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Abstract: Using the low-voltage and low-current platform (220 VAC-10 A), this paper
selected the Mayr arc theoretical model and the improved control theory model as a theo-
retical basis and built a single-phase low-voltage AC series arc model based on Simulink.
The simulation results showed that arc dissipation power directly determined arc voltage
amplitude, arc time constant influenced arc voltage waveform, and arc current was mainly
determined by load resistance. Because the arc length parameter can be set by the improved
control arc theory model, the arc can be drawn only at the micro-distance of two electrodes,
which is more suitable for describing the arc characteristics of low voltage and low current.
A scheme of large ratio reducer for permanent magnet brushless DC motor was developed,
which was combined with the stepless governor controlled by PWM and the positive
and negative switch to realize the adjustment of the two-electrode micro-distance. The
collection and analysis of arc voltage and arc current under pure resistance, resistive load,
and multi-branch load were completed. The experimental results also verified that the
Mayr arc and improved control theory arc have good accuracy in describing low voltage
and low current characteristics, which improves data support for later fault identification
and removal.

Keywords: low-voltage distribution network; Mayr arc model; improved control theory
arc model

1. Introduction
In the low-voltage distribution network system, series arc faults are one of the common

fault types due to aged wires and loose plugs. Fires caused by poor contact of electrical
equipment, aging insulation, or mechanical external force impact have received increasing
attention. Electric fire ignition mechanisms, early warning and prevention, arc fault identi-
fication and perception, and fire extinguishing methods have become research hotspots.

The Mayr arc model and the improved control theory arc model are described by the
first-order differential equation about arc conductance g, and are suitable for low-voltage
and low-current case [1–5]. The appended Material variable definition table encapsulates
definitions for all variables; refer to the Supplementary Material.

A time-variance accuracy coefficient optimized random forest model is proposed to
identify series arc faults with feature aliasing in low-voltage scenarios, which builds arc
platforms considering different load characteristics [6,7].
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The convolutional neural network (CNN) is widely used to detect arc faults because
it can automatically extract arc features for signal classification [8–10]. For the dimmer
loads, a time-series reconstruction method is presented to distinguish normal signals with
arcing ones based on spectral features [9]. An arc detection model based on CNN has
been proposed to identify an arcing current, which can achieve a maximum of 99.47% arc
detection accuracy at a 10 kHz sampling rate [10]. The recurrent neural network (RNN)
is also used to detect series arc fault instead of CNN because the RNN method is more
suitable to analyzing time-series [11].

The current of series arc faults is time-varying and stochastic, therefore, the time-
frequency methods such as discrete wavelet transform (DWT), empirical wavelet transform
(EWT), or empirical mode decomposition (EMD) are suitable for series arc fault detec-
tion [12–14]. Five-layer empirical wavelet transform decomposition is performed based on
the current signal measured at the front of the inverter [14].

For the simple nonlinear loads, fast Fourier transform (FFT) and wavelet decompo-
sition can be used to extract frequency domain features for arc detection. An arc fault
detection model based on the residual network was proposed from the perspective of
computer vision, and an appropriate data enhancement method was given [15].

In the above literature, there are few studies based on the characteristics of low-
voltage platform arc model, especially in the aspect of combining experimental waveform
verification. An important discovery was made through a number of experiments in this
paper. The arc pulling distance between two electrodes is very small (measured about
0.1 mm) in a low-voltage distribution network (220 Vac). The main work was to design a
platform to accurately control the distance.

In this paper, according to the characteristics of 220 Vac low-voltage and low-current
power supply scenario, based on the Mayr arc and improved control arc theory, a single-
phase low-voltage AC series arc model was simulated. To simulate the arc generation scene,
an arc generation platform was developed in this paper. The shift of one pole is driven
by a permanent magnet (PM) brush motor with large reduction ratio reducer. The biggest
advantage of the arc platform is that it can achieve accurate tiny distance control between
two poles.

2. Materials and Methods
Based on the Mayr arc and improved control theory arc theory, the derivation process

and the realization in Simulink are summarized. The single-phase AC low-voltage series
arc model was built and the experimental device of the single-channel arc pulling automatic
control system was verified.

To describe the characteristics of the “zero rest” zone of arc current, an improved
Sigmoid function was introduced to describe the transition function ζ with arc current i as
the variable. The Simulink model and mathematical description about Sigmoid function
are defined in Figure 1 and Equation (1):

ζ(i) =
1

1 + e−α(βi2−I2
0 )

(1)

where i is the instantaneous value of the arc current, coefficient α is the value [20,50,80,200],
coefficient β is the value of 0.005, and I0 is the transition current with a value of 0.2.

Under the conditions of coefficient α [20,50,80,200], coefficient β = 0.005, and transition
current I0 = 0.2, the change curve of transition function ζ(i) with the instantaneous arc
current i (value range [−30, 30]) is given in Figure 2. The simulation results show that ζ(i)
was larger and the X-axis range was wider when ζ(i) < 1. The larger the coefficient α, the
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closer the value of ζ(i) at i = 0 is to zero and the narrower the X-axis range across ζ(i) < 1 is
to rectangle.
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Figure 2. Transition function ζ(i) changes with arc current.

For single-phase 220 Vac-50 Hz, the instantaneous value of current i considering the
arc is expressed as follows:

i = I1ζ(i) sin(2π f t) (2)

where I1 is the RMS value of the current (assuming I1 = 10 A) and f is the frequency of the
power supply (f = 50 Hz).

The instantaneous value of arc current i and the transition function ζ(i) in Equation (2)
shows the phenomenon of “zero rest” in each region of zero crossing in Figures 3 and 4.
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2.1. Mayr Arc Theoretical Model

Since the experimental platform adopted a 220 Vac single-phase AC power with low-
voltage distribution, the Mayr arc model was suitable for simulating arc ignition with
high-resistance and low-current load and describing arc state near the “zero rest” zone.
Therefore, the theoretical basis of this paper was based on the Mayr arc model and the
improved control theory model.

No matter the Mayr arc model or the control theory arc model, the arc in the arc gap
was described according to the principle of energy conservation, and the expression is
described as Equation (3). The black box model of the arc described above is the differential
equation of Equation (3) concerning the arc conductance g. In Equation (3), the energy
change rate dq/dt stored per unit length arc is equal to the difference between the input
power ei per unit length arc and the combustion dissipation power P0 per unit length
arc [1–4,6].

dq
dt = dq

dg
dg
dt = ei − P0 ⇒ dg

dt = P0
dq
dg

(
ei
P0

− 1
)

⇒ 1
g

dg
dt = 1

g
P0

dq
dg

(
ei
P0

− 1
)
= 1

τ

(
ei
P0

− 1
)

, τ = g
P0

dq
dg

(3)

The arc heat dissipation power Ploss and the arc time constant τ play key roles in the
Mayr arc extinguishing process. Its mathematical definition is described as follows:

1
g

dg
dt = d ln g

dt = 1
τ

(
ei
P0

− 1
)
= 1

τ

(
eiL
P0L − 1

)
= 1

τ

(
ui

Ploss
− 1
)

⇒ 1
g

dg
dt = 1

τ

(
ui

Ploss
− 1
) (4)

where g is arc conductance, Ploss is arc combustion dissipation power (Ploss = P0 × L)), u is
arc voltage (u = e × L), e is unit arc column electric field strength, i is arc current (i = g × u),
P0 is power loss per unit arc length, τ is time constant, and other parameters are defined
as Equation (3).

According to the mathematical description of the Mayr arc model in Equation (4), arc
conductance g and arc resistance R can be obtained by integrating the time t, as shown in
Equations (5) and (6).

ln g =
∫ 1

τ

(
ui

Ploss
− 1
)

dt ⇒ eln g = g = e

∫ 1
τ

(
ui

Ploss
−1

)
dt

(5)
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dlng
dt

=
d ln R−1

dt
= −d ln R

dt
=

1
τ

(
ui

Ploss
− 1
)

⇒ ln R =
∫ 1

τ

(
1 − ui

Ploss

)
dt ⇒ R = e

∫ 1
τ

(
1−

ui
Ploss

)
dt

(6)

According to the mathematical description of the Mayr arc model in Equation (4), the
DEE (differential equation editor) module was built in Simulink as shown in Equation (7):{

d ln g
dt = S

τ

(
eln gu2

Ploss
− 1
)
= S

τ

(
ui

Ploss
− 1
)

y = i = eln gu = gu
(7)

where x(1) is the state variable of the differential equation, that is, the natural logarithm
of arc conductance ln(g), S is the switching signal (0 or 1), x(0) is the initial value of arc
conductance (x(0) = ln(g(0)), u(1) is the arc voltage u corresponding to the first variable
input of DEE module, and u(2) is the contact separation state quantity of the circuit breaker.
Corresponding to the second variable input of the DEE module, u(3) is the natural logarithm
of arc conductance ln(g) corresponding to the third variable input of the DEE module, y
represents the arc current i corresponding to the output variable of the DEE module. τ and
Ploss are defined in Equation (4).

The single-phase series arc model based on Mayr arc theory is shown in Figure 5. The
DEE module of the Mayr arc model was built in Simulink according to Equation (7), as
shown in Figure 6. Simulation waveform of arc voltage and arc current were obtained after
5 electrical cycles (0.1 s) (Figures 5 and 6).
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Figure 6. The DEE module in the Mayr arc model.

The DEE module parameters in the Mayr arc model include time constant τ, dissipated
power Ploss (W), arc conductance constant g0, and breaker contact–separation start time St0.
In addition, the Mayr arc model itself includes load resistance R, AC voltage uac, and AC
power frequency f. The parameters of the Mayr arc model are given in Table 1.
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Table 1. Parameters of the Mayr arc model.

Parameter Case 1 Case 2

Arc time constant τ (s) 5 × 10−4 5 × 10−4

Arc dissipation power Ploss (W) 1 50
Arc conductance constant g0 (S) 1 × 106 1 × 106

Breaker separation start time St0 (s) 0 0
Load resistance R (Ω) 20 20

AC supply voltage uac (V) 220 220
AC power frequency f (Hz) 50 50

Based on the Mayr arc theoretical model, simulation experiments have found that
arc dissipation power Ploss directly determines the amplitude of arc voltage. The arc time
constant τ affects the shape of the arc voltage waveform. Arc current is mainly determined
by load resistance, and a larger load is conducive to increasing arc current and maintaining
arc duration, especially under the condition of low-voltage 220 Vac power supply. By
setting the two groups of arc dissipation power (Table 1), it was found that when the
arc dissipation power was very small (1 W), the arc voltage also became small, and the
phenomenon of zero arc current almost disappeared, as shown in Figure 7. With the
increase in the arc dissipation power, the arc gap energy increases, arc voltage increases
significantly, and the arc current shows a relatively obvious phenomenon of zero rest, as
shown in Figure 8.
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Figure 7. Arc voltage and current in the Mayr model (Case 1).
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2.2. Improved Control Theory Arc Model

In the case of low current series arc or ground fault, the improved control theory arc
model can more accurately describe the variation of arc voltage and arc current, and the arc
length can be set to reflect the real arc stretching phenomenon. Based on classical control
theory, an improved control theory arc model is proposed in [5,6].

dg
dt

=
1

τC
(GC − g) (8)

GC =
|i|

UCLC I−0.4
C

; τC = β
I1.4
C
LC

(9)

Here, GC is the arc steady-state conductivity, τC is the arc time constant, UC is the arc column
steady-state field intensity coefficient (voltage drop per unit length of arc gap (V/cm)), LC

is arc length (cm), β is the coefficient (empirical value is β = 1 × 10−6~2.85 × 10−6), IC is
the peak arc current, and i is the transient current.

Based on the improved control theory model of Equations (8) and (9), the derivation
of the differential equation module DEE is as follows:

d ln g
dt = SLC g

βI1.41
C

(
|gu|

U0LC I−0.41g − 1
)
= SLC

βI1.41
C

(
|i|

U0LC I−0.41 − g
)

i = gu
(10)

Figures 9 and 10, respectively, show the series arc model of improved control theory
built on the Simulink platform and the corresponding DEE module.
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Table 2. Improved control theory arc model parameters.

Parameter Case 1 Case 2

Voltage drop per unit length U0 (V/cm) 15 50
Arc length LC (cm) 0.02 0.4
Peak current IC (A) 5 5

Coefficient β 5 × 10−6 5 × 10−6

Arc conductance constant g0 (S) 1 × 104 1 × 104

Breaker separation start time St0 (s) 0 0
Load resistance R (Ω) 5 5

Alternating voltage uac (V) 220 220
Frequency f (Hz) 50 50

The simulation waveform of arc voltage and arc current under two working conditions,
respectively, are given in Figures 11 and 12. Referring to the ideas in Section 2.1, based on
the improved control theory arc theoretical model, the arc length and voltage drop per unit
length can be set in this theoretical model, which more directly corresponds to the actual
distance between the two electrodes in the experiment. The conclusions obtained from the
simulation data were basically consistent with those obtained in Section 2.1 based on the
Mayr arc theory.
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Figure 12. Based on the arc voltage and current in the modified control theory model (Case 2).

3. Single Arc Pulling System Experiment
The arc may occur in the main loop (Figure 13a) or in one or more parallel branches

(Figure 13b). This paper mainly discusses the single arc experiment.
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3.1. Working Principle and Platform Construction of Single Arc Pulling System

The single-channel arc pulling control system is composed of an arc generating device,
a permanent magnet DC brush motor and its controller, and a reducer, wherein the stepless
governor and positive and negative switch, respectively, adjust the speed and steering of
the permanent magnet DC brush motor. Figure 14 shows the working principal diagram of
the motor speed regulation and positive/negative rotation control. The permanent magnet
DC brush motor adopts a 24 V DC power supply. Each group of bridge arms is composed
of four MOSFET, including NMOS and PMOS. The current flow direction is controlled by
inputting PWM control signals of forward turning FW or reverse RW, and the speed of the
motor is controlled by controlling PWM duty ratio of FW or reverse RW signal, as shown
in Figure 14, the red and black lines are the two alternating diagonal MOSFET lines. The
flowchart of the arc generation is given in Figure 15.
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The experimental platform of the single-channel arc pulling control system is shown
in Figure 16. The arc generating device of the system is composed of a static graphite
electrode, a moving brass electrode, and a screw nut mechanism. Because the experimental
device uses a low-voltage 220 Vac single-phase AC power supply, the moving electrode
is separated from the stationary electrode by contact, and micro-distance (about 0.1 mm,
thickness of an A4 paper) is required to start the arc. To solve the micro-distance control
problem, a permanent magnet DC brush motor drive reducer (reducer ratio i = 2264) was
designed, combined with a stepless governor. Thus, micron speed control is realized,
and the control device is far away from the arc, reducing the risk of electric shock during
operation. The current clamp is responsible for collecting arc current in the loop, the
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voltage differential probe collects arc voltage, and the collected data are displayed in
the oscilloscope.
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3.2. Pure Resistance Load Test

A hot kettle (1800 W-220 VAC, frequency 50 Hz) was selected as a pure resistance load
to carry out the arc pulling experiment. By controlling the stepless speed control button and
the forward and reverse switch, the load experiments and waveforms under normal contact
condition (two electrodes in full contact) and fault separation condition (two electrodes
in micro-distance separation) were carried out, respectively. The waveforms are shown in
Figures 17 and 18. The arc current (RMS) and arc voltage under normal contact conditions
were 8.2 A and 0.24 V, respectively.

Under fault separation conditions, the arc current was 8.1 A and the arc voltage was
0.089 V. In Figure 18, the arc current in the fault condition has the phenomenon of “zero
rest”, and the fault arc voltage has the obvious phenomenon of arc burning and quenching.
Because the two electrodes in the micro-distance (0.05–0.1 mm) arc pull discharge, the
voltage between the electrodes is very small; the arc current decline amplitude is greater
than the arc resistance increased amplitude, resulting in a downward trend of arc voltage;
the arc increased the resistance of the loop; and the arc current slightly decreased.
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3.3. Resistive Load Test

Similarly to the pure resistance load experiment in Section 3.2, when an industrial
fan (350 W-220 VAC) was selected as a pure resistance load, the arc current (RMS) under
normal contact conditions (Figure 19) was 1.54 A, and the arc current and arc voltage under
fault separation conditions (Figure 20) were 1.56 A and 0.04 V, with little change in arc
current and voltage. In the fault separation conditions, the arc burning was not obvious
and intermittent, and the line current was too small to support the continuous arc pulling.
In addition, an arc current of 2.94 A at the starting stage of the industrial fan (Figure 21)
was also collected. Compared with the fault separation state, the arc voltage only had a
brief and obvious arc extinguishing phenomenon due to the short starting time.
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two electrodes (fault).

3.4. Multi-Branch Parallel Load Experiment

The arc pulling device was arranged in the main loop, and the double branch load
formed in parallel by the hot kettle (power 1800 W) and the industrial fan (power 350 W)
(topological reference Figure 13a). Due to the increase in the load, the arc current of the
main circuit (Figure 22) reached 9.84 A under normal conditions and 9.74 A under fault
separation conditions (Figure 23). The arc voltage produced the obvious phenomenon of
arc burning and quenching, and its value reached 0.087 V. The important thing is that the
increase in the line load made the line current increase, which caused the increase in the arc
energy, resulting in a continuous arc.
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4. Conclusions
For the low-voltage and low-current platform (220 VAC-10 A), this paper selected the

Mayr arc theoretical model and improved control theory model as the theoretical basis, and
conducted simulations and experiments, concluding as follows:

1. Arc dissipation power directly determines the arc voltage amplitude. The arc time
constant affects the arc voltage waveform. Arc current is mainly determined by the
load resistance.

2. Arc length and voltage drop per unit length can be set based on the improved control
theory arc theoretical model. The arc length can directly correspond to the actual
distance between the two electrodes of the experimental platform, and the arc volt-
age waveform obtained is very close to the shape of the experimental waveform.
This arc model is more suitable for reflecting the arc characteristics of low voltage
and small current. Research has found that the improved control theory arc model
can control the arc length, and the simulation wave of the arc voltage is similar to
the experiment results.

3. In the simulation of the low-voltage and low-current platform, arc voltage arc-
quenching and zero arc current can hardly be combined. This phenomenon is also
verified in the experiments of pure resistance, resistive load and multi-branch load.
Multi-branch load is beneficial to increase the arc current, to obtain continuous arc
pulling, and to facilitate the collection of experimental data.

4. The developed permanent magnet DC brush motor matching the large speed reducer
ratio speed reducer scheme, combined with the PWM controlled stepless governor and
positive and negative switch, can cause the adjustment of the two electrodes, while
preventing the risk of arc discharge shock, improving the safety of the experiment. By
collecting arc voltage and arc current waveforms, it is helpful to identify and remove
faults in the later stage.
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