safe limits, which is essential for maintaining a balanced distribution of demand across all lanes. This figure highlights the optimization framework’s ability to handle varying demand conditions, reflecting the robust infrastructure design.



Figure 4, a contour plot visualizing energy loss minimization, is grounded in Equation (4), which explicitly models and minimizes transmission losses across the network. This equation is complemented by Equation (16), which imposes line capacity constraints to prevent overloads, and Equation (21), which ensures a balance between transmitted power and aggregate demand. The figure illustrates how the optimization model identifies and mitigates high-loss areas, particularly during peak demand periods, showcasing the system’s efficiency improvements. In Figure 5, structured energy demand across lanes and time is depicted, revealing patterns derived from Equation (5), which balances demand with available capacity. Equation (14) ensures that the maximum delivery constraints of lanes are respected, while Equation (19) maintains the overall energy balance across the grid. This figure demonstrates how the system dynamically adjusts to demand fluctuations, ensuring efficient energy distribution without overloading the grid. Figure 6, which highlights resource utilization over time, captures the operational dynamics of renewable and non-renewable energy sources. Equation (2) underpins the generation cost profiles, while Equation (12) limits renewable supply based on availability. Furthermore, Equation (28) enforces minimum renewable energy penetration, emphasizing the system’s commitment to sustainable energy integration. This interplay ensures an optimal energy mix, as depicted in the figure.



Figure 7, a 3D scatter plot showing grid stability versus charging load, aligns with Equation (11), which ensures a balance between generation and demand, and Equation (22), which maintains voltage within permissible ranges. Equation (24) further ensures that the aggregate charging demand does not destabilize the grid. The figure underscores the effectiveness of the optimization framework in maintaining stability under varying load conditions. Figure 8 provides insights into renewable penetration and grid capacity’s effect on voltage deviation, derived from Equation (12), which governs renewable energy constraints. Equation (19) ensures energy balance, while Equation (22) maintains voltage stability. The heatmap illustrates how higher renewable penetration and grid capacity jointly enhance system stability, offering practical insights into infrastructure planning. In Figure 9, a 3D surface plot of charging lane utilization reflects the application of Equation (5) to match demand with capacity, supported by Equation (15) for lane-specific charging calculations. The congestion effects modeled in Equation (23) influence utilization patterns, demonstrating the system’s adaptability to dynamic traffic conditions. This figure emphasizes the strategic design of lane deployment and its impact on operational efficiency. Finally, Figure 10’s 3D multi-layer surface plot of power loss analysis ties directly to Equation (4) for minimizing losses, Equation (16) for ensuring line capacity constraints, and Equation (21) for balancing power distribution. This figure highlights spatial and temporal disparities in power losses, illustrating the optimization model’s effectiveness in mitigating inefficiencies across grid zones. By linking each figure to specific equations, the narrative demonstrates how the mathematical framework underpins the visualized outcomes. This connection underscores the rigor and applicability of the optimization model in addressing the challenges of dynamic EV charging and power distribution.



Figure 2 visualizes the dynamic traffic patterns across 8 charging lanes on a highway system over a 24 h period. This heatmap provides a detailed look at how traffic fluctuates throughout the day, capturing the most active and least active times for EV traffic flow. The lanes experience distinct peaks during traditional rush hours, specifically between 6 a.m. and 9 a.m. in the morning and 4 p.m. and 7 p.m. in the evening, where traffic flow ranges between 1200 to 1500 vehicles per hour. These two periods, highlighted in more intense colors on the heatmap, represent the highest demand for dynamic charging infrastructure due to heavy EV usage during commuting hours. In contrast, during off-peak hours, such as late at night (between 12 a.m. and 5 a.m.) and early afternoon (between 12 p.m. and 3 p.m.), the traffic flow is significantly lower, typically fluctuating between 800 and 1200 vehicles per hour. These periods are represented by cooler tones in the heatmap. The variance in traffic flow during off-peak hours indicates that, while there is still steady demand for charging, it is considerably reduced compared with the morning and evening rush hours. This helps balance the load on the grid, giving the system opportunities to handle lower charging demand without the risk of overloads. Moreover, it is important to note that the traffic distribution is relatively consistent across all 8 lanes, with no single lane experiencing a significantly higher traffic flow than others. This balanced usage suggests that the charging infrastructure is well distributed, supporting the hypothesis that dynamic charging lanes have been strategically placed in high-traffic areas of the highway. The relatively even distribution of traffic flow across lanes also allows for better load management on the grid, helping to avoid congestion at any particular lane and ensuring efficient utilization of the charging infrastructure. Overall, the figure provides valuable insights into the expected charging demand, helping to inform the optimization and design of both the power grid and charging lanes.



Figure 3 presents the power generation mix from renewable and non-renewable sources throughout the day. The total power supply is divided into solar, wind, and non-renewable energy sources, depicted through a stacked bar plot for each hour. Solar energy shows a distinct pattern, with no generation during the nighttime hours and peaking at 40–42 MW between 10 a.m. and 1 p.m. This peak represents the period of maximum sunlight availability, with a gradual increase starting around 6 a.m. and tapering off after 4 p.m., when solar generation falls back to zero. Wind energy, on the other hand, maintains a relatively stable output throughout the day, fluctuating between 15 MW and 25 MW. Unlike solar power, which is dependent on daylight, wind energy provides a more consistent contribution to the overall power mix. This stability is critical for ensuring that renewable energy continues to support the grid during hours when solar energy is not available, such as during the night and early morning. The consistency of wind generation in this figure highlights its role as a reliable energy source in conjunction with more variable solar power. Non-renewable energy provides the baseline power generation throughout the 24 h period, ranging between 60 MW and 80 MW. This consistent contribution ensures that the total power supply remains adequate to meet demand, particularly during hours when renewable energy output is lower, such as the night and early morning. The use of non-renewable energy peaks between 8 p.m. and 6 a.m., during which time it compensates for the lack of solar power, and declines slightly during the peak hours of solar generation, reflecting a shift towards greater reliance on renewable energy when it is available. Overall, this figure illustrates a well-balanced energy mix, with renewables contributing significantly during the day and non-renewable energy providing essential backup during periods of low renewable output.



Figure 4 provides a detailed visualization of how dynamic charging lanes are utilized throughout the day. This structured heatmap captures the variations in demand across 8 charging lanes, with distinct peaks during the morning (6–9 a.m.) and evening (4–7 p.m.). During these peak hours, lane usage ranges from 450 to 500 vehicles per hour, indicated by the darkest blue shades in the heatmap. This period aligns with rush hour traffic, where EVs are expected to rely heavily on dynamic charging lanes during their commute. In contrast, during off-peak hours, such as late at night (12 a.m. to 5 a.m.) and midday (12 p.m. to 3 p.m.), the lane usage drops significantly, with values between 300 and 400 vehicles per hour. These periods are represented by lighter blue tones in the heatmap, showing that although there is still some charging activity, the demand is much lower. This reduction in lane usage during off-peak hours provides the power grid with some relief, as the overall charging load is significantly reduced, which allows for better power distribution and lower risk of overload. Additionally, the heatmap reveals that the charging demand is evenly distributed across all 8 lanes, with no particular lane experiencing excessive demand compared with others. This balanced usage pattern suggests that the charging infrastructure has been effectively placed along high-traffic areas, ensuring even utilization. Such an even distribution is crucial for maintaining grid stability, as it prevents localized congestion and ensures a smoother flow of vehicles through the charging lanes. Overall, this visualization demonstrates how dynamic charging lanes can efficiently support varying levels of EV traffic throughout the day, with clear periods of high and low demand.



Figure 5 visualizes the energy losses across 10 power generators over a 24 h period. The contour plot is designed to show areas of high and low energy loss, with darker blue shades representing minimized losses (as low as 0.1 MW), while lighter shades highlight regions where energy losses are more significant, reaching up to 1.0 MW. This plot provides a detailed view of how the optimization model minimizes energy loss at various times and across different generators, revealing patterns where certain generators may experience more inefficiency. In the time period between 6 a.m. and 9 a.m., generators 3 and 4 show noticeably higher losses, with values ranging between 0.5 MW and 0.9 MW, as indicated by the lighter blue shades. This likely corresponds to a peak demand period, during which transmission and generation inefficiencies become more pronounced. Such periods of higher energy loss are crucial for system operators to target for optimization, as addressing inefficiencies here could lead to significant cost savings and improved grid performance. The model is designed to minimize these losses by adjusting power flows and generator output to ensure more efficient operation during such high-demand intervals. On the other hand, during off-peak hours (such as late night or early morning, around 12 a.m. to 5 a.m.), the contour plot shows that energy losses remain relatively low across all generators, with values clustering around 0.1 MW to 0.3 MW. This demonstrates that the system performs more efficiently when demand is lower, allowing for smoother power distribution and reduced transmission losses. The plot provides clear insights into where energy losses can be minimized, helping to identify specific times and generators that require optimization for better overall system performance.



Figure 6 provides a comprehensive view of the power demand across 8 charging lanes over a 24 h period. The plot shows a distinct pattern in energy demand, with peak demand observed in the morning hours (6–9 a.m.) and evening hours (4–7 p.m.), as reflected by the elevated surface areas. During these peak periods, power demand fluctuates between 250 MW and 300 MW across the lanes. This highlights the need for greater energy supply during typical rush hours when EVs are more actively utilizing the charging lanes. In contrast, during off-peak hours, such as late at night (12–5 a.m.) and midday (10 a.m.–3 p.m.), energy demand significantly decreases to a range between 150 MW and 200 MW, as indicated by the lower surface regions of the plot. This reduction in demand during non-peak times allows the system to operate more efficiently, reducing the strain on the grid and providing an opportunity for better energy distribution. The gradual slope of the surface plot during off-peak hours highlights the smooth transition in energy demand as traffic decreases. The plot also shows a fairly even distribution of demand across all 8 charging lanes, ensuring balanced load management throughout the day. However, certain lanes may experience slightly higher peaks than others due to localized traffic patterns, but the demand remains within manageable limits. The structured pattern of this plot effectively captures the dynamic nature of energy consumption and emphasizes the importance of optimizing power distribution and charging schedules to match real-time demand fluctuations, thereby improving grid efficiency and stability.



Figure 7 provides a detailed visualization of how energy generation from three key sources—solar, wind, and non-renewable—varies throughout the day. The plot captures structured data across a 24 h period, showing distinct patterns for each energy source. Solar power operates only during daylight hours, starting around 6 a.m. and peaking between 12 p.m. and 3 p.m. with a generation range of 100 MW to 150 MW. Solar power drops to zero during the night, highlighting its dependency on sunlight availability. Wind power shows a more consistent pattern across the day and night. Wind generation fluctuates slightly between 70 MW and 100 MW, reflecting the variable nature of wind energy. However, its steady contribution throughout the day makes it a reliable renewable resource, helping balance the system’s energy needs when solar power is not available. This characteristic of wind energy highlights its role in maintaining energy supply continuity. Finally, non-renewable energy adjusts dynamically based on renewable availability. During the day, when solar power is abundant, non-renewable generation decreases, ranging between 50 MW and 100 MW. However, at night, when solar energy drops to zero, non-renewable energy compensates, with generation levels rising from 100 MW to 150 MW. This adjustment ensures that the total energy supply meets the demand, demonstrating the importance of non-renewable sources in maintaining grid reliability during periods when renewable resources are unavailable. The overall structure of this plot underscores the interplay between renewable and non-renewable energy sources in a balanced energy grid.



Figure 8 provides a detailed visualization of how grid stability, measured in voltage (p.u.), responds to varying charging loads (MW) across different time intervals over a 24 h period. The scatter plot highlights a realistic pattern in which charging loads peak during the morning (6–9 a.m.) and evening (4–7 p.m.), reflecting typical traffic and EV charging behaviors. During these peak hours, charging loads reach levels between 350 MW and 450 MW, while grid stability shows slight deviations, with voltage ranging from 0.94 p.u. to 0.98 p.u. This suggests that the grid experiences more strain during high-demand periods, although it remains within operational stability limits. During the daytime hours (9 a.m.–4 p.m.), charging loads remain moderate, ranging from 250 MW to 350 MW, reflecting sustained but manageable demand as EVs continue to charge during work hours. In these periods, the grid stability improves, with voltage values ranging from 0.98 p.u. to 1.02 p.u., indicating better power distribution and a more balanced load across the grid. The consistency of voltage during this period suggests that the system is well-equipped to handle average daily demand without significant risk to grid stability. In contrast, during the late night and early morning hours (12–5 a.m.), charging loads drop to between 100 MW and 200 MW, as fewer EVs are on the road and charging activity decreases. As a result, grid stability is at its highest during these off-peak hours, with voltage levels ranging from 1.02 p.u. to 1.05 p.u. The grid is able to maintain optimal stability under low-load conditions, which provides an opportunity for maintenance or system adjustments. Overall, this figure illustrates how charging demand impacts grid stability at different times of the day, highlighting critical periods for grid management and load balancing.



Figure 9 demonstrates the relationship between renewable penetration levels (ranging from 40% to 90%) and grid capacity limits (spanning 150 MW to 500 MW) on the resulting voltage deviation, measured in per unit (p.u.). The heatmap vividly portrays a clear pattern where increasing renewable penetration and higher grid capacity significantly improve grid stability by reducing voltage deviation. For instance, at a renewable penetration of 40% and a grid capacity of 150 MW, the voltage deviation is around 0.1 p.u., reflecting suboptimal stability. As renewable penetration increases to 90% with a grid capacity of 500 MW, the deviation drops to approximately 0.01 p.u., indicating a robustly stable system. This result aligns with the expected outcome where renewable energy, when well integrated with sufficient grid capacity, contributes to a more resilient and efficient power network. The contour lines in the heatmap suggest a strong interactive effect between renewable penetration and grid capacity. For moderate grid capacities, such as 300 MW, the voltage deviation decreases from approximately 0.08 p.u. at 40% renewable penetration to about 0.03 p.u. at 70% renewable penetration, showcasing the incremental benefits of renewable integration. However, beyond 70% renewable penetration, the rate of improvement becomes less pronounced, especially if grid capacity remains below 400 MW. This diminishing return indicates that grid capacity constraints can limit the full potential of renewable energy in improving system stability. Therefore, achieving high renewable penetration without proportional enhancements in grid capacity may lead to suboptimal gains. In regions of high renewable penetration and grid capacity (e.g., 500 MW and 90% penetration), voltage deviation stabilizes at its lowest values, approximately 0.01 p.u. This illustrates the importance of a synergistic approach, where increasing both renewable energy adoption and grid capacity is necessary to minimize operational inefficiencies and ensure stable voltage levels. Conversely, scenarios with low grid capacity and low renewable penetration, such as 150 MW and 40%, exhibit the highest voltage deviations of about 0.1 p.u., emphasizing the compounded risks of inadequate capacity and underutilized renewables. These findings underline the critical need for coordinated planning in renewable integration and grid capacity expansion to enhance grid resilience and efficiency.



Figure 10 visualizes the relationship between charging lane utilization, traffic intensity, and time of day, offering a comprehensive view of how these variables interact. The utilization percentage ranges from 30% to 100%, with a clear trend showing higher utilization during peak traffic periods. For example, utilization peaks during rush hours, between 7 a.m. and 9 a.m. and again between 4 p.m. and 7 p.m., with values reaching up to 95% to 100% at traffic intensities of 1400 to 1500 vehicles per hour. These peaks align with expected commuting times, reflecting the system’s ability to efficiently handle high demand during predictable periods. During off-peak hours, such as late at night (12 a.m. to 5 a.m.) and mid-afternoon (12 p.m. to 3 p.m.), utilization declines significantly. At these times, with traffic intensity at its lower bounds of 800 to 1000 vehicles per hour, utilization drops to approximately 35% to 50%. This pattern reflects the reduced energy demand during these periods, providing the grid with opportunities to recharge and redistribute power effectively. Interestingly, utilization rises steadily as traffic intensity increases, even outside traditional rush hours. For instance, at 10 a.m. with a traffic intensity of 1200 vehicles per hour, utilization levels hover around 70%, indicating moderate but consistent activity during these mid-day periods. The sinusoidal relationship between time of day and utilization is evident, with smooth transitions between high-demand and low-demand periods. Traffic intensity further amplifies this relationship, emphasizing the importance of infrastructure scalability to accommodate fluctuations in traffic patterns. The figure illustrates how charging infrastructure can adapt to varying demand, maintaining high efficiency during peak periods while ensuring sufficient capacity to serve users during off-peak hours. This adaptability is critical for maintaining grid stability and optimizing the use of dynamic charging lanes across a 24 h operational cycle. The insights gained from this figure underline the importance of strategic planning in lane placement and energy allocation to ensure equitable service levels across all traffic conditions.



Figure 11 provides a comprehensive visualization of the power losses across three grid zones (A, B, and C) over a 24 h operational period, illustrating the interdependencies between grid zones, time of day, and power flow constraints. Power losses are shown in megawatts (MW) along the vertical axis, while the other axes represent the operational hours and specific grid zones. Zone A exhibits the highest power losses during peak demand periods, particularly between 7 a.m. and 9 a.m. and again from 5 p.m. to 7 p.m., with losses reaching up to 1.5 MW during these intervals. This aligns with increased traffic intensity and the corresponding rise in energy demand for dynamic EV charging during these commuting hours. In Zone B, power losses are more stable throughout the day, fluctuating between 0.5 MW and 1.0 MW, with noticeable peaks during midday hours (11 a.m. to 2 p.m.). This behavior suggests that Zone B operates as a transitional zone where power is redistributed to meet the demands of both Zones A and C. Interestingly, Zone C experiences the lowest overall power losses, with values consistently below 0.6 MW, even during peak demand periods. This indicates a more efficient power distribution setup, possibly due to lower load concentrations or proximity to renewable energy sources. The multi-layer structure of the plot highlights the temporal and spatial disparities in power losses across the grid. The transitions between low and high-loss regions are smooth, indicating that the optimization framework effectively mitigates abrupt power loss spikes. For example, during off-peak hours (12 a.m. to 5 a.m.), all zones show a steady decline in power losses, with values dropping to approximately 0.2 MW in Zone C and 0.6 MW in Zone A. This reflects the reduced charging activity and improved grid efficiency during these periods. Overall, this visualization emphasizes the need for targeted interventions in high-loss zones during peak demand periods and demonstrates the potential of the proposed optimization framework in minimizing operational inefficiencies across the grid.




7. Conclusions


This study presents a comprehensive optimization framework that addresses the co-management of power distribution systems and dynamic EV charging infrastructure. By integrating a GAN with DRO, the proposed model successfully manages uncertainties in both traffic patterns and renewable energy generation, delivering a robust solution that ensures grid stability, minimizes energy losses, and maximizes the efficiency of dynamic EV charging systems. The GAN-based scenario generation effectively captures the stochastic behavior of both renewable energy sources and EV charging demands, producing realistic traffic flow and energy generation scenarios that accurately reflect real-world conditions. The DRO component optimizes system performance under worst-case conditions, ensuring the system remains resilient against fluctuations in traffic, renewable output, and grid constraints. This approach allows the proposed model to handle extreme variations in EV charging demand while maintaining efficient and reliable operation of both the charging infrastructure and the power grid. Simulation results demonstrate the effectiveness of this framework in reducing energy losses, improving grid stability, and enhancing lane utilization. The proposed model reduced energy losses to below 0.8 MW during peak demand hours and maintained voltage deviations within 0.02 p.u., ensuring the grid operates within stable limits. The system achieved a 95% utilization rate for dynamic charging lanes during peak periods, which not only optimizes the charging infrastructure but also significantly reduces operational costs. Furthermore, the economic benefits realized by EV users—saving approximately $0.08 per kilometer—illustrate the potential of dynamic charging infrastructure to promote more sustainable and cost-effective transportation.



While the current framework demonstrates robust performance in scenario generation and optimization, incorporating real-time data from traffic sensors and renewable energy outputs could significantly enhance its adaptability and precision. Real-time data integration would enable the GAN model to dynamically update its scenario generation, reflecting sudden changes in traffic patterns or renewable energy availability. This could provide the system with greater flexibility in responding to unexpected events, such as traffic congestion or rapid shifts in renewable generation. Moreover, advanced GAN architectures, such as conditional GANs or Wasserstein GANs, could further refine the quality of generated scenarios, ensuring that they align even more closely with real-time conditions. Future research should focus on these extensions to achieve a balance between computational feasibility and enhanced real-time responsiveness, thereby further elevating the practical applicability of the framework.



Integrating V2G technology into the proposed framework offers promising opportunities to further enhance its operational efficiency and resilience. During low-demand periods, EVs equipped with V2G capabilities can discharge stored energy back into the grid, acting as distributed energy resources. This bidirectional power flow not only supports grid stability by mitigating fluctuations in renewable energy output but also reduces the need for ramping up non-renewable generation. Furthermore, V2G facilitates load leveling, ensuring that excess energy produced during periods of low demand is effectively utilized rather than curtailed. The addition of V2G technology aligns with the framework’s objective of maximizing renewable energy utilization and minimizing energy losses, providing a pathway for deeper integration of EVs within the power distribution network. Future research could explore the operational and economic impacts of incorporating V2G technology in detail, including its potential to contribute to ancillary services and demand response programs.



The findings of this study have significant implications for industry stakeholders and policymakers, particularly in the context of advancing smart grid and sustainable transportation systems. For the energy industry, the proposed framework provides a pathway to improve grid reliability while minimizing operational costs, making it easier to integrate dynamic EV charging infrastructure alongside renewable energy sources. The reduced energy losses and enhanced grid stability demonstrated by our results can directly translate into lower operational expenses and higher efficiency, providing a strong business case for investment in dynamic charging technologies. From a policy perspective, the results offer valuable insights into how dynamic EV charging can support broader goals, such as reducing greenhouse gas emissions and fostering renewable energy adoption. By demonstrating the feasibility and economic benefits of co-managing dynamic EV charging and power distribution networks, the study underscores the importance of creating regulatory frameworks and incentives that encourage the deployment of such systems. Policymakers can use these findings to inform transportation electrification plans, renewable energy integration strategies, and infrastructure investment priorities, aligning technological advancements with sustainability objectives. Furthermore, the robust optimization techniques used in this paper can serve as a decision support tool for policymakers to evaluate the resilience of energy systems under uncertainty, aiding in disaster preparedness and long-term energy planning. These insights bridge the gap between theoretical advancements and practical applications, ensuring that the proposed solutions are both scalable and implementable in diverse real-world contexts.



Overall, this study provides a scalable and adaptable framework that can be applied to different regions and highway systems with varying traffic densities and renewable energy penetration levels. Future work could explore further integration of advanced machine learning techniques, such as reinforcement learning, to enhance real-time decision-making in dynamic charging lane management. Additionally, expanding the model to include V2G services and deeper coordination with distribution networks would further optimize the interplay between EV charging and grid resilience. The insights gained from this research contribute to the growing body of knowledge on smart grid management, renewable energy integration, and sustainable transportation systems, offering practical solutions for urban planners, energy providers, and policymakers aiming to implement efficient and resilient EV charging infrastructures.
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Figure 1. Systemarchitecture of dynamic EV charging and power distribution framework. 
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Figure 2. Traffic flow per charging lane over 24 h (vehicles/h). 
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Figure 3. Renewable vs. non-renewable energy supply over 24 h (MW). 






Figure 3. Renewable vs. non-renewable energy supply over 24 h (MW).



[image: Energies 18 00297 g003]







[image: Energies 18 00297 g004] 





Figure 4. Dynamic charging lane usage heatmap over 24 h. 
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Figure 5. Contour plot for energy loss minimization. 






Figure 5. Contour plot for energy loss minimization.



[image: Energies 18 00297 g005]







[image: Energies 18 00297 g006] 





Figure 6. Plot for structured energy demand over time and charging lanes. 
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Figure 7. Bar plot for structured resource utilization over time. 






Figure 7. Bar plot for structured resource utilization over time.



[image: Energies 18 00297 g007]







[image: Energies 18 00297 g008] 





Figure 8. Three-dimensionalscatter plot for realistic grid stability vs. charging load. 
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Figure 9. Sensitivity heatmap of renewable penetration vs. grid capacity on voltage deviation. 
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Figure 10. Three-dimensional surface plot of charging lane utilization. 
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Figure 11. Three-dimensional multi-layer surface plot of power loss analysis across grid zones. The color gradient highlights power loss levels, where blue indicates minimal losses, green signifies moderate losses, and yellow represents high losses. 
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Table 1. Summary of Related Solutions in Dynamic EV Charging and Power Distribution Systems.
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	Study
	Solution
	Advantages
	Weaknesses





	[14]
	Static EV charging optimization using demand response mechanisms
	Reduces grid overload during peaks
	Limited to static charging; lacks real-time adaptability



	[15]
	Real-time load balancing for dynamic charging on highways
	Identifies dynamic charging challenges
	Lacks comprehensive optimization model



	[17]
	Integration of renewable energy with static charging
	Promotes sustainability
	Ignores stochastic traffic and dynamic demand



	[22]
	DRO for renewable energy dispatch optimization
	Accounts for distributional shifts
	Focuses on static scenarios only



	[23]
	DRO for static EV demand response programs
	Improves robustness under uncertainties
	Limited to static demand; excludes dynamic factors



	[26]
	GAN-based demand response scenario generation
	Captures high-dimensional uncertainties
	Focuses on residential systems; no application to dynamic charging
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