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Abstract: To address the issue of economic dispatch imbalance in virtual power plant
(VPP) systems caused by the influence of operators and distribution networks, this study
introduces an optimized economic dispatch method based on bi-level game theory. Firstly,
a bi-level game model is formulated, which integrates the operational and environmental
expenses of VPPs with the revenues of system operators. To avoid local optima during
the search process, an enhanced reinforcement learning algorithm is developed to achieve
rapid convergence and obtain the optimal solution. Finally, case analyses illustrate that
the proposed method effectively accomplishes multi-objective optimization for various
decision-making stakeholders, including VPP and system operators, while significantly re-
ducing curtailment costs associated with the extensive integration of distributed renewable
energy. Furthermore, the proposed algorithm achieves fast iteration and yields superior
dispatch outcomes under the same modeling conditions.

Keywords: virtual power plant; bi-level game; reinforcement learning; power trading

1. Introduction
In order to achieve the “Dual Carbon” goal, distributed renewable energy sources,

predominantly wind and solar power, have emerged as the dominant trends in the en-
ergy sector. However, the extensive integration of wind and solar energy into the power
system introduces a degree of unpredictability and instability, which presents substantial
challenges for the grid’s operations and reliability [1]. Virtual power plants (VPPs) are
recognized as an innovative energy management paradigm that aggregate distributed
energy resources into a cohesive system, including electric vehicles [2], renewable energy
generation [3], and controllable loads [4]. This facilitates streamlined and coordinated
resource dispatch, making virtual power plants a centerpiece of attention within the energy
industry. For ease of understanding, Figure 1 illustrates the prototypical architecture of a
virtual power plant, integrating diverse domains to constitute a holistic electricity trading
marketplace. By leveraging optimized information sharing and energy supplementation
among VPPs, a multitude of small-scale, diverse prosumers can be seamlessly integrated
into a cohesive power system [5].

To enhance the incentives for resource aggregation within VPPs and maximize their
comprehensive regulatory capabilities, it is essential to construct an advanced optimization
scheduling model and precisely outline the corresponding objective functions

In VPP optimization scheduling models, it is usually established with a method
that prioritizes economic and/or technical indicators [6]. For instance, Zhou et al. [7]
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implemented a “stimulus-feedback” control mechanism to achieve adaptive online load
tracking control for VPPs. Lin et al. [8] applied a DRL-based algorithm to effectively learn
the characteristics of generation units and the demands of industrial users, making selective
decisions to reduce VPP operational costs. Yang et al. [9] introduced a cost allocation
algorithm that simultaneously addressed post-network loss deviations. Generally speaking,
economic indicators are generally considered more pivotal than technical indicators.

Energies 2025, 18, x FOR PEER REVIEW 2 of 16 
 

 

To enhance the incentives for resource aggregation within VPPs and maximize their 
comprehensive regulatory capabilities, it is essential to construct an advanced optimiza-
tion scheduling model and precisely outline the corresponding objective functions 

electric car

cooling and 
heating

grids

 energy 
storage

PV wind 
power

VPP Control Centre

...

biofuel 

power 
interaction

power 
requirement

 

Figure 1. Schematic diagram of VPP. 
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To refine the economic indicators, existing methods can typically be classified into
linear programming, multi-objective programming, and multi-layer programming prob-
lems. Alahyari et al. [10] introduced uncertainty parameters related to electric vehicles and
other sources of unpredictability, incorporating randomness into a linear programming
framework. Wang et al. [11] constructed a multi-objective optimization scheduling model
with the goal of maximizing VPP operational profits while minimizing system operating
costs and the expenses associated with energy curtailment, thus addressing multiple de-
cision objectives. Li et al. [12] proposed a bi-level optimization model, where the upper
level focuses on optimizing inter-regional power dispatch and the lower level concentrates
on intra-regional dispatch, thereby effectively reducing system operating costs and grid
power demand.

In the dynamically evolving electricity market, it is imperative to examine the com-
petitive or collaborative dynamics among VPPs and to understand how bidding strategies
influence individual outcomes. Game theory is frequently employed to articulate the
scheduling processes of VPP clusters. HOU et al. [13] introduced a cooperative game
optimization method for multi-VPP coalitions under a carbon trading scheme, substan-
tially enhancing the efficiency of distributed resource and energy utilization. To address
the limitations of cooperative games, Li et al. [14] developed a Nash negotiation-based
optimization model for multi-VPPs. Xu et al. [15] formulated non-cooperative game strate-
gies by formulating two sub-problems focused on renewable energy systems (RESs) and
thermal generators. Chen et al. [16] explored dynamic decision-making for heterogeneous
prosumers through evolutionary game theory and devised pricing strategies for sellers
based on Stackelberg games principles. However, economic dispatch is frequently bounded
by multiple objective functions between VPPs and the Virtual Power Plant Operators, and
the optimization strategies have not adequately addressed this issue.

In this work, a strategy to refine the economic dispatch method is proposed for VPPs
within a bi-level gaming framework. The proposed approach is divided into two levels.
The lower level concentrates on minimizing the operational expenses and environmental
pollution costs associated with the virtual power plant. The upper level constructs a
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competitive market framework between the system operator (referred to as the Virtual
Power Plant Operator, VPO) and the virtual power plant itself. By employing a two-level
equilibrium solution strategy, the interests of both the VPO and the virtual power plant are
maximized using an improved reinforcement learning algorithm. The main contributions
are as follows:

(1) Two-level structure to build the optimization methods for economic dispatch: the
lower level focuses on the operational costs and environmental pollution costs of
VPPs; the upper level establishes a game market framework between the VPO and
the VPPs.

(2) An improved reinforcement learning algorithm validates the feasibility of the pro-
posed strategy.

The organization of this paper is as follows: in Section 2, the constraints and the
associated objective function are introduced, and a bi-level game model and its architecture
are described in Section 3. In Section 4, the experimental results are presented, and the
performance of the proposed method is tested to demonstrate its effectiveness. Finally,
conclusions are drawn in Section 5.

2. Virtual Power Plant and Its Objective Function
In this study, the VPP is composed of micro-resources such as wind turbines, pho-

tovoltaic panels, and energy storage batteries. These components collectively fulfill the
electrical load requirement while also performing the power transmission functions of the
VPP [17–19]. In the following sections, the constraints and the associated function will be
discussed.

2.1. Constraints of VPP
2.1.1. Load Constraints

The total energy supply from a single VPP must meet the energy demand under the
condition that the battery is in charging. The constraint must satisfy the following:

Pi
WT(t) + Pi

PV(t) + Pi
b(t) ≥ Li

E(t) + Pi
cd(t) + Pi

s(t), (1)

where t represents time, and the superscript i denotes the i-th VPP; Pi
WT , Pi

PV , and Pi
cd

represent the wind power, photovoltaic power, and battery power within the i-th VPP,
respectively; Li

E is the power demand, while Pi
b and Pi

s represent the power purchased from
and sold to the VPO, which are the decision variables subject to optimization.

2.1.2. Energy Storage Constraints

To manage peak shaving, valley filling, and prolong battery life, the state of charge
(SOC) of batteries must remain within a specified range, and is constrained by the following:

SOCi
min ≤ SOCi(t) ≤ SOCi

max, (2)

where SOCi
min and SOCi

max indicate the lower and upper bounds of the permissible SOC
for the battery within the i-th VPP, respectively.
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2.1.3. Power Exchange Constraints with VPO

To mitigate fluctuations stemming from excessive power transactions between the
VPP and the system operator, the power purchase and sale, the purchase and sale Pi

b(t) and
Pi

s(t) are bound by the following constraints:{
Pi

b,min ≤ Pi
b(t) ≤ Pi

b,max
Pi

s,min ≤ Pi
s(t) ≤ Pi

s,max
, (3)

where Pi
b,min, Pi

b,max, Pi
s,min, and Pi

s,max represent the lower and upper limits of the purchase
and sale power for the i-th VPP.

2.2. Objective Functions of VPP

The optimization objectives of the VPP are centered on two primary facets: prioritizing
the minimization of operational costs to guarantee economic viability and diminishing
environmental costs to promote sustainable development [20].

2.2.1. VPP Operational Cost Model

The operational expenditure of the VPP encompasses costs associated with wind
and photovoltaic maintenance, curtailment, and battery operations, which can be built as
follows:

Fi
G = min

NT

∑
t=1

{
µ1 · Pi

WT,e + µ2 · Pi
PV,e + λ1 · Pcd(t) + λ2 · Pi

WT,0 + λ3 · Pi
PV,0

}
, (4)

where NT represents the time horizon (e.g., NT = 24 for hourly intervals); µ1 and µ2 are
the coefficients for the cost of wind and photovoltaic curtailment, respectively; λ1, λ2,
and λ3 signify the operational expenses related to batteries, wind power, and photovoltaic
systems. Pi

WT,e and Pi
PV,e represent the curtailed power from wind and photovoltaic sources,

respectively, while Pi
WT,0 and Pi

PV,0 indicate the forecasted power output for wind and
photovoltaic generation.

2.2.2. Environmental Pollution Cost Model

The environmental cost is primarily associated with electromagnetic contamination
from power transmission lines and chemical seepage from batteries, and the objective
function is built as follows:

Fi
Ev = min

NT

∑
t=1

{
Wb · Pi

b(t) + Wbat · Pi
cd(t)

}
, (5)

where Wbat and Wb denote the cost factors for chemical leakage from batteries and for the
management of purchased power, respectively.

3. Bi-Level Game Model and Its Design
3.1. Energy Trading Framework of the Bi-Level Game Model

For the ease of description, Figure 2 illustrates the energy-sharing framework of
the VPP, encompassing three principal entities: the VPPs, the VPO, and the distribution
network. Within the VPO’s lower-level profit structure, VPPs can assume one of three
statuses: energy surplus, deficit, or self-sufficiency. Energy trade is facilitated through
either intragroup transactions among VPPs or through exchanges with the distribution
network, all of which are orchestrated by the VPO. In the upper-level profit hierarchy, the
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VPO proactively participates in power trading with the distribution network, bolstering
energy-sharing and interaction functionalities to amplify its revenue streams.
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To optimize the collective benefits of both the VPPs and the VPO, i.e., minimizing
the internal cost of the VPP and maximizing the VPO’s profit, the VPO must establish
suitable internal pricing mechanisms that reflect daily consumer demand and the supply
of distributed generation. The equilibrium solution of the bi-level game model is crafted to
determine the optimal electricity pricing strategy.

3.2. Lower-Level Cost Model

The lower level of the model is dedicated to optimizing the costs of VPPs in response
to the electricity price regulation set by the VPO. The cost associated with the i-th VPP can
be formulated as follows:

Fi
VPP = Fi

G + Fi
Ev − Pi

b · Cb + Pi
s · Cs, (6)

Since the lower-level electricity price is governed by the VPO, the collective optimiza-
tion of benefits for both the VPO and the VPPs is defined as follows:

Cs = [Cs(1), . . . , Cs(t), . . . Cs(NT)], (7)

Cb = [Cb(1), . . . , Cb(t), . . . Cb(NT)], (8)

where Cb(t) and Cs(t) represent the purchase and sale price of electricity by the VPO at time
t.

3.3. Upper-Level Benefit Model

The upper level of the model concentrates on maximizing the VPO’s benefits in
transactions with the distribution network and the VPPs. The VPO’s benefit model for
electricity trading is delineated as follows:

CVPO =


NT
∑

t=1

(
Cs(t)Ps(t)− Cb(t)Pb(t) + Cgridb∆E(t)

)
, ∆E(t) > 0

NT
∑

t=1

(
Cs(t)Ps(t)− Cb(t)Pb(t) + Cgrids∆E(t)

)
, ∆E(t) ≤ 0

, (9)

where Ps(t) =
I

∑
i=1

Pi
s(t), Pb(t) =

I
∑

i=1
Pi

b(t), where I represents the total number of VPPs, and

Cgridb(t) and Cgridb(t) represent the electricity purchase and sale prices of the distribution



Energies 2025, 18, 374 6 of 16

network at time t, respectively. These prices are established by national regulations and
adhere to the condition where Cgridb < Cgrids. ∆E denotes the power exchange balance
between the VPO and the distribution network, which must fulfill the following criterion:

∆E(t) = Pb(t)− Ps(t) + Pess(t), (10)

where Pess(t) represents the charging/discharging power of the VPO’s energy storage
device at time t.

3.4. Bilevel Game Model and Objective Functions
3.4.1. Bilevel Game Model

To facilitate the modeling of the interaction between VPPs and the VPO, the virtual
power plant system is categorized into three states: Ib (number of VPPs purchasing elec-
tricity), Is (number of VPPs selling electricity), and Io (number of VPPs in power balance).
These states satisfy the condition that Ib + Is + Io = I, where I is the total number of VPPs.
To guarantee that the VPO derives benefits from electricity trading, a critical boundary
condition is established such that IbIs ̸= 0. As a result, the collection of power transaction
states can be expressed as PI = {Pb

i, Ps
i, Po

i}.
Both VPPs and the VPO strive to maximize their individual benefits while conforming

to specified constraints and engaging in market transactions [21]. The designed game
model can be expressed as follows:

pbest = {M; Cb, Cs, PI , ∆E; minFVPP, maxCVPO} , (11)

3.4.2. Nash Equilibrium Model

To guarantee that the strategy combination selected by the VPO and the collective of
the VPP ensemble is mutually optimal and yields balanced benefits, a Nash equilibrium
solution is embraced. This equilibrium is defined as follows:

Fi
VPP(C

∗
b , C∗

s , P∗
I , ∆E∗) ≥ Fi

VPP
(
C∗

b , C∗
s , PI , P∗

I,−i, ∆E∗)∀i ∈ I, ∀PI,i ∈ PI , (12)

CVPO(C∗
b , C∗

s , P∗
I , ∆E∗) ≥ CVPO(Cb, Cs, P∗

I , ∆E), (13)

where Cb and Cs are the effective prices of purchasing and selling electricity, while C∗
b

and C∗
s denote the prices for electricity purchase and sale given the chosen strategy set

combination; P∗
I signifies the strategy set for electricity procurement and sale by the virtual

power plant within the Nash equilibrium framework; ∆E∗ represents the power balance
strategy of the distribution network at the Nash equilibrium, and P∗

I,−i refers to the strategy
set for electricity purchase and sale for all other virtual power plants (excluding the i-th
plant) under the equilibrium scenario.

In the context of the Nash equilibrium, no virtual power plant or system operator can
enhance their benefits or decrease their costs through a unilateral alteration of their strategy
set, while others remain unchanged.

3.5. Algorithm and Solution Process

In the work, to circumvent the issue of local optima and to ensure an effective global
search, the classical Particle Swarm Optimization (PSO) algorithm is enhanced by inte-
grating it with reinforcement learning techniques [21]. This integration serves to steer the
population’s optimization and evolutionary process, thereby enhancing overall perfor-
mance and adaptability, and is named as an Improved Reinforcement Learning Algorithm
(IRLA).
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3.5.1. Adjustment Factor

To preserve population diversity, an adjustment factor βd is incorporated, which
facilitates the search and migration of particles.

βd+1
k = βd

k

(
1 + τ · g

(
pbestd+1

k − pbestd
k

))
, k = 1, 2, . . . , N, (14)

where βd
k is the adjustment factor for particle k at iteration d; τ is the penalty factor; g(z) is

the action factor, defined as follows:

g(z) =
(
1 + e−σz)−1 − 1, (15)

Here, pbestd
k denotes the fitness value of particle k at iteration d; σ denotes a random

value drawn from the standard normal distribution. If σ > 0, the adjustment factor used
in the next search remains the same as the previous iteration; if σ < 0, a fresh adjustment
factor is employed for the next search.

3.5.2. Particle Search

The particle population search follows the PSO framework. The current and global
optimal fitness functions for the particles are calculated using Equation (11). The updates
for the position and velocity of particle k are expressed as follows:{

vd+1
k = ωd

k vd
k + c1r1(pbestd

k − xd
k ) + c2r2(gbestd − xd

k )

xd+1
k = xd

k + vd
k

, (16)

Here, d represents the iteration number; vd
k and xd

k denote the search velocity and the
current position of particle k at iteration d, respectively; pbestd

k and gbestd
k represent the

particle’s individual best and global best positions at iteration d, respectively; c1 and c2

are the acceleration coefficients that govern the particle’s individual and social learning
processes, respectively; r1 and r2 are random factors within the interval [0,1]; ωd

k is the
inertia weight associated with particle k at iteration d.

To enhance the impact of the inertia weight on the search efficacy of the particle swarm,
the weight values are fine-tuned to narrow the discrepancy between the predicted values
and target solutions, and are defined as follows:

ωd+1
k =

∣∣∣ωd
k + 2 × ρ × (ωd

best − ωd
k )
∣∣∣, (17)

where ωd
best represents the optimal target weight for the current iteration, which shares the

same index as xd
best; ρ is a random variable drawn from a uniform distribution within the

range [0,1].

3.5.3. Particle Transfer

To facilitate a wider exploration of the search space with particles during the initial
phase, and a more refined local search in subsequent stages, a non-uniform mutation
operator is utilized to perturb the particles [22]. The formula for updating the position of
particle k is given by the following:

xd+1
k =

{
xd

k + ∆(d, xmax − xd
k ), i f r < 0.5

xd
k − ∆(d, xd

k − xmin), else
, (18)
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where xmax and xmax represent the upper and lower bounds of the search space dimension,
respectively; r is a random number in the interval [0,1]. The value of ∆(d,z) is defined as
follows:

∆(d, z) = z · (1 − r(1−
d
T )

α
), (19)

where T represents the maximum number of iterations, and α is a parameter that governs
the level of uniformity in the mutation process.

3.5.4. Population Feedback

To enhance the optimization capability of the algorithm, a feedback mechanism is
designed for the particles. This mechanism incorporates both current and local feedback to
facilitate refined updates in velocity and position.

vd+1
k = vd

k + |κ1| × S
(

pbestd
k − pbestd

m

)
×

(
vd

m − vd
k

)
+ |κ2| ×

(
xd

old,i − vd
k

)
, (20)

where κ1 and κ2 are two random variables drawn from a standard normal distribution;
m represents particle m at the d-th iteration (distinct from particle k); pbestd

m and vd
m are

the fitness value and velocity of particle m at iteration d, respectively; S(·) denotes the
hyperbolic tangent (tanh) activation function; and xd

old,i represents the position of particle i
within the historical population at generation d.

The algorithm flow is shown in Table 1. To circumvent local optima, particles employ
the search strategy outlined in Equation (16) when the adjustment factor β ≥ 0.5; otherwise,
they adopt the transition strategy outlined in Equation (18). Following each iteration, popu-
lation feedback is executed to refine the velocity of the subsequent generation. Throughout
the iterations, the fitness function pbest is utilized to adjust the “velocity” and “position”
attributes, thereby attaining the optimal target value. This facilitates the optimal scheduling
of the distributed renewable energy within the virtual power plant architecture.

Table 1. IRLA flowchart.

1 Input - Load, PV, and wind power data from VPP
- Input the initial particle position x0 and velocity v0, and perform initialization.
- The position x0 includes VPO’s internal electricity purchase and sale prices, the

electricity purchase and sale quantities for the three VPPs, and the VPO’s storage capacity

2 Bi-Level Game
- The IRLA calculates the VPO benefits using Equation (9)
- The Cplex solver computes the internal cost of the VPP using Equation (6)

3 IRLA interation
- Modification factor βd check using Equation (14)

- If satisfied, use the particle transfer equation (Equation (18)).
- If not satisfied, use the particle search equation (Equation (16)).

- Update the particle position xd+1.
- Compute feedback using the particle feedback equation (Equation (20)).
- Calculate the fitness value pbest
- Update the global optimum gbest
Repeat
Until the stop conditions thatd > dmax or |pbestd − pbestd−1| ≤ ξ

4 Output - the gbestd as the final result

4. Case Study
4.1. Basic Data

To validate the effectiveness of the proposed method, the analysis was conducted
in the Matlab 2022b environment using the Yalmip toolbox with the CPLEX solver as
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an auxiliary tool. The simulated virtual power plant system encompasses three distinct
virtual power plants, each consisting of wind power, PV systems, and energy storage (ES)
for multi-objective demand response (DR). The total ES capacity for different VPPs, the
inter-VPP power exchange limits per time period, and the battery capacity ranges are
shown in Table 2.

Table 2. The status of batteries.

Type Total Capacity/kW Initial State of
Charge (SOC) SOC Range

Maximum Charg-
ing/Discharging

Power/kW

VPP1 250 0.4 0.2~0.95 ±60
VPP2 320 0.4 0.2~0.9 ±80
VPP3 300 0.5 0.3~0.95 ±70

Figure 3 illustrates the predicted wind and photovoltaic generation data along-side
the load demand for a specific day in a county. The system’s reserve margin is set at 10%,
while the permissible fluctuation limits for wind and solar power are set at 30% above
and below the predicted levels. Taking VPP1 as an example, it can be observed that the
integration of large-scale distributed renewable energy sources leads to an energy surplus
between 10:00 and 15:00, with the peak penetration rate reaching an impressive 138.10%
at 13:00. Conversely, during late evening or early morning hours, such as 20:00–22:00 and
1:00–3:00, reliance on wind power alone may not suffice, resulting in energy shortfalls. For
instance, at 20:00, an additional 104.17 kW of generation is required to meet the demand.
Consequently, the deployment of energy storage batteries is essential for peak shaving
and valley filling to mitigate grid instability. This strategy motivates virtual power plants
to engage in distribution network electricity trading, thereby reducing both consumer
electricity costs and generation expenses.

Energies 2025, 18, x FOR PEER REVIEW 9 of 16 
 

 

4. Case Study 
4.1. Basic Data 

To validate the effectiveness of the proposed method, the analysis was conducted in the 
Matlab 2022b environment using the Yalmip toolbox with the CPLEX solver as an auxiliary 
tool. The simulated virtual power plant system encompasses three distinct virtual power 
plants, each consisting of wind power, PV systems, and energy storage (ES) for multi-objective 
demand response (DR). The total ES capacity for different VPPs, the inter-VPP power ex-
change limits per time period, and the battery capacity ranges are shown in Table 2. 

Table 2. The status of batteries. 

Type Total Capacity/kW 
Initial State of Charge 

(SOC) SOC Range 
Maximum Charging/Discharging 

Power/kW 
VPP1 250 0.4 0.2~0.95 ±60 
VPP2 320 0.4 0.2~0.9 ±80 
VPP3 300 0.5 0.3~0.95 ±70 

Figure 3 illustrates the predicted wind and photovoltaic generation data along-side 
the load demand for a specific day in a county. The system’s reserve margin is set at 10%, 
while the permissible fluctuation limits for wind and solar power are set at 30% above and 
below the predicted levels. Taking VPP1 as an example, it can be observed that the inte-
gration of large-scale distributed renewable energy sources leads to an energy surplus 
between 10:00 and 15:00, with the peak penetration rate reaching an impressive 138.10% 
at 13:00. Conversely, during late evening or early morning hours, such as 20:00–22:00 and 
1:00–3:00, reliance on wind power alone may not suffice, resulting in energy shortfalls. For 
instance, at 20:00, an additional 104.17 kW of generation is required to meet the demand. 
Consequently, the deployment of energy storage batteries is essential for peak shaving 
and valley filling to mitigate grid instability. This strategy motivates virtual power plants 
to engage in distribution network electricity trading, thereby reducing both consumer 
electricity costs and generation expenses. 

 

Figure 3. Wind PV and load day-ahead forecasts. 

Table 3 displays a reference electricity pricing schedule for the local distribution net-
work for a specify day. These values, when integrated with Equations (6) and (9), facilitate 
the computation of the internal cost incurred by the VPPs and the total earnings of the VPO. 

Figure 3. Wind PV and load day-ahead forecasts.

Table 3 displays a reference electricity pricing schedule for the local distribution
network for a specify day. These values, when integrated with Equations (6) and (9),
facilitate the computation of the internal cost incurred by the VPPs and the total earnings
of the VPO.
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Table 3. Daily electricity prices for the grid.

Staggered Time/h Sale Price/Yuan Purchase Price/Yuan

peaks 11:00–15:00, 19:00–21:00 1.04 1.40

leveling 8:00–10:00, 16:00–18:00,
22:00–24:00 0.72 0.79

trough 0:00–7:00 0.40 0.53

4.2. Results Analysis of the Bi-Level Game Optimization Strategy
Analysis of Electricity Trading Results

Figure 4 shows the optimized internal electricity pricing schema of the VPO. Mean-
while, the outcomes of the electricity trading transactions between the VPO and VPP
clusters are visualized in Figure 5.
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It can be seen from Figure 5 that under the VPO’s internal electricity pricing mecha-
nism, the electricity sold by each virtual power plant surpasses its procurement volume.
This dynamic results in a decrease in the internal costs for the lower-level VPPs and an
increase in the revenue benefits for the VPO from electricity sales to the distribution net-
work. The electricity trading channels for VPPs encompass both the other lower-level VPPs
and the upper-level distribution network, markedly boosting energy interchangeability.
This configuration facilitates a swift response to energy imbalances, thereby guaranteeing a
stable power supply.

Figure 6 illustrates the daily profit trajectory of the VPO. From 6:00 to 13:00, as the
generation of distributed renewable energy within the VPP cluster intensifies, the VPO is
able to procure electricity and resell it to the distribution network at a profit. Conversely,
between 14:00 and 16:00, as well as 0:00 and 5:00, when the supply of distributed energy
wanes, the VPO increases its electricity purchases from the distribution network and sells it
to the VPPs, thereby securing margin-based profits.
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4.3. Comparative Analysis

To further validate the effectiveness of the bi-level game model, a comparative analysis
was conducted between two optimization models as follows:

• Model 1: This model dispenses with day-ahead forecasting, wherein the VPO does
not establish dynamic lower-level pricing. Instead, it directly adopts the electricity
prices from the distribution network as presented in Table 3 to formulate the internal
prices for the VPP cluster.

• Model 2: This model employs the bi-level game optimization model introduced in this
research, which yields the optimized dynamic electricity prices depicted in Figure 5.

4.3.1. Wind and Solar Power Results Analysis

Figure 7 illustrates the actual power generation from wind and solar under the two
different dispatch strategies. With Model 2, the VPO adeptly manages the energy flow
between the virtual power plants and the distribution network, substantially mitigating the
curtailment costs associated with surplus wind and solar power. This approach effectively
tackles the challenges posed by the high penetration rates resulting from the extensive
integration of distributed energy resources.
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4.3.2. VPP Internal Power Generation Analysis

Figure 8 shows the power load and energy composition of VPP2 under both models.
Through the optimization of Model 2, the VPO adeptly manipulates electricity prices, re-
sulting in a notable surge in electricity trading volumes between VPP2 and the distribution
network, as well as with VPP1 and VPP3. This demonstrates the VPO’s proficiency in fos-
tering energy optimization and dispatch coordination among the VPPs and the distribution
network.
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4.3.3. Total Cost Analysis

Table 4 illustrates the costs incurred by the lower-level VPPs and the benefits accrued
to the VPO under the bi-level game model. It is apparent that in order to promote energy
dispatch among virtual power plants and to address the challenges posed by wind and solar
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power generation, the aggregate internal cost for the VPPs under Model 2 is marginally
higher by 292.59 CNY than under Model 1. Nevertheless, the VPO realizes a substantial
benefit of 1300.84 CNY. This suggests that the bi-level game model not only intensifies
energy transactions between the VPP cluster and the distribution network but also amplifies
the VPO’s profitability. Each stakeholder derives tangible benefits from the bi-level game
optimization model, underscoring its efficacy as a strategic approach for the dispatch and
operation of multi-VPP systems.

Table 4. The internal costs of VPPs and the benefits of VPO.

Model 1/CNY Model 2/CNY

VPP1 4681.06 4892.83
VPP2 4035.85 4251.40
VPP3 4571.28 4435.56

total cost 13,288.20 13,579.79
VPO benefits / 1300.84

4.3.4. Fitness Analysis

To demonstrate the superiority of the proposed algorithm, the execution capability,
adaptability, and global search ability of the algorithm were tested against the classic PSO
and GA algorithms under the same bi-level game model. The results of the classic Genetic
Algorithm, PSO algorithm, and the proposed algorithm are shown in Figure 9. Experi-
mental results indicate that the proposed method demonstrates enhanced optimization
capabilities and faster computational efficiency when dealing with the bi-level game model.
Specifically, the proposed method converges to the optimal solution by the 9th iteration,
whereas the genetic algorithm and PSO algorithm reaches the optimal state at the 22nd
and 26th iteration, respectively. Furthermore, in terms of algorithm performance, the
fitness result under the GA algorithm is 12,466.8 CNY, for the PSO algorithm, it is 12,569.5
CNY, and for the IRLA algorithm, it is 12,278.9 CNY. Compared to PSO and GA, the IRLA
algorithm achieves cost savings of 290.6 CNY and 187.9 CNY, respectively, indicating a
superior convergence state.
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4.3.5. Multi-Objective Model Analysis

This study primarily focuses on the bi-level game model that encompasses wind, solar,
and energy storage within three VPPs. To illustrate the wide applicability of the IRLA
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algorithm, the number of VPPs was increased to six. Each VPP comprises wind power, pho-
tovoltaic systems, and energy storage, with additional components such as microturbines
(MTs), fuel cells (FCs), and diesel generators (DEGs) integrated to create a multi-objective
optimization framework. The experimental results under the proposed algorithm are pre-
sented in Figure 10. The results indicate that the IRLA algorithm, founded on the bi-level
game theory, effectively captures the complexity of real-world issues. This makes it ap-
propriate for managing large-scale optimization challenges and securing globally optimal
solutions.
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5. Conclusions
This work tackles the issue of optimizing decision-making benefits in the interaction

between VPPs and the VPO, framed within multi-objective modeling. A Bi-level game
optimization framework has been introduced. At the lower level, the model quantifies the
costs related to the generation, operation, maintenance, and environmental pollution for
each individual virtual power plant. Conversely, the upper level delineates the benefits
pertaining to electricity procurement and sales for the VPO. Subsequently, an enhanced
reinforcement learning algorithm is developed, leveraging particle swarm optimization
strategies to navigate beyond local optima and promote efficient population-based explo-
ration. The results of the simulations confirm that the proposed two-tier game model is
highly appropriate for multi-objective virtual power plant systems, markedly improving
energy efficiency and economic gains while reducing the costs associated with wind and
solar energy curtailment. Furthermore, the algorithm introduced herein can rapidly iterate
to identify the optimal state, yielding superior game outcomes within the same modeling
framework. In the near future, we will involve other renewable energy sources, such as
electronic car, as described in Figure 1.
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