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Abstract: The resilient control issue for the generation unit (GU) in a local power plant with
unreliable communication is addressed in this article, where the communication may be
jammed by denial-of-service (DoS) attacks. Based on the GU model of voltage and current
at the point of common coupling, a demand-driven network communication protocol is
proposed to decrease the number of scheduling signal transmissions, and an observer-based
prediction method is provided to replenish the lack of dispatching data during transmission
intervals when the demand has not changed. The closed-loop performance is analyzed for
the GU system in the input-to-state stable framework with or without attack. According to
the DoS attack model, which is described by the assumptions of frequency and duration,
the conservativeness of the tolerable DoS attack index is reduced by using the thought of
robustness to the maximum disturbance-induced error. Simulation examples are provided
to verify the effectiveness of the approach proposed in this article.

Keywords: generation unit system; resilient control; network communication; denial-of-
service attack; stability analysis

1. Introduction
In recent decades, with the vigorous progress of renewable energy, the randomness

of renewable generation such as wind power and photovoltaics has made the smooth
scheduling of power systems a hot topic [1]. In order to enhance the flexible capacity and
peaking capacity of the power system, voltage and frequency control of small generation
units (GUs) in local power plants becomes necessary. Recently, the scheduling scheme
based on network communication has been widely used in power systems [2]. However,
the utilization of heterogeneous electrical and electronic components with networks has
made the data transmission fairly open to various cyber attacks. This can lead to serious
security consequences. Unlike the attacks on traditional systems that limit the influence to
the cyber level, the physical world of power systems can be impacted by malicious cyber
attacks [3], causing serious social and livelihood problems. Thus, these strong demands
for power systems exist, despite malicious cyber attacks, designing analysis and synthesis
approaches to ensure their reliability and security [4,5].

Typically, the various malicious attacks involve deception attacks and denial-of-service
(DoS) attacks, where the latter attack leads to the information absence of the actuator and
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sensor by blocking the data transmission to their respective destinations. The DoS attack is
very common in networked control systems, and lots of studies have been presented on
networked power systems under DoS attacks. In [6], an H∞ load frequency control based
on an event-triggered strategy is studied for multi-area power systems, and the resilient
control approach is proposed to deal with the presence of DoS attacks. Security issues in
remote state estimation with the existence of jamming attacks are investigated in [7] using
a game-theoretic approach. In [8,9], the optimal DoS attack strategies for maximizing the
deterioration on the system performance from the view of the adversary are investigated.

Stability analysis is a popular research topic on security problems of control systems
under DoS attacks. In [10], the DoS attack model is characterized according to its frequency
and duration, input-to-state stable (ISS) is demonstrated for the attacked closed-loop system,
and transmission timing is scheduled based on this DoS attack model. Based on the analysis
strategy proposed in [10], to maximize the attack intensity index according to the frequency
and duration of the attack model with which the stability of the system is not destroyed, a
resilient control framework is proposed in [11]. In [12], the controller design and analysis is
investigated with this DoS attack model for nonlinear dynamics. In [13], based on the ISS
control framework, the scenario of multiple transmission channels is considered for linear
systems under DoS attacks. In [14], an output-based synthetical control design strategy for
a class of hybrid nonlinear dynamics under DoS attacks is provided in a dynamic event-
triggered framework. In [15], observer-based asynchronous control for switching power
systems subject to DoS attacks is discussed. However, research on the resilient control
of power systems under the condition of unreliable communication is still insufficient;
particularly, the design of the output voltage and current control scheme of the GU via the
network is still a challenging problem.

Traditionally, the control algorithms are executed in the time-scheduled strategy, in
which the sampling and data communication are carried out periodically. Although the
time-based periodic sampling might be preferable from the point of view of system analysis
and design, it leads to the unnecessary waste of limited resources. Usually, network-based
scheduling signals in power systems are not transmitted in real time but communicate
when scheduling needs arise. In this way, the traditional time-triggered control method
is no longer suitable. The event-triggered control scheme as a control strategy based on
intermittent communication has been a wide concern for networked control systems [16–18],
and it can be used to construct a demand-based control scheme for GUs. In [19], an event-
triggered control (ETC) strategy with a periodic verification mechanism for linear systems is
proposed, which is named periodic event-triggered control (PETC). By merging the time-
scheduled strategy and ETC, the characteristic of PETC is to verify the triggering condition
periodically—that is, whether to calculate and send new sampling data or new control data
is determined at each periodic verification time. In [20], consider the scenario where both
the sensor-to-controller channel and the controller-to-actuator channel are communicated
via a network, a PETC algorithm is designed according to the retrievable system state
space model. The above studies are all about networked control systems without attacks.
Practically, power system scheduling also has a fixed sampling period; however, it is still a
challenge to construct a resilient control scheme for the GU under unreliable communication
using the idea of PETC.

For grid-connected power plants, the purpose of scheduling is to maintain the balance
and stability of voltage and frequency, which are specified by the main grid when there
are demands. However, for the local power plants tasked with flexibility and peaking,
voltage and frequency outputs for GU are definitively controlled according to the net-
worked scheduling signals, and it is necessary to save network resources. By introducing
the concept of neutral interactions, the dynamic model of GU in this paper is established by



Energies 2025, 18, 300 3 of 18

exploiting quasi-stationary line approximations of line dynamics [21]. To improve the secu-
rity of networked scheduling, the unreliable network communication channel is modeled
as the communication interruption of the sensor channel due to the presence of a DoS attack.
To construct the control framework, a smart sensor system is adopted in order to design the
demand-driven mechanism (DDM)—that is, network communication is performed only
when scheduling is required. Unfortunately, in the design of the control system, the load
current of the unit connection is difficult to estimate. The conventional idea is to treat it as
an unknown disturbance, but how to deal with the error term introduced by disturbance
and noise is still a difficult point in the DDM design. To improve resilience against DoS
attacks, a predictor is proposed in the controller system to compensate for the lack of
data during communication intervals. Based on the ISS analysis framework, the stability
when there are DoS attacks is proved and the maximum tolerable attack intensity index
is quantified.

The prime innovations of this article are generalized below: First, the dynamic model
of the GU for local power plant is established by exploiting quasi-stationary line approx-
imations, and the unknown loads are treated as unmodeled disturbances, which can be
restricted by the designed H∞ observer. At the same time, the effects of disturbance and
noise during the DDM design can be addressed by the quantified H∞ performance index.
Second, the advanced demand-driven resilient control method with a periodic verification
strategy is presented to deal with the unreliable communication caused by DoS attacks, and
the intermittent communication scenario meets the requirements of network scheduling for
the GU by applying the prediction-based method. Third, based on the thought of robust-
ness to the maximum disturbance accumulation error, the conservatism of the tolerable
attack intensity in this result is decreased compared with [10,14].

The rest of this article is organized as follows: The GU model is described in Section 2,
and the observer and the predictor are designed. In Section 3, the ISS of the demand-driven
control approach is proved. Section 4 gives the resilient control strategy under DoS attacks.
Section 5 provides simulation results. The conclusions of this paper are given in Section 6.

2. System Formulation and Problem Description
First of all, the meanings of the symbols used in this paper are shown in the notation

below. Then, the state space model of the GU is constructed, and the resilient control
framework is designed based on it.

Notation: Let R and Rn be the sets of real and Euclidean spaces with dimension n,
respectively. Let N be the natural number set and N0 = N∪ {0}. ∥x∥ denotes the Euclidean
norm for any vector x ∈ Rn. AT is the transpose of a given matrix A, ∥A∥ is the spectral
norm, and µA is the logarithmic norm [22] with µA = max

{
λ|λ ∈ spectrum

{
A+AT

2

}}
. For

sets S1 and S2, denote S2\S1 by the relative complement of S1 in S2. |T(t1, t2)| = t2 − t1

denotes by the length of an interval T = [t1, t2). For a measurable function h(t) defined in
[0, t), the L∞ norm of h(·) is denoted by ∥ht∥∞ = ess sups∈[0,t)∥h(s)∥.

2.1. Generation Unit Model

In this section, the dynamical model of the GU for a local power plant is presented.
To simplify the analysis process, the realistic model of GU is assumed to consist of trans-
formers, associated filters, and voltage source converters (VSCs) [21]. As shown in Figure 1,
through a non-zero impedance three-phase line with (Rij, Lij), the considered GU denoted
by i is connected with other units j. The GU is made up of a VSC, a DC voltage source
(representing a biomass or waste incineration unit), an inductance Lt, a series filter charac-
terized by a resistance Rt, and a station step-up transformer (Y − ∆); further, at the point of
common coupling (PCC) of the electrical network, the GUs are connected with each other



Energies 2025, 18, 300 4 of 18

through the transformer, where the transformer coefficients are represented by Rt and Lt,
and k is defined as the transformation ratio.

Figure 1. Electrical scheme of GU with unmodeled loads.

For the local loads that are connected to the PCC, consider the case where the GU
proves the real and reactive powers. Suppose that the loads are time-varying and unknown,
and the load current IL is treated as the disturbance for the GU. At the PCC of each local
area, the effect of high-frequency harmonics of the load voltage is attenuated by using the
shunt capacitance Ct. In the abc-frame, based on the dynamical equations of this scheme
and by applying Park’s transformation, the model rotating with speed ω0 in the dq-frame
is obtained as follows:

GU i:


dVi,dq

dt + jω0Vi,dq = ki
Cti

Iti,dq +
1

Cti
Iti,dq − 1

Cti
ILi,dq

dIti,dq
dt + jω0 Iti,dq = − Rti

Lti
Iti,dq − ki

Lti
Vi,dq +

1
Lti

Vti,dq
(1)

Line ij:
{ dIij,dq

dt + jω0 Iij,dq = 1
Lij

Vj,dq −
Rij
Lij

Iij,dq − 1
Lij

Vi,dq (2)

where Vi,dq is the output voltage at the PCC, and Vti,dq and Iti,dq are the output voltage and
current of the GU, respectively. The states in (1) and (2) can be divided into two segments—
that is, the dq reference frame is divided as the real component d- and the imaginary
component q-, respectively, and Iij is the line current. Modeling the load current ILi,dq as the
disturbance, (1) and (2) can be represented through the following continuous time linear
dynamic form:

ẋ(t) = Ax(t) + Bu(t) + Eω(t)
y(t) = Cx(t) + v(t)

(3)

where x = [Vi,d, Vi,q, Iti,d, Iti,q, Iij,d, Iij,q]
T is the state vector, u = [Vti,d, Vti,q, Vtj,d, Vtj,q]

T is the con-
trol input, ω = [ILi,d, ILi,q, ILj,d, ILj,q]

T is the unknown disturbance, y = [Vi,d, Vi,q, Vj,d, Vj,q]
T

is the measurement output, and v(t) is the measurement noise. Suppose that ω(t) and v(t)
are bounded, where ∥ω(t)∥ ≤ δω, ∥v(t)∥ ≤ δv. A, B, C, and E are system matrices to be
determined later. This model is regarded as the master model here, since the states of the
line are controlled by the GU i only for the control purpose.

To isolate the effects of other connected GUs on the grid, an approximate model is
given to avoid the requirement of applying the line current in the GU’s dynamic equations.

Let
dIij,dq

dt = 0; the quasi-stationary line approximations model is given as

Īij,dq =
Vj,dq

(Rij + jω0Lij)
−

Vi,dq

(Rij + jω0Lij)
.
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Then, replace variable Iij,dq in (2) and divide the complex dq quantities into the correspond-
ing d and q components; the transformed model for GUi is formulated as follows:

GU i:



dVi,d
dt = ω0Vi,q +

ki
Cti

Iti,d − 1
Cti

ILi,d +
1

Cti
Īij,d

dVi,q
dt = −ω0Vi,d +

ki
Cti

Iti,q − 1
Cti

ILi,q +
1

Cti
Īij,q

dIti,d
dt = − ki

Lti
Vi,d − Rti

Lti
Iti,d + ω0 Iti,q +

1
Lti

Vti,d
dIti,q

dt = − ki
Lti

Vi,q − Rti
Lti

Iti,q − ω0 Iti,d +
1

Lti
Vti,q

(4)

then, the dynamic model (1) of the GU is constructed as the following state space
model form:

A =


− 1

Cti
(

Rij

Z2
ij
) ω0 − 1

Cti
(

Xij

Z2
ij
) ki

Cti
0

−ω0 +
1

Cti
(

Xij

Z2
ij
) − 1

Cti
(

Rij

Z2
ij
) 0 ki

Cti

− ki
Lti

0 − Rti
Lti

ω0

0 − ki
Lti

−ω0 − Rti
Lti

, B =


0 0
0 0
1

Lti
0

0 1
Lti

,

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, E =


− 1

Cti
0

0 − 1
Cti

0 0
0 0

.

where Xij = ω0Lij, Zij =
∣∣Rij + jXij

∣∣, x(t) = [Vi,d, Vi,q, Iti,d, Iti,q]
T , u(t) = [Vti,d, Vti,q]

T , and
ω(t) = [ILi,d, ILi,q]

T .

2.2. Control Framework

In order to meet the scheduling and control practice based on the network commu-
nication while guaranteeing the desirable scheduling performance of the GU, the control
construction is designed as in Figure 2. A sensor system is designed to transmit the measure-
ment information to the remote controller system based on the communication network. At
the same time, the network communication is unreliable, which is caused by DoS attacks.

Figure 2. The framework of resilient control for GU under DoS.

The smart sensor system with a demand-driven method and periodic verification
strategy is designed to schedule the scheduling commands. The sensor system consists of
an observer O that deals with disturbance and noise, and the time when information is
needed to be sent to the controller system is decided by a designed DDM. Furthermore,
the controller system contains a predictor Pr that can compensate the GU’s state data loss
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during the transmission interval using the latest received data. To suppress the impact of
disturbance and noise, the H∞ observer is designed as follows:

Observer O : ẋs(t) = Axs(t) + Bu(t) + L(y(t)− Cxs(t)) + Lv(t) (5)

where xs(t) denotes by the state estimation of the sensor system and L is the designed gain
matrix. Denote es(t) = x(t)− xs(t) by the observation error; then, the error dynamic can
be formulated as

ės(t) = ΦLes(t) + Γξ(t) (6)

where ΦL = A − LC, Γ = [I − L], ξ(t) =

[
Eω(t)
v(t)

]
. Based on continuous-time systems’

bounded real lemma [23], the gain matrix L is able to be calculated based on the LMI
in (7) and ∥es(t)∥2 < γ∥ξ(t)∥2 is obtained. P̄ΦL + ΦT

L P̄ P̄Γ I
∗ −γI 0
∗ ∗ −γI

 < 0 (7)

where P̄ is a symmetric positive definite matrix and γ is a small positive scalar, which
represents the H∞ performance index. The predictor is given as

Predictor Pr :

{
ẋp(t) = Axp(t) + Bu(t), xs(t) is not received
xp(t) = xs(t), xs(t) is received.

(8)

Whether the observer data xs(t) are sent is determined by the demand of scheduling
control, which is represented by the difference between the observed states of the GU and
the predicted value of the remote controller. Then, the DDM is designed as follows:

xs(t) is sent ⇔
∥∥xs(t)− xp(t)

∥∥ > σs∥xs(t)∥+ σcρ (9)

where ρ = γ∥C∥δ + δv, δ = ∥E∥δω + δv, σs and σc are suitable positive demand parameters
to be selected later, and γ is obtained by solving LMI (7). Besides, when the DDM (9) is met,
an acknowledgment (ACK) signal is required to affirm that the transmission attempt was
successful, and this assumption is consistent with the TCP-type communication protocol.

Define {tk}k∈N0
as the sequence performing data transmission of control update,

and denote ∆k = tk+1 − tk by the data transmission interval between two consecutive
attempts, which

0 < ∆ ≤ ∆k ≤ ∆̄ (10)

where ∆̄ and ∆ are upper and lower bounds of the intervals between two consecutive
attempts, respectively.

Remark 1. The length of interval ∆k is decided by the DDM (9), but it is necessary to set the lower
and upper bound. Due to the characteristic of periodic verification strategy, the lower bound ∆ can
be selected as the DDM verification period. Inspired by the pre-specified upper bound of inter-event
times in [17], the upper bound ∆̄ is needed to force the sensor to send data to the remote controller if
the transmission is not executed for long periods of time.

The sensor system transmits the latest estimation value xs(t) to the controller system by
network communication to renew the state prediction xp(t) at {tk}k∈N0

—that is, xp(tk) =
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xs(tk), and it is the initial value for the state prediction when t ∈ [tk, tk+1). Then, xp(t) is
calculated by (8) and the control value is able to be designed by the switching controller
formulated as

u(t) =

{
Kxp(t), xs(t) is not received
Kxs(t), xs(t) is received.

(11)

where K is the state feedback gain matrix. In order to improve the rate of convergence,
region poles assignment lemma [23] is used to solve K with α stability margin. Let Φ2 =

A + BK; then, K can be obtained by solving the following LMI:

P2Φ2 + ΦT
2 P2 + 2αP2 < 0 (12)

where α > 0 is a given coefficient and P2 is a symmetric positive definite matrix.
As in Figure 2, a replica of the predictor Pr is run in the sensor system so that it can

synchronize xp(t) that the controller system has and can judge whether (9) is satisfied.
When the DDM (9) is not satisfied, xs(t) is not sent and the error between xp(t) and xs(t)
is accumulated until (9) is satisfied; then, xs(t) is transmitted to the predictor Pr, and an
ACK signal is sent and returned to the sensor from the controller system by the network to
ascertain that the transmission attempt was triumphant.

3. Demand-Driven Control Strategy
This section gives the design process of the demand-driven control strategy—that

is, the selection method of driven parameters under the premise of ensuring the control
objective. First of all, the control objective is described as the definition provided below:

Definition 1 ([24]). Given the GU system (3) with control input (11), for each ωt ∈ L∞(R,
ω ≥ 0) and x(0) ∈ Rn, if there is a KL-function h1(·) and a K∞-function h2(·) such that

∥x(t)∥ ≤ h1(∥x(0)∥, t) + h2(∥ωt∥∞) (13)

holds for all t ∈ R with t ≥ 0, the system is considered to be ISS. Besides, the system (3) is globally
asymptotically stable if (13) is satisfied for ωt ≡ 0.

Then, the design process of the demand-driven parameters is given. For t ∈ R, t ≥ 0,
to measure the difference between the truth state x(t) and the state prediction xp(t), which
represents the demand of network communication, denote the prediction error by

e(t) = xp(t)− x(t) (14)

Then, the formula for the closed-loop GU system is given as

ẋ(t) = Φ2x(t) + BKe(t) + Eω(t) (15)

Design the Lyapunov function as V(t) = xT(t)Px(t), where P is the unique solution of the
following Lyapunov equation:

PΦ2 + ΦT
2 P + Q = 0 (16)

where Q is any given positive definite symmetric matrix. Then, we have

α1∥x(t)∥ ≤ V(t) ≤ α2∥x(t)∥ (17)
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V̇(t) ≤ −γ1∥x(t)∥2 + γ2∥x(t)∥∥e(t)∥+ γ3∥x(t)∥∥ω(t)∥ (18)

for any t ∈ R, t ≥ 0, where α1 and α2 are equal to the smallest and largest eigenvalues of
P, respectively. γ1 is the smallest eigenvalue of Q; γ2 = ∥2PBK∥ and γ3 = ∥2PE∥. Notice
that

∥∥xs(t)− xp(t)
∥∥ ≤ σs∥xs(t)∥+ σcρ is always true when t ∈ [tk, tk+1); then, it yields∥∥x(t)− xp(t)

∥∥ ≤ σs∥x(t)∥+ σcρ + λ∥ξ(t)∥∞ (19)

where the inequality comes from the triangle inequality and the fact that ∥es(t)∥ =

∥x(t)− xs(t)∥ < γ∥ξ(t)∥∞. Then, ∥ξ(t)∥∞ ≤ ∥E∥δω + δv = δ yields

∥e(t)∥ =
∥∥x(t)− xp(t)

∥∥ ≤ σs∥x(t)∥+ σδδ (20)

where σδ = γσc∥C∥+ γ + σc. Then, V̇(t) ≤ −(γ1 − σsγ2)∥x(t)∥2 + (γ3 + σδγ2)∥x(t)∥δ can
be obtained by substituting (20) into (18) and indicates that when γ1 − σsγ2 > 0 holds,

V(x(t)) ≤ e−θ1tV(x(0)) + γ4δ2 (21)

where θ1 = γ5
2α1

, γ4 = (γ3+σδγ2)
2

2γ5θ1
, and γ5 = γ1 − σsγ2.

The use of the prediction method makes the controller system able to simulate the true
state value; then, the discrepancy accumulated in the transmission interval is degraded by
the information compensation. From (14), it yields for any t ∈ [tk, tk+1) that the dynamic of
the prediction error can be formulated as

ė(t) = ẋp(t)− ẋ(t)
= Ae(t)− Eω(t)

(22)

then, we have the upper bound of the error as

∥e(t)∥ ≤
∫ t

tk
eµA(t−τ)(∥A∥∥es(tk)∥+ ∥E∥∥ω(τ)∥)dτ

< f (t − tk)(γ∥A∥δ + ∥E∥δω)

= ε(γ∥A∥δ + ∥E∥δω)

(23)

where f (t − tk) =
∫ t

tk
eµA(t−τ)dτ and ε =

{
∆k, µA ≤ 0

1
µA

(eµA∆k − 1), µA > 0
.

Because the DDM (9) is periodically validated in the case of a continuous system pro-
cess, it is necessary to investigate the transmission attempt sequence {tk}k∈N0 to eliminate
continuous transmissions within each validation period. Denote the estimation–prediction
error by ep(t) = xs(t)− xp(t); then, the dynamic of this error is

ėp(t) = Aep(t) + Lȳ(t) (24)

where ȳ(t) = Ces(t) + v(t). Since ep(tk) = 0 for any t ∈ [tk, tk+1), it yields∥∥ep(t)
∥∥ ≤ ∥L∥

∫ t
tk

eµA(t−τ)∥ȳ(τ)∥dτ

≤ ∥L∥
∫ t

tk
eµA(t−τ)dτ(∥C∥∥es(t)∥+ ∥v(t)∥∞)

≤
{

ρ∥L∥(t − tk), µA ≤ 0
ρ ∥L∥

µA
(eµA(t−tk) − 1), µA > 0
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where ρ = γδ∥C∥+ δv as in (9); further, it yields that if t − tk ≥ ∆ with

∆ =

{
σc
∥L∥ , µA ≤ 0
1

µA
log( µAσc

∥L∥ + 1), µA > 0
(25)

then for any σc > 0, the DDM (9) cannot be satisfied if t ∈ [tk, tk + ∆).

Remark 2. Notice that the threshold part of the mechanism is divided into two items. One influences
the stability of the system and is determined by the parameter σs. If the selected parameter σs is large,
the demand error will be too large compared to the updated data xs(t), and the updated data may not
stabilize the system. The other parameter is σc, which determines the influence of the disturbance
and noise to the DDM. The selection of σc directly determines the minimum transmission interval
∆, and σc can be chosen based on the quantitative relationship (25).

4. Resilient Control with Unreliable Communication
Notice that when the demand-driven control strategy is designed, the status of the

communication is unknown. In other words, the prediction-based control algorithm is a
passive resilient scheme. When a DoS attack occurs, the active communication scheduling
protocol is another resilient scheme, which is presented in this section. Besides, the stability
analysis under DoS attacks is given.

4.1. DoS Attack Model

To extend the application range of resilient control as far as possible, the unreliable
communication caused by DoS attacks is considered here, and a general attack model
is adopted that restricts the attack behavior by only posing constraints in time on their
duration and frequency. Denote {dn}n∈N0

by the DoS off/on transitions sequence with
d0 ≥ 0—that is, the time instant set in which attack behavior turns from zero (communi-
cation channel is reliable) to one (transmissions are jammed). The nth DoS time-interval
is Dn = {dn} ∪ [dn, dn + τn), and τn ∈ R, τn ≥ 0 is the length. Then, Dn is a single pulse
if τn = 0. Suppose that {Dn}n∈N has no overlap; then, consider an interval [t, ζ) with
0 ≤ t < ζ and let

D(t, ζ) = ∪
n∈N0

Dn ∩ [t, ζ) (26)

H(t, ζ) = [t, ζ)\D(t, ζ) (27)

be the subset of time intervals in [t, ζ) where the network is in attack status and healthy,
respectively. Denote n(t, ζ) by the number of DoS off/on transitions over [t, ζ). Referring
to [10], the following assumptions are proposed to restrict the frequency and duration of
DoS attacks.

Assumption 1. For any 0 ≤ t < ζ, there exist scalars κ ∈ R, η ≥ 0 and τD ∈ R, τD ≥ ∆
such that

n(t, ζ) ≤ κ +
ζ − t
τD

(28)

Assumption 2. For any 0 ≤ t < ζ, there exist scalars ς ∈ R, ς ≥ 0 and T ∈ R, T > 1 such that

|D(t, ζ)| ≤ ς +
ζ − t

T
(29)
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Remark 3. The frequency and duration assumptions for DoS attacks are necessary. Take into
account the worst scenario without the limitations: firstly, if n(t, ζ) is sufficient large, each trans-
mission attempt may be overridden by attack pulses; secondly, when |D(t, ζ)| is sufficient large,
an attack interval may never stop in any given [t, ζ). In both cases, all the transmissions can be
jammed and the scheduling control performance cannot be guaranteed. Besides, the two assumptions
can be understood in terms of attack energy. Assume that an attacker having confined energy to
carry out attack behaviors is reasonable and the usable energy is proportional to the length of time
interval [t, ζ) with a scale factor. The energy expended by each attack off/on transition is τD, and for
each unit of time, the required energy to sustain an attack execution is T. Furthermore, κ and ς can
be considered as regularized scalars.

4.2. Control Update Protocol Under DoS Attacks

Define the first time instant where the DDM is verified to be true after a data commu-
nication success at tk as

λk = inf{t ∈ R, t > tk|
∥∥xs(t)− xp(t)

∥∥ ≥ σs∥xs(t)∥+ σcρ} (30)

If a data transmission appears in an attack interval Dn, the attempt cannot be successful.
Define F = {k ∈ N0|tk ∈ ∪

n∈N0
Dn} as the set of integers associated with communication

attempts that occur under attack. During the attack intervals, the control strategy of
the GU system is converted to a periodic communication protocol—that is, the selected
communication attempt period is smaller than or equal to the demand-driven control
scheduling interval for the purpose of decreasing the communication delay introduced by
the jamming attack. For any k ∈ N0, the time when that communication attempt occurs is
described below:

tk+1 =


tk + ∆∗, i f k ∈ F
tk + ∆̄ , i f k /∈ F ∨ ∆̄ < λk − tk

λk, otherwise
(31)

where the control update period during the jamming attack intervals is denoted by ∆∗,
which satisfies 0 < ∆∗ ≤ ∆.

Remark 4. Equation (31) provides the resilient update protocol against the jamming attack be-
haviors described in Assumptions 1 and 2. If the sensor can receive the ACK signal at tk, then the
data transmission at tk succeeds. Then, the next data transmission will be attempted at λk when
∆̄ ≥ λk − tk. If ∆̄ < λk − tk, then the next data transmission will be attempted at tk + ∆̄. If
the ACK signal cannot be received at tk for the sensor, it indicates that an attack off/on transition
appeared before tk, and from tk, the data communication is performed at the periodic update rate
appointed by ∆∗ tentatively until the sensor is able to receive the ACK signal again.

Remark 5. The resilience is achieved based on an active and passive combined control scheme. First,
the predictor provides predicted values as close as possible to the state of the system when there is no
data transmission. In this way, when malicious communication interferences occur and data cannot
be transmitted, the predictor can compensate for the missing data, thereby improving resilience to
unreliable communications actively. Meanwhile, the resilient update protocol designed in this paper
is able to minimize the additional transmission periods caused by communication interruptions, so
that the system can resume data transmission as early as possible at the end of the attack. This is a
passive resilience improvement method.
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Define Ĥ(t1, t2) as the union of time subintervals in which the DDM (9) is not held
in [t1, t2) with 0 ≤ t1 < t2—i.e., the union of healthy subintervals in [t1, t2)—and define
the union of valid attack subintervals in which DDM (9) is true as D̂(t1, t2); then, the
disjoint union of Ĥ(t1, t2) and D̂(t1, t2) is the whole interval [t1, t2) for any 0 ≤ t1 < t2, and
D̂(t1, t2) = [t1, t2)\Ĥ(t1, t2). Denote

ρn =

{
0, i f F = ∅
tsup{k∈F} − dn, otherwise

(32)

Λn =

{
0, i f F = ∅
∆sup{k∈F} = ∆∗, otherwise

(33)

then, Ĥn = {dn} ∪ [dn, dn + ρn + Λn) is the n-th effective attack subinterval. It is worth
noting that Ĥn and Ĥn + 1 may overlap since dn+1 may be located in Ĥn. For convenience,
the two overlapped subintervals can be considered as an incorporative, effective attack
interval. Define {ϕm}m∈N0 as the sequence of off/on transitions of the m-th effective attack
interval—that is,

ϕ0 = d0, ϕm+1 = inf{dn > ϕm|dn > dn−1 + ρn−1 + Λn−1} (34)

and the length of the m-th effective attack interval is νm = ∑
n∈N0

ϕm≤dn<ϕm+1

∣∣Ĥn\Ĥn+1
∣∣; then,

D̂(t1, t2) =
⋃

m∈N0

[ϕm, ϕm + νm) ∩ [t1, t2) and Ĥ(t1, t2) =
⋃

m∈N0

[ϕm + νm, ϕm+1) ∩ [t1, t2).

From Assumptions 1 and 2, it can be obtained that the upper bound of the time inter-
val for the impact of an attack is∣∣D̂(t1, t2)

∣∣ ≤ |D(t1, t2)|+ (n(t1, t2) + 1)∆∗

≤ ς∗ + t2−t1
T∗

(35)

where ς∗ = ς + (η + 1)∆∗ and 1
T∗ = ∆∗

τD
+ 1

T . The following lemma gives a quantitative
characterization of the interval between two successive successful transmissions.

Lemma 1. Define {zm}m∈N0 as the time sequence at which the data transmissions succeed.
For the communication update protocol as in (31), and considering the DoS attacks satis-
fying Assumptions 1 and 2, zm+1 − zm ≤ Ω + ∆̄ holds for z0 ≤ Ω, where Ω = (ς +

κ∆∗)(1 − ∆∗
τD

− 1
T )

−1.

Remark 6. Inspired by a similar result in [11], the above lemma gives an upper bound on the inter-
val between two successful transmissions with a demand-driven strategy. Since the inner-demand
interval is unknown, the time interval between transmission attempts during Dn is also unknown.
Fortunately, based on the known upper bound of the communication interval ∆̄, the worst case of
the data updates can be bounded. Evidently, 1

T∗ < 1 is necessary, and it is the loosest restriction to
achieve closed-loop stability under any DoS attacks satisfying Assumptions 1 and 2, as discussed
in [11].

According to Lemma 1, (22) and (23) yield the upper bound of the prediction error
e(t) as

∥e(t)∥∞ < ε̄(γ∥A∥δ + ∥E∥δω) (36)
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for any t ∈ [zm, zm+1), where ε̄ =

{
Ω + ∆̄, µA ≤ 0

1
µA

(eµA(Ω+∆̄) − 1), µA > 0
. It indicates that the

prediction error between xp(t) and x(t) is bound even under DoS attacks. By applying (36),
we have the main results as the following theorem.

Theorem 1. Consider the GU system (3) with a control structure that consists of the observer O
and the predictor Pr, the scheduling control input (11), and the DDM (9), and select the parameters
such that γ1 − σsγ2 > 0 holds. Under Assumptions 1 and 2, if for any DoS attacks with arbitrary
scalars ς, κ, τD, and T such that

∆∗

τD
+

1
T

< 1 (37)

holds, where ∆∗ is a positive constant and satisfies ∆∗ ≤ ∆̄, then the GU control system is ISS with
the periodic update protocol (31).

Proof. The proof is provided in Appendix A.

Remark 7. The conservatism of the results in [10,20] results from decomposing the timeline into
attack intervals and non-attack intervals. In fact, the attack intervals can also be decomposed into
valid attack intervals and invalid attack intervals; the latter are the subintervals where the DDM has
not been met—that is,

∥∥xs(t)− xp(t)
∥∥ < σs∥xs(t)∥+ σcρ. The actual effective attack intervals

are the subintervals where the DDM is verified to be true and the data transmissions fail. Due
to the unknown time at which the attack behavior’s off/on transition occurs, the conservatism of
the resilience cannot be decreased by splitting the timeline. Based on the maximum disturbance–
accumulation error, which is calculated from (36), the procedure can be understood in turn as the
difference converging from the maximum error to σs∥xs(tk)∥+ σcρ with k = inf{k ∈ F|tk ∈
∪

n∈N0
Dn}; in this way, the optimal bound of the tolerable intensity of a DoS attack can be achieved.

5. Simulation Examples
In this section, the GU model constructed in Section 2.1 is applied to validate the

resilient control performance of the designed methods. The parameters of the GU system
are shown as follows: f0 = 1 Hz, ω0 = 6.283 rad/s, Rij = 1.3 × 10−3 Ω, Cti = 62.86 F,
ki = 0.0435, Lij = 0.6 H, Lti = 9.26 × 10−3 H, Rtj = 1.3 × 10−3 Ω. The system matrices of
the GU model can be calculated as follows:

A =


−1.3 2.516 0.691 0
−2.516 −1.3 0 0.691
−4.69 0 −0.14 6.283

0 −4.69 −6.283 −0.14

, B =


0 0
0 0

1.07 0
0 1.07

, C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

In the simulation, the unknown disturbance ω(t) is assumed as stochastic signals with
a uniform distribution in [−0.4, 0.4] and noise v(t) is v(t) = a sin(Ωy), Ωy ∈ [0, 2π],
where a is a stochastic number with a uniform distribution bounded in [0, 0.2]. The
initial conditions are x(0) = xp(0) = [0.8,−1, 0, 0.3]T . The control objective is to track
the reference signal [0.08 − 0.09 − 0.12 − 0.63]T . Selecting λ = 5.97, the gain matrices of
observer and controller can be calculated by solving the LMIs (7) and (12) as follows:

L =


0.5755 0.5755
−0.1981 3.8506
1.1000 −3.8657
−5.5976 −6.8427

, K =

[
0.0630 −0.2771 −0.3848 −0.0003
0.2788 0.1109 −0.0003 −0.3278

]
.
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The relative parameters can be obtained such that ∥Φ2∥ = 8.1528, α1 = 1.4768, α2 = 0.3375,
γ1= 1, γ2= 1.4976, and γ3 = 2.9536. Thus σs has to be chosen such that σs < 0.6677. Setting
σs = 0.66, and ∆̄ = 0.5s and ∆ = 0.01 s, the demand-driven parameter σc is chosen as
σc = 0.004. When there are no DoS attacks, the state responses of the controlled system, the
evolution of the transmission times, and the demand-driven conditions ∥xs(t)− xc(t)∥ and
σs∥xs(t)∥+ σcρ are exhibited in Figures 3 and 4, respectively. From the above figures, it is
obvious that the demand-driven control algorithm is able to ensure that the state responses
of the GU system track the reference values while the number of network transmissions is
decreased significantly. From Figure 4, when the demand (black) exceeds the transmission
condition (red), the data are transmitted over the network (such as at 9.8 s). The black line
quantifies the information difference between the controller side and the sensor side, which
represent the control requirements in real application scenarios. The red line quantifies the
acceptable demand threshold. If the information difference does not exceed the threshold, it
indicates that the impact of the difference on system performance during actual application
is tolerable, and no data transmission is required.
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Figure 3. State responses without DoS attacks.
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Figure 4. (Top): the evolution of demand-driven condition. (Bottom): the values of the
transmission times.

When DoS attacks occur, the transmission protocol is provided in (31), and the trans-
mission attempt period is ∆∗ = 0.01 s. In the simulation time domain of 15 s, the DoS
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attack is executed randomly and satisfies n(0, 15) = 12 and |D(0, 15)| = 10.93 s. Accord-
ing to the duration and frequency of the attack, we have τD ≈ 1.25 and T ≈ 1.372; then,
∆∗
τD

+ 1
T ≈ 0.737. Then, the state responses of the closed-loop GU system, the evolution of the

transmission times, and the demand-driven condition
∥∥xs(t)− xp(t)

∥∥ and σs∥xs(t)∥+ σcρ

are exhibited in Figures 5–7, respectively. Finally, the control input of the GU model is
given in Figure 8.
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Figure 8. The control input of GU under DoS attacks.

From Figure 5, it can be observed that the states of the GU model can also track
the reference values under DoS attacks. However, compared with Figures 3 and 5, it is
shown that the time it takes for the wave of states under DoS attacks to end is significantly
longer than that without DoS attacks, which indicates the influence of the DoS attacks to
the networked control strategy. As can be observed from Figures 6 and 7, the demand-
driven algorithm still works, and the transmission attempts succeed during the no-attack
intervals when the demand exceeds the transmission condition (such as at 6.07 s) while
the transmission mode switches to periodic attempts during the attack intervals (such as
10.52 s). As can be seen from the above figures, the demand-driven control scheme also
has a certain potential resilience in practical applications. For instance, from Figure 7, it
can be seen that the DoS attacks before the demand (black) exceeds the threshold (red)
are invalid. In these intervals, there is no transmission attempt, which can be observed in
Figure 6 before 10.52 s.

6. Conclusions
This paper focuses on the secure control problem for the GU of a local power plant

under unreliable communication, and the demand-driven control strategy has been investi-
gated. The unreliable communication in consideration is caused by DoS attacks, and the
resilient control algorithm is designed to handle the problem of performance degradation
in this scenario. An H∞ observer-based prediction method is provided, and the DDM
is designed based on the error between the state estimation and prediction. In this way,
the communication resources are saved while the ideal scheduling control performance
is obtained. Based on the ISS analysis, the sufficient conditions on the DoS attack model
are provided to ensure the stability of the GU system. Finally, simulation results were
presented to demonstrate the effectiveness of the designed methods.

The technical novelties are summed up as follows: First, the H∞ observer-based pre-
diction method is able to remove the influence of unknown load currents to the system
and compensate the loss of state data in the interval between any two continuous transmis-
sions of scheduling signals. Second, the advanced demand-driven strategy with periodic
verification is presented to schedule the intermittent communication. Third, by using the
thought of robustness to the maximum disturbance-induced error, the conservatism of the
tolerable attack intensity is decreased.
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Appendix A
Proof of Theorem 1. Firstly, a stability analysis of the effective attack subinterval [ϕm, ϕm +

νm) and the healthy subinterval [ϕm + νm, ϕm+1) is provided.
Select the Lyapunov function as V(t) = xT(t)Px(t), where P and Q are calculated

as in (16). It is worth noting that
∥∥x(t)− xp(t)

∥∥ ≤ σs∥x(t)∥+ σcρ holds for all t ∈ [ϕm +

νm, ϕm+1), m ∈ N0; then, from (21), we have

V(x(t)) ≤ e−θ1(t−ϕm−νm)V(x(ϕm + νm)) + γ4δ2 (A1)

where θ1 = γ5
2α1

, γ4 =
γ2

3
2γ5θ1

, and γ5 = γ1 − σsγ2.
Then, the effective attack interval t ∈ [ϕm, ϕm + νm), m ∈ N0 is concerned. Beginning

at some point in the above interval,
∥∥x(t)− xp(t)

∥∥ ≤ σs∥x(t)∥ + σcρ will become false.
From (36), it yields that ∥e(t)∥∞ < ε̄(γ∥A∥δ + ∥E∥δω) holds; then, from (18), we have

V̇(x(t)) ≤ −γ1∥x(t)∥2 + γ2 ε̄∥x(t)∥(γ∥A∥δ + ∥E∥δω) + γ3∥x(t)∥∥Eω(t)∥
≤ −γ1∥x(t)∥2 + (γ2 ε̄ + γ3)∥x(t)∥δe

(A2)

where δe = γ∥A∥δ + ∥E∥δω. Then, based on Yang’s inequality, it yields

V̇(x(t)) ≤ − γ1
2 ∥x(t)∥2 + (γ2 ε̄+γ3)

2

2γ1
δ2

e

≤ −θ2V(x(t)) + γ6δ2
e

(A3)

where θ2 = γ1
2α1

, γ6 = (γ2 ε̄+γ3)
2

2γ1
; thus, it can be calculated that

V(x(t)) ≤ e−θ2(t−ϕm)V(x(ϕm)) + γ7δ2
e (A4)

holds for all t ∈ [ϕm, ϕm + νm), m ∈ N0, and γ7 = γ6
θ2

.
Secondly, stability analysis on the entire timeline is given. For any t ∈ R, t > 0,

it yields

V(x(t)) ≤ e−θ1|Ĥ(0,t)|e−θ2|D̂(0,t)|V(x(0)) + γ∗ ∑
m∈N0;
ϕm≤t

e−θ1|Ĥ(ϕm+νm ,t)|e−θ2|D̂(ϕm ,t)|δ2
∗ (A5)

where γ∗ = max{γ4, γ7} and δ∗ = max{δ, δe}. Based on (35), one can obtain that for
any t ∈ R, t > ϕm,

∣∣D̂(ϕm, t)
∣∣ ≤ ς∗ + t−ϕm

T∗ holds. When t < ϕm + νm, we have that
D̂(τ, t) = [t1, t2]\Ĥ(t1, t2) and Ĥ(ϕm + νm, t) = 0 hold, which yields

Ĥ(ϕm + νm, t) = t − ϕm −
∣∣D̂(ϕm, t)

∣∣ (A6)
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It is worth noting that
∣∣D̂(ϕm, t)

∣∣ = νm and
∣∣D̂(ϕm + νm, t)

∣∣ = 0 hold for any t ∈ R, t >

ϕm + νm; then, it is indicated that Ĥ(ϕm + νm, t) = t − ϕm − νm = t − ϕm −
∣∣D̂(ϕm, t)

∣∣ holds.
Then, it yields

∑
m∈N0;
ϕm≤t

e−θ1|Ĥ(ϕm+νm ,t)|e−θ2|D̂(ϕm ,t)| ≤ e−(θ2−θ1)ς
∗

∑
m∈N0;
ϕm≤t

e−a(t−ϕm) (A7)

where a = θ1 +
θ2−θ1

T∗ . It is obvious that a > 0 can be guaranteed by 1
T∗ < 1. Similar to the

transformation of (A7), the term e−θ1|Ĥ(0,t)|e−θ2|D̂(0,t)| in the right hand of (A5) can have an
upper bound as e−(θ2−θ1)ς

∗
e−at, which yields

V(x(t)) ≤ e−(θ2−θ1)ς
∗
e−atV(x(0)) + γ∗(1 + e−(θ2−θ1)ς

∗
∑

m∈N0;
ϕm≤t

e−a(t−ϕm))δ2
∗ (A8)

Inspired by the result from [10], it yields ∑
m∈N0;
ϕm≤t

e−a(t−ϕm) ≤ eaητD

1−e−aτD
; then, we have

∥x(t)∥ ≤
√

α1

α2
e
−(θ2−θ1)ς

∗
2 e−

at
2 ∥x(0)∥+

√
γ∗
α2

(1 +
eaκτD

1 − e−aτD
e−(θ2−θ1)ς∗)δ∗ (A9)

It is obvious that the scalars of (A9) have no connection with the initial conditions of the
dynamic process and the unknown disturbance; then, based on Definition 1, it can be
ascertained that the GU control system (3) is ISS. This ends the proof.
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