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Abstract: This work presents an approach based on signal processing and artificial intelli-
gence (AI) to identify the pre-insertion resistor (PIR) and main contact instants during the
operation of high-voltage SF6 circuit breakers to help improve the settings of controlled
switching and attenuate transients. For this, the current and voltage signals of a real Brazil-
ian substation are used as AI inputs, considering the noise and interferences common in
this type of environment. Thus, the proposed modeling considers the signal preprocessing
steps for feature extraction, the generation of the dataset for model training, the use of
different machine learning techniques to automatically find the desired points, and, finally,
the identification of the best moments for controlled switching of the circuit breakers. As a
result, the models evaluated obtained good performance in the identification of operation
points above 93%, considering precision and accuracy. In addition, valuable statistical
notes related to the controlled switching condition are obtained from the circuit breakers
evaluated in this research.

Keywords: high-voltage circuit breakers; artificial intelligence; substation capacitor bank;
controlled switching

1. Introduction
High-voltage circuit breakers are critical equipment in a substation (SE), as they are

responsible for performing operations to connect and disconnect loads or to isolate the
system when faults occur. Failures in this asset can result in serious security and financial
losses for sector agents. For this reason, monitoring the main parameters of the circuit
breaker becomes essential to anticipate failures and estimate the useful life of the equipment,
resulting in economic, operational, and strategic gains [1–3].

During the switching, the circuit breaker is subject to the highest levels of transients
depending on the type of load connected to it [4–6].

In circuit breaker operations, particularly those involving capacitor banks [7,8], the
synchronization of switching is crucial to minimize transients and protect equipment.
During the closing operation, two distinct events occur in sequence: pre-insertion contact
and main contact. The pre-insertion contact refers to the moment when the circuit breaker
first connects a resistor or another element to limit inrush currents and transients before
full conduction [9]. The main contact follows, representing the final closure of the circuit
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to enable uninterrupted current flow through the circuit breaker. Identifying these points
accurately is essential for ensuring proper operation and minimizing harmful transient
effects [10].

Among the problems related to circuit breakers that operate with capacitor banks, one
of the main issues is related to controlled switching closing operations, which can generate
high levels of inrush current transients associated with high frequencies. These transients
cause damage to the circuit breaker itself, the capacitor bank, adjacent equipment, and even
remote equipment, leading to premature wear of assets, directly impacting maintenance
management and, in the worst case, causing asset unavailability and financial losses [11].

The process of identifying this synchronization is carried out by finding the pre-
insertion and main contact points in the current signal, as explored in [10]. This task
becomes complex when considering a real system operating in the substation, which is
subject to various interferences and noise, such as high transients generated, as well as
disturbances caused by the back-to-back effect of operations in the capacitor bank.

Some works published in the last few years explored techniques to improve the syn-
chronization of the switching controller of high-voltage circuit breakers. Motivated by
failures in autotransformers between 2005 and 2006 at a real substation, Luz et al. [11]
discuss the adjustment of synchronizers in the closing operation of capacitor banks to
reduce the current and voltage transients that occurred during the closing of the capacitor
bank circuit breakers. Manual transient measurements were taken at the autotransformer
terminals, and adjustments were made to the synchronizers to regulate the closing of the
circuit breakers to reduce transient currents. Finally, a significant decrease in maximum
currents and voltage variations was observed, resulting in less wear on the auxiliary com-
ponents of the circuit breakers, which increases the reliability and longevity of transformers
and capacitor banks.

With the same objective of synchronizing the closing mechanism to reduce transients,
Goldsworthy et al. [12] developed a system that determines the insertion points based
on the voltage waveform and aligns the closing with the contact operating time at the
voltage zero. Unlike other works, it does not use the pre-insertion resistor and implements
point-on-wave control to determine timing and synchronization. The work is validated
through field experiments, comparing switching data before and after the implementation
of control.

Sun et al. [13] investigate controlled switching synchronization using real-time simula-
tions, adjusting and analyzing in detail the impact of different parameters, such as resistor
size, insertion angle, and contact operating time. By monitoring the voltage drop between
contacts and the sudden increase in current, they can identify the exact moment when the
closing occurs, using the dielectric decay rate of the contacts as a reference. They conclude
that adjusting the insertion angle and pre-insertion time is essential for effectively mitigat-
ing switching transients. However, all operations are performed through simulations that
do not consider noise and interferences that occur in a real system.

Liu et al. [14] develop a drive motor and a controller to ensure precision in closing
contacts at the zero voltage point. The latter is implemented using a new control approach
called FPD (function-switching pseudo-differential), which dynamically adjusts control
parameters according to the phase of the circuit breaker contact movement, reducing
calculation complexity and improving system response. The insertion point is identified
by monitoring the motor rotation and contact movement. This new approach is compared
with conventional strategies and demonstrates higher precision and stability in contact
closing, with closing errors within ±0.5 ms.

A proposal for calculating the opening and closing times of the main contacts of circuit
breakers is presented in [15] through the analysis of voltage and current oscillography
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synchronized with the equipment’s trip command. Both the Fourier transform and the
Wavelet transform were used as analysis techniques. A prototype was installed in a 440 kV
substation to monitor the quantities. It should be noted that no intelligent techniques were
used to detect possible anomalies in the circuit breaker operation, such as those based on
artificial intelligence.

Several intelligent methods have been used to predict and diagnose circuit breaker
failures. Some of these works are based on artificial intelligence (AI) and machine learning
(ML) techniques. References [16,17] use techniques based on artificial neural networks
(ANNs) and support vector machines (SVMs) to evaluate characteristics of the displacement
curve and the current of the circuit breaker opening and closing coils. In [18,19], vibration
signals are evaluated using SVM and ANN techniques. In addition to the AI and ML
techniques mentioned above, there are other signal processing methods, such as the use
of the Fourier transform and Wavelet, that also help in predicting and diagnosing circuit
breaker failures, like in [20]. In [21], the behavior of the circuit breaker coil current signals
during switching is analyzed. In [2,20], several signals from circuit breakers are analyzed
using signal processing techniques.

The studies presented generally use computer simulations to determine pre-insertion
and main contact points and, consequently, to evaluate the synchronization of the closing
phase. However, when data are obtained in real environments, they carry a large amount
of noise and interference, making the determination of points difficult. This work proposes
the use of artificial intelligence to mitigate this problem so that the solution can be used
in any real environment where the circuit breaker is installed. To mitigate this type of
problem, this work presents an approach that combines modeling using signal processing
and artificial intelligence to automatically find the pre-insertion and main contact points
using real current and voltage signals from circuit breakers in an electrical substation,
considering all noise and interferences generated in a significant substation environment.

As a contribution of this work, we can highlight (i) the creation and availability of
a dataset containing real information for identifying synchronization patterns and other
data contained in the current and voltage signals of the high-voltage circuit breakers of
a real substation; (ii) the application of machine learning techniques in the context of
artificial intelligence for detecting main contact times in current and voltage signals subject
to different noise and interferences occurring in a production substation environment; and
(iii) statistical analysis providing an overview of synchronization times of the high-voltage
circuit breakers of the capacitor banks in the substation.

This article is organized as follows: Section 2 presents the materials and methods,
where the steps for implementing the proposed methodology are individually described. In
Section 3, the main results demonstrate the evaluations of the artificial intelligence models
and/or the outcomes of using the solution on real data from an SF6 circuit breaker bank.
Finally, Section 4 presents the conclusions and provides insights for future work.

2. Materials and Methods
The controlled switching of circuit breakers is usually checked during the asset main-

tenance period in power companies in Brazil, which usually occurs every 6 years, or during
corrective maintenance. In the interval between one check and another, due to different
factors, variations in the circuit breaker’s operating time may occur. It may not close at the
optimal timing, which can lead to accelerated wear on the asset and reduce its lifespan.
Identifying the contact insertion moments is currently performed visually by a controlled
switching specialist. This task becomes complex when considering a real system operating
in the substation and subject to various interferences and noises, such as the high transients
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generated, as well as the disturbances generated by the back-to-back effect of the controlled
switching in the capacitor bank.

In a common signal like Figure 1a, without noise and interference, it is easy to visually
identify the pre-insertion, red circle (1), and main contact points, blue circle (2). However,
several signals contain noise or interference, which can be caused by defective readings,
interference from other closed circuit breaker banks, or even from other phases of the same
bank. When the back-to-back effect occurs, it causes high transients. Some examples can be
seen on the right side of Figure 1. As can be observed, the main contact identification poses
challenges in its location. Even without noise or interference, the point may not be very
clear and objective, so any minor incident in the signal greatly hinders its location. Figure 1
shows the issues found in the obtained data, such as high transients in the signal and
interference from other closed phases. Using filters to smooth and remove noise has shown
some effectiveness, as in each case of noise or interference, one signal filter performs better
than another. Thus, using more advanced resources for point identification is necessary.

Figure 1. Examples of current signals.

The flowchart in Figure 2 presents the methodology proposed for the development
of this work. The development was divided into four modules, characterized by data
loading and pre-insertion point detection, dataset generation, model training and testing,
and analysis of the circuit breakers operating with a capacitor bank. The first one is
responsible for reading the file where the raw current and voltage signals from circuit
breakers were saved, applying pre-filtering to detect the pre-insertion point. The second
one was structured to transform a processing signal challenge into a classification problem,
constructing a dataset by using different filters aimed at feature extraction under noise
and several interferences present to detect the point of main contact. The third module
was developed to construct two classical classifiers present in the literature to perform the
identification of the main contact. After defining the efficient model, the last module is
responsible for extracting the times and other information of the circuit breakers to verify
synchronism and other information like inrush current, etc. The following subsections will
explain in detail what was developed in each module.
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Figure 2. Methodology proposed for the development of this work.

2.1. Data Loading and Pre-Insertion Point Detection

The current and voltage signals were measured directly from the CT and PT secon-
daries, respectively. These signals were then interfaced with the Advantech PCI-1713U
universal PCI board using a Telemulti signal conditioner. The PCI-1713U board, which
has 32 isolated analog input channels, was used for data acquisition. With a sampling
rate of up to 100 kS/s and a resolution of 12 bits, this board ensures accurate and reliable
signal capture. Data capture from capacitor banks occurs each time a bank is operated.
Each circuit breaker has three phases that are operated synchronously. The generated file
contains the current of all banks and all phases and finally includes the line voltage from
phase A to C. Each file contains in its name the date and time the operation took place and
the name of the bank that was operated. Therefore, it is at least possible to determine when
the operation occurred and which bank was operated. These files have two main issues:

• Corrupted files that cannot be read.
• Files with incorrect bank names: When analyzing the current of the bank named in the

file, it is clear that this was not the operated bank, requiring each bank to be checked
for identification. For this work, files with this issue were discarded.

The pre-insertion contact can be found, in most cases, by calculating the derivative of
the signal. For example, Figure 3a,c presents the raw current signal and its output of the
derivative filter. It is possible to see that the first variation is precisely the pre-insertion
contact. However, in some cases, only the derivative fails due to noise and interference
occurring moments before the pre-insertion point, as in the noise signal example shown
in Figure 3b. Thus, its derivative has large prior variations before the pre-insertion con-
tact, requiring a pre-filtering for that. Therefore, a moving average filter represented by
Equation (1) was used. Mi(k) represents the smoothed value of the series at point i, cal-
culated using a moving average of order k. k is the number of values used in the moving
average calculation; in this case, k = 10, meaning the filter considers the last 10 points of
the series, and xi−j denotes the value of the series at point i − j, where j ranges from 0 to
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k − 1. In other words, these are the most recent values, including the current value (xi) up
to k − 1 points prior. It smooths the signal, removing previous noise, and proves effective
for all test cases.

Mi(k) =
1
k

k−1

∑
j=0

xi−j (1)

Figure 3. (a) Signal without noise. (b) Signal with noise. (c) Derivative of the signal without noise.
(d) Derivative of the signal with noise.

2.2. Dataset Generation

The main contact is more challenging to identify in signals with noise and interference.
Even with the application of filters to smooth the signal, as in the case of pre-insertion
contact, the results obtained are not satisfactory. By processing the signals through a
filter bank and organizing each point of the signals sequentially, it becomes possible to
construct a training dataset. This approach transforms the challenge into a classification
problem, allowing a machine learning model to be trained to identify the main contact with
greater accuracy.

To achieve this, the following process was performed. It is known that the circuit
breaker manufacturer establishes standard contact time values and allowable variations in
well-functioning circuit breakers. The time between pre-insertion and main contact is about
10 ms [10,22]. Thus, using this time as a reference from the pre-insertion contact allows for
determining an upward and downward variation, forming a search window in which the
main contact may be. This variation was set to 8 ms, a larger variation than considered
healthy, which was necessary to include cases where the circuit breaker may be defective.
In Figure 4, the window in red on the left provides context for the complete signal, and the
right shows the window in detail.

Subsequently, each sample of the signal inside this search window is considered a
candidate to be the point of the main contact. In this sense, feature extraction was conducted
to characterize the features that can distinguish this main contact under the influence of
noise and interferences, as mentioned before. Therefore, several filters with different
parameters were applied for that feature extraction process. Table 1 summarizes the filter
bank employed and the parameters used for that.



Energies 2025, 18, 377 7 of 21

Figure 4. Defining the search window for the main contact. (a) The search window was defined from
the raw current signal and (b) the signal specifically in this window.

Table 1. Table with filters and parameters.

Filter Parameters

Derivative [23] Order 1

Integral [23] Order 1

Moving
Average [24] Convolution with a window size of 10

Median [25] Using a window size of 10

Savitzky-Golay [26] With a polynomial of degree 2 and a window size of 10

Fourier
Transform [27,28] Filtering frequencies above 200 Hz

Discrete Cosine
Transform [29]

With orthogonal normalization and removing high-frequency
components, zeroing the upper half of the coefficients

Hilbert
Transform [30]

Calculating the signal envelope and obtaining the signal through
the transform’s magnitude

Butterworth [31] With a cutoff frequency of 100 Hz and order 4

Wavelet [32]
Decomposing the signal with different wavelets and keeping only
the lowest-level coefficients. Biorthogonal, Coiflet, Discrete
Meyer, and Reverse Biorthogonal wavelets were used

In Figure 5, we can observe the original signal and some examples of the applied
filters. Note that although each filter smooths the signal, each one exhibits a certain pattern
at the moment of contact.

Figure 5. Some responses of the applied filter bank.
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Although the voltage signal represents the line-to-line voltage rather than the voltage
of each phase individually, it still exhibits identifiable patterns at the pre-insertion and
main contact points, as illustrated in Figure 6, where the voltage is represented by the blue
line. To leverage this additional information, the voltage signal was included alongside the
current signals in the dataset. Both signals are processed using the filter bank developed in
this work, resulting in a filtered representation where each filter produces a distinct version
of the original signal. Specifically, for each signal type (current and voltage), 41 filters are
applied, generating a matrix where each row corresponds to a filtered signal. This matrix is
transposed, transforming the columns into the filtered signals, and the resulting feature
vector contains 82 columns—41 corresponding to the filtered current signals and 41 to the
filtered voltage signals—forming the input for the training dataset. This inclusion aims to
enhance the model’s ability to identify key events effectively.

Figure 6. Current and Voltage signals.

The main contact points were manually labeled by visually analyzing each signal in the
dataset and precisely marking the point corresponding to the main contact. This approach
ensured accurate annotation for the training data (Dataset available at: https://doi.org/
10.5281/zenodo.14617420 accessed on 8 January 2025) contains a total of 1,042,199 data
points, of which 1737 were labeled as main contact points (value 1) and the remaining as
not corresponding to the main contact (value −1). These points come from 1737 signals,
distributed by year as shown in the Table 2:

Table 2. Signal distribution in the dataset by year.

Year Number of Signals

2010 394

2011 584

2019 675

2020 84

2.3. Model Training and Testing

This section provides an overview of the methods employed for training and testing
the models. It begins with data augmentation and normalization, covering data balancing
techniques and the normalization applied. Following this, the architectures of the multilayer
perceptron (MLP) and adaptive boosting (AdaBoost) models are detailed, including training

https://doi.org/10.5281/zenodo.14617420
https://doi.org/10.5281/zenodo.14617420
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parameters and the use of k-fold cross-validation. Model performance metrics, such as
precision, recall, and F1-score, are presented, along with statistical validation through
the Wilcoxon test. Lastly, an analysis of circuit breaker behaviors is conducted, detailing
calculations for pre-insertion and main contact timing, maximum inrush current, and phase
synchronization, supported by equations and figures.

2.3.1. Data Augmentation and Normalization

The data were prepared through balancing and normalization techniques to ensure
data quality during model training. For data balancing, a combination of undersampling
and SMOTE (synthetic minority over-sampling technique) [33] was applied. Initially,
undersampling was used to reduce the number of incorrect samples. Then, SMOTE was
applied to increase the number of correct samples to match the number of incorrect points,
resulting in a final dataset of 5000 points that characterize the main contact and the same
number of those that don’t.

For data normalization, the standardization method was applied using the Standard
Scaler technique [34], which transforms each variable X so that its mean is zero and its
standard deviation is one, according to Equation (2):

Xnormalized =
X − µ

σ
(2)

where µ represents the mean of the X values and σ the standard deviation. This step
ensures that all variables are on the same scale, improving the effectiveness of the machine
learning model.

2.3.2. Multilayer Perceptron—MLP

The MLP is a feedforward neural network composed of an input layer, one or more
hidden layers, and an output layer. The network developed in this work has an input layer
with 82 neurons, one hidden layer with 100 neurons, and an output layer with 2 neurons, as
illustrated in Figure 7. The number of neurons in the input and output layers is determined
by the dataset characteristics. The hidden layer, containing 100 neurons, follows the default
configuration of the MLPClassifier provided by the Scikit-learn Python library, which is
informed by studies that established effective initialization and optimization strategies for
neural networks [35–37]. This simple yet effective architecture, coupled with a non-linear
activation function such as ReLU, enables the MLP to capture complex relationships within
the data. Training is performed using the backpropagation algorithm, which adjusts the
weights based on the error at each iteration [38,39].

2.3.3. Adaptive Boosting—AdaBoost

AdaBoost is an ensemble model that combines multiple weak decision trees to form a
robust classifier. It utilizes a set of weak classifiers, depth-1 decision trees called stumps,
and iterates over them to reduce errors by increasing the weight of misclassified data
in each iteration. In this work, the developed model uses 500 estimators, meaning it
generates 500 weak classifiers, as illustrated in Figure 8, combining them in a sequence.
The parameters follows the default configuration of the AdaBoostClassifier provided by
the Scikit-learn library, which is based on prior studies establishing effective strategies for
boosting algorithms [40]. Each new classifier attempts to correct the errors of the previous
set, adjusting iteratively [41–43].
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Figure 7. MLP architecture was developed for this work. It has X input neurons, 100 neurons in the
hidden layer, and 2 in its output layer.

Figure 8. AdaBoost with 500 weak classifiers.

2.4. Cross Validation

To obtain a robust evaluation of model performance, the cross-validation technique
was used. This method allows the model to be tested on different subsets of the data,
reducing the risk of overfitting or underfitting and ensuring that the observed performance
is not specific to a single train-test split. In this work, K-fold cross-validation was employed,
where each subset serves as the test set once, while the remaining K-1 subsets form the
training set. This process is repeated K times, ensuring that each data instance is used for
both training and testing. The parameters used for K-fold cross-validation for both models
are presented in Table 3.

Table 3. Parameters Used in K-Fold Cross-Validation.

Parameter Value

Number of K-Fold splits 10

Seed for reproducibility 42
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Model Performance Indicators

The confusion matrix is a table that summarizes the prediction results of a classification
model by comparing the model’s predictions with the actual values. It consists of four
main elements:

• True Positives (TP): Cases where the model correctly predicted the positive class.
• True Negatives (TN): Cases where the model correctly predicted the negative class.
• False Positives (FP): Cases where the model incorrectly predicted the positive class

when the actual class was negative (Type I error).
• False Negatives (FN): Cases where the model incorrectly predicted the negative class

when the actual class was positive (Type II error).

Based on the confusion matrix, several evaluation metrics can be derived to assess the
model’s performance in detail [44].

• Accuracy: Accuracy measures the proportion of correct predictions relative to the total
predictions made. It is a useful metric when classes are balanced, vide Equation (3).

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

However, in imbalanced datasets, accuracy can be misleading, as a model that always
predicts the majority class may have high accuracy but poor performance in capturing
the minority class [45].

• Precision: Precision, also known as positive predictive value, measures the proportion
of correctly classified positive examples among all examples classified as positive by
the model, vide Equation (4).

Precision =
TP

TP + FP
(4)

Precision is especially important in scenarios where false positives should be mini-
mized, such as in medical diagnostics [45,46].

• Recall: Recall, or sensitivity, measures the model’s ability to correctly identify all
positive examples. It is the proportion of true positives relative to the total examples
that actually belong to the positive class, vide Equation (5).

Recall =
TP

TP + FN
(5)

Recall is essential in cases where false negatives should be minimized, such as in
detecting severe diseases, where capturing all positive cases is crucial [44,45].

• F1-Score: The F1-score is the harmonic mean of precision and recall, providing a
balance between both metrics. It is useful when both precision and recall are important,
as shown in Equation (6).

F1 = 2 · Precision · Recall
Precision + Recall

(6)

The F1-score is more informative than accuracy in imbalanced scenarios, as it balances
the importance of true positives and false negatives [44,45].

• Specificity: Measures the proportion of true negatives correctly identified relative to
the total examples that actually belong to the negative class, as shown in Equation (7).

Specificity =
TN

TN + FP
(7)
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Specificity is relevant in contexts where avoiding false positives is important, such as
in screening tests [44].

• Area under the ROC Curve (AUC-ROC): AUC represents the model’s ability to dis-
tinguish between positive and negative classes. A receiver operating characteristic
(ROC) curve is plotted with the x-axis representing the false positive rate and the
y-axis representing the true positive rate, as shown in Equation (8).

AUC =
∫ 1

0
TPR(FPR) dFPR (8)

A model with an AUC close to 1 is considered excellent, while an AUC of 0.5 indicates
no discrimination ability (equivalent to random guessing) [44].

These metrics allow a detailed and rigorous analysis of model performance, ensuring
that the results are correctly interpreted in various contexts [47–49].

2.5. Analysis of the Circuit Breakers

In this study, the timing associated with the closing of high-voltage circuit breaker
contacts was analyzed to assess the pre-insertion time, main contact, inrush current, and
synchronization of the main contact with the current zero-crossing. The method used to
extract each of these parameters is detailed below.

To determine the time interval between the pre-insertion contact and the main contact,
the pre-insertion contact time (Tpre-insertion) was subtracted from the main contact time
(Tmain), as presented in Equation (9):

∆Tpre-main = Tmain − Tpre-insertion (9)

where Tmain represents the moment when the main contact closes, and Tpre-insertion is the
time when the pre-insertion contact occurs.

The inrush current value was obtained by finding the peak of the current signal at the
moment of the main contact closing. The value of Iinrush is described by Equation (10):

Iinrush = max(I(t)) (10)

To determine the time interval between the main contact and the current zero-crossing,
the current signal was analyzed to identify the zero-crossing points closest to the main
contact time, Tmain. The process involves checking both the preceding and following zero-
crossings relative to Tmain, selecting the closest point. This interval is calculated by the
following relation in Equation (11):

∆Tzero = min(|Tmain − Tzero,left|, |Tmain − Tzero,right|) (11)

where Tzero,left and Tzero,right represent the times of the nearest zero-crossings before and
after Tmain, respectively.

In three-phase systems, each phase (A, B, and C) must close in sync with a 60-degree
(2.78 ms) phase difference, which is crucial to prevent unwanted current transients and
maintain system balance. To evaluate the synchronization in the closing of the main contacts
between phases A, B, and C, we calculated the time intervals between the main contact
closing moments of each phase. The synchronization is defined by the time differences
between the main contacts of the adjacent phases, as shown in Equations (12) and (13):

∆Tsync,AB = Tprincipal,B − Tprincipal,A (12)
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∆Tsync,BC = Tprincipal,C − Tprincipal,B (13)

A total of 4795 files were analyzed, each containing the signal from three phases, result-
ing in 14,385 signals. The pre-insertion contact time, main contact time, difference between
them, synchronization time of the main contact with the current zero-crossing, the maxi-
mum current value of the signal, and the synchronization between phases were calculated.

3. Results
This section presents and discusses the results obtained from the analysis of circuit

breaker current signals, covering both the performance of training and validation models as
well as the statistical analysis of circuit breaker operation times. The analysis is divided into
two main subsections: the first examines the effectiveness of the models used, including
quantitative and qualitative metrics of the detections made, while the second subsection
explores temporal and current aspects of the events, such as the time between pre-insertion
and main contact, maximum inrush current, and the synchronization of phases A, B, and C.
For clarity, tables and figures are presented to illustrate the evaluated variables, providing a
comprehensive overview of circuit breaker behavior under different operating conditions.

3.1. Training and Validation Analysis of the Models

The MLP network developed has a single hidden layer with 100 neurons, configured
with the ReLU (Rectified Linear Unit) activation function. The initial learning rate was set to
0.001 and remained constant throughout the training process. The optimization algorithm
used was Adam, which combines the advantages of stochastic gradient with momentum
adaptations. The maximum number of epochs was fixed at 300, and the stopping criterion
was based on the minimum variation in loss, with a tolerance of 0.0001. The regularization
rate was set to 0.0001, and a momentum value of 0.9 was applied to smooth the weight
updates. The model was also configured to allow early stopping if there was no significant
improvement in the loss over 10 consecutive iterations.

The AdaBoost model was configured to use the SAMME.R algorithm, which adjusts
sample weights based on the accumulated error rate of each weak estimator. The learning
rate was set to 1.0, keeping the impact of each estimator uniform throughout the training
process. The maximum number of estimators was set to 500, indicating that AdaBoost will
add up to 500 weak estimators to improve the final model’s performance. The default base
estimator used was a decision tree, and the random state parameter was set to 42 to ensure
reproducibility of the results.

The models were evaluated based on all parameters mentioned in Section 2.4, and the
average values after cross-validation can be seen in Table 4.

Table 4. Model Performance Metrics.

Model Accuracy Precision F1 Score Recall Specificity AUC-ROC

AdaBoost 0.9523 0.9524 0.9523 0.9523 0.9540 0.9857
MLP 0.9468 0.9470 0.9468 0.9468 0.9449 0.9842

The Wilcoxon signed-rank test was conducted to compare the overall performance
metrics (Accuracy, Precision, F1 Score, Recall, Specificity, and AUC-ROC) between the
AdaBoost and MLP models, shown in Figure 9. The test yielded a test statistic of 0.0
and a p-value of 0.03125, indicating a statistically significant difference between the two
models’ performance at the 5% significance level. This result suggests that the AdaBoost
and MLP models do not perform identically across all evaluated metrics, with AdaBoost
demonstrating a slight overall advantage in this analysis.
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Figure 9. Model Evaluation.

The learning curve of the AdaBoost model, shown in Figure 10, and the curve of MLP,
shown in Figure 11, illustrate the model’s stability in terms of accuracy. The x-axis in each
learning curve represents the training set size, the fraction or number of samples used
to train the model at each point. The training line indicates the model’s accuracy on the
training set for each training size, and the validation line shows the model’s accuracy on
a separate validation set. When the training and validation lines are close and stable, the
model achieves a good balance, effectively capturing patterns without overfitting to the
training data.

Figure 10. AdaBoost Learning Curve.
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Thus, the AdaBoost model was selected for identifying the main contact. Figure 12
shows the results of the automatic identifications, where the black line represents the
pre-insertion contact, and red indicates the main contact.

Figure 11. MLP Learning Curve.

Figure 12. Automatically Marked Signals.

3.2. Statistical Analysis of Circuit Breaker Timing

The interval between contacts, which, according to the manufacturer, should remain
around 10 ms, was within the expected range in most cases [10,22]. However, a significant
number of cases showed this value between 9 ms and 10 ms. These values can be seen in
Figure 13.

When analyzing the inrush current, it can be seen in Figure 14 that, recently, in 2020,
this maximum was significantly reduced, possibly indicating some type of improvement in
the equipment or control mechanism to prevent peak currents in the circuit breakers.

Another point to highlight is the inrush current in relation to phases, shown in
Figure 15, where the first phase has higher values than the other phases, and the last
phase has lower values.
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Figure 13. Contact Interval Distribution.

Figure 14. Inrush over years.

Figure 15. Inrush and Phases.
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When analyzing the interval between the main contact and the current zero-crossing,
it can be observed in Figure 16 that the synchronization is correct in most data, with outliers
being a point of attention.

Figure 16. Interval between main contact and current zero-crossing.

Grouping by channel shows that phase B is more out of sync than the other phases, as
evidenced in Figure 17.

Figure 17. Phases interval between main contact and current zero-crossing.

The synchronization among phases is illustrated in Figure 18, where an evident
average value can be observed, indicating that synchronization is generally within healthy
levels. The outliers highlight a point of attention that may indicate potential issues.
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Figure 18. Phases Synchronization.

4. Conclusions
This work addressed a significant challenge in the field of high-voltage circuit breakers:

the precise identification of pre-insertion and main contact points during closing operations.
The complexity of this problem lies in the need to handle noisy signals and operating
environments that can compromise the accuracy of conventional analyses. Current and
voltage data collected from real environments subject to significant noise and interference
were processed, and the results showed that the proposed method achieved an accuracy
above 90% in identifying the main contact points, proving its effectiveness even in scenarios
with high levels of noise. The main contribution of this work is the demonstration that the
integration of signal processing methods and machine learning can be successfully applied
to enhance the identification of features in current and voltage signals in high-voltage
circuit breakers. This methodology can also be extended and adapted to different types of
signals extracted from circuit breakers, such as vibration. For future work, it is proposed
to explore the use of more complex neural network architectures, such as convolutional
neural networks, to further improve the accuracy and generalization capacity of the models.
Additionally, incorporating the solution into real-time monitoring systems may represent
a promising expansion, allowing immediate responses to critical variations and early
detection of potential failures, as well as the instant adjustment of Switching controllers.
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DCT Discrete Cosine Transform
AUC-ROC Area Under the Receiver Operating Characteristic Curve
MLP Multi-Layer Perceptron
ReLU Rectified Linear Unit
AdaBoost Adaptive Boosting
TP True Positives
TN True Negatives
FP False Positives
FN False Negatives
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