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Abstract: This paper proposes an innovative methodology for geospatial forecasting of
electrical demand across various consumption segments and scales, integrating machine
learning and discrete convolution within the framework of global system projections. The
study was conducted in two phases: first, machine learning techniques were utilized to
classify and determine the relative growth of segments with similar consumption patterns.
In the second phase, convolution methods were employed to produce accurate spatial
forecasts by incorporating the influence of neighboring areas through a “core matrix”
and accounting for geographical constraints in regions with and without consumption.
The proposed approach enhances the precision of spatial forecasts, making it suitable
for large-scale distribution systems and implementable within short timeframes. The
proposed method was validated using data from a Peruvian distribution system serving
over one million users, employing 204 historical records and analyzing three georeferenced
consumption segments at scales of 1:10,000, 1:1000, and 1:100. The results demonstrate its
effectiveness in forecasting across different time horizons, thereby contributing to improved
planning of electrical infrastructure.

Keywords: geospatial forecasting; discrete convolution; distribution system; segments;
machine learning

1. Introduction
The forecast of electrical demand is a crucial input in the planning of the electric

industry, playing a significant role in the decision-making process of market agents, and
is closely linked to economic, social, and environmental development [1,2]. It is essential
for sustainability to optimize the use of energy resources aligned with renewable energy
sources and the expansion of infrastructure over short, medium, and long-term horizons,
while ensuring a stable supply of electricity and reducing carbon emissions [3,4]. This
requires accurate predictions of demand, both in terms of magnitude and geographic
locations, over different periods of the planning horizon.

Electric distribution companies are responsible for acknowledging their customers’
needs and supplying energy efficiently while maintaining the electrical grid at an acceptable
level of quality and reliability. These networks exhibit a high degree of variation in topology
and are continuously expanding due to urban growth and the expansion of electrical service
coverage areas [5,6].
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Methods for projecting electrical demand are studied in terms of energy (kWh) and
power (kW), considering short-, medium-, and long-term time horizons to meet the op-
erational, planning, and other needs within electrical systems. These methods employ
statistical techniques, artificial intelligence, and spatial micro-area analysis. Statistical
methods explore models such as regression, multiple regression, exponential smoothing,
iterative reweighted least squares, adaptive load forecasting, stochastic time series (autore-
gressive), ARMA, ARIMA, SARIMA, and Prophet models. On the other hand, artificial
intelligence methods investigate neural networks, support vector machines, genetic al-
gorithms, machine learning, wavelet neural networks, fuzzy logic methods, and expert
systems [7–12]. Most methods focus on projections for the serviced area, assuming uniform
growth across the region; however, in practice, growth is heterogeneous at different levels
of granularity, and over the years new areas become serviced.

Various methodologies have been proposed for spatial prediction in electrical load
forecasting. One notable method, introduced by [13], integrates current trends, a clustering
algorithm, and a Geographic Information System (GIS) to perform spatial load forecasting.
This approach utilizes fuzzy reasoning and fuzzy clustering algorithms to generate spatial
load forecasts.

In the work of [14], a fuzzy inference system based on adaptive networks is applied
to predict electrical loads across four major regions of Taiwan. Another significant contri-
bution, presented in [15], employs cellular automata—a discrete-time model composed of
cells that evolve according to predefined rules. This model emphasizes the significance
of developed and redeveloped areas in spatial load forecasts. By leveraging data mining
techniques, classification rules are extracted from a dataset with a spatial resolution of
0.5 km2. The cellular automata approach assumes continuous load growth, where growth
progresses incrementally, and undeveloped areas become developed when surrounded
by at least three developed neighbors. This methodology builds on earlier research by the
same group [16,17].

The dynamics of urban areas were analyzed using a multi-agent system in [18], focus-
ing on the distribution of electrical loads across city subzones. This system incorporates
static, mobile, and proactive agents, where mobile agents navigate the city, redistributing
loads along their paths, and proactive agents represent new, non-natural loads introduced
into the system. A spatial load forecasting method based on cluster analysis was pro-
posed in [19], grouping cells by evaluating their results and relative prediction errors from
multiple forecasting models. To predict energy consumption in multi-family residential
buildings, support vector regression was employed in [20], leveraging on-site measure-
ments for model development. Load monitoring for operational purposes was addressed
in [21]. Furthermore, knowledge discovery in databases was utilized in [22] to extract
preferential scores for land use changes in spatial load forecasting, while rough set theory
was applied in [23]. Aerial imagery was also integrated into spatial load forecasting in [24]
to enhance accuracy.

Spatiotemporal forecasting of energy demand plays a pivotal role in conducting de-
tailed analyses in micro-areas and facilitating the efficient development of the electrical
grid over various time horizons. This procedure enables a tailored adaptation to customer
requirements while supporting strategic planning for future electrification zones. The avail-
ability of accurate geolocated demand data, both current and projected, is indispensable,
particularly when addressing specific constraints such as capacity saturation and land use
limitations. Forecasting at the micro-area level, while ensuring consistent geographical
boundaries, provides a granular and precise representation of spatial consumption pat-
terns. By leveraging spatial information, it becomes possible to achieve more accurate data
aggregation, thereby minimizing distortions in system-wide demand forecasts.
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The integration of machine learning and convolution methods applied to large-scale
geospatial forecasting of electrical energy yields efficient results for use in the planning of
medium- and long-term electrical distribution systems. Its computational implementation
is highly effective for processing large volumes of data. The proposed algorithm facilitates
the incorporation of the additive effects of major consumption centers in their surrounding
areas through a “2N − 1” order kernel matrix. It also incorporates relative growths,
geographic constraints, and saturation of consumption (S-curve), while aligning with the
global forecast.

The proposed method for addressing the challenge of geospatial forecasting of electric
energy in distribution systems offers several significant contributions:

• Integration of machine learning and convolution techniques: this study demon-
strates the effectiveness of integrating machine learning algorithms with convolution
methods for processing large datasets and conducting large-scale geospatial energy
demand forecasts. The approach not only aligns with global forecasting results but
also facilitates the identification and planning of new electrification areas, optimizing
the management of electric distribution networks.

• Segmentation of the distribution service area: the proposed segmentation method
divides the service area into grids, enabling precise identification of critical network
components for analysis. This scalable approach adapts to the requirements of both
sub-transmission and distribution systems. The phased segmentation model enhances
network analysis, supporting more efficient and detailed system management.

• Adaptability of geospatial analysis: the geospatial analysis framework is adaptable
to various global growth scenarios, integrating economic, social, and demographic
factors for high accuracy. It allows spatial representation of optimistic and pessimistic
growth projections over medium- and long-term horizons, adding strategic value to
infrastructure planning and improving responsiveness to diverse demand scenarios.

• Geospatial forecasting of energy demand: accurate forecasting of medium- and
long-term energy demand provides critical insights for planning the expansion of
distribution and sub-transmission networks. This includes addressing areas without
electrical coverage and those requiring electrification due to urban growth. The results
support the development of new forecasting methods tailored to the characteristics of
specific network components, improving overall energy planning strategies.

• Enhancements to the regulatory and methodological framework: the proposed
methodology advances the regulatory framework for planning electrical transmission
and distribution systems over short-, medium-, and long-term horizons. It introduces
a systematic approach that electrical distribution companies can implement to enhance
the precision and effectiveness of their expansion plans, contributing to both current
practices and future procedural developments.

The structure of this work is organized as follows. Section 2 presents the theoreti-
cal foundation and introduces the key concepts necessary for understanding the paper.
Section 3 describes the proposed method, detailing the step-by-step procedure and includ-
ing a simplified example to enhance comprehension. Section 4 validates the methodology
through its application to a real-world case study involving the “Luz del Sur” distribution
system in Lima, Peru. Finally, Section 5 concludes the work by summarizing the main
findings and discussing their implications.

2. Background Work
Developing prediction models for small areas effectively requires a focused analysis on

specific elements of the electrical network, such as power substations, feeders, or distribu-
tion substations. These elements are analyzed based on the regions they serve, as illustrated
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in Figure 1a for power substations [25]. However, this approach faces significant challenges
due to the intricate geometries of the resulting areas and their temporal variability, which
arise from the dynamic evolution of the electrical grid.

An alternative approach involves using square cells overlaid on a grid map, as depicted
in Figure 1b. This method is readily implemented using databases or matrix arrays, with cell
sizes adaptable to the scale of the network element under study. For instance, larger cells are
suited for transmission facilities, while smaller cells are preferable for distribution facilities.

(a) (b)

Figure 1. Overview of network development. (a): Area of power substations and medium voltage
network development; (b): medium voltage network development and grid mapping.

For geospatial forecasting, it is crucial to account for various factors, including the
physical description of the electrical network, historical records of georeferenced customer
consumption, and geographic data such as streets, mountains, lakes, rivers, roads, and
archaeological sites, among others [26]. Additionally, global forecast results at the total sys-
tem level must be considered. These factors can be effectively addressed by incorporating
machine learning methods and convolution techniques, enabling a more comprehensive
and accurate analysis.

2.1. Parameters for Geospatial Analysis

The proposed geospatial analysis at the grid level incorporates the following parame-
ters: demand coverage factors, geographic restriction factors, and the relative influence of
neighboring areas with and without electrical load. These parameters provide a compre-
hensive framework for analyzing spatial interactions and constraints within the grid, as
outlined in [27].

2.1.1. Coverage Factor (C)

Electrical grids consist of areas designated for consumption, such as residential, com-
mercial, and industrial zones, as well as areas where no consumption is expected, including
archaeological sites, parks, and other protected or non-inhabitable regions. Figure 2a
illustrates various scenarios: grids with a coverage factor of zero, corresponding to unin-
habitable terrains such as hills where no consumption is anticipated; grids with a factor of
one, representing fully occupied areas dedicated entirely to consumption; and mixed-use
grids with coverage factors less than one, indicating partial occupation or a combination of
consumptive and non-consumptive areas.

The coverage factor was determined using the GIS database provided by the dis-
tribution company through the following steps. First, the GIS database was analyzed
to extract cadastral shapes representing the entire area under the distributor’s coverage.
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Subsequently, shapes corresponding to the grids of segments S1, S2, and S3 were generated.
An overlay operation was then performed between the cadastral shapes and the specified
grids to identify polygons within each grid and calculate their respective areas. Finally, the
coverage factor for each grid was determined by dividing the total area of the polygons by
the area of the corresponding grid, as illustrated in Figure 2b for four cases of segment S1
(100 m side grids).

(a) (b)

Figure 2. Coverage factor. (a): Coverage factor in grids; (b): coverage factor calculation S3: 100 m.

2.1.2. Constraints (R)

Grids encompassing areas where energy consumption is not anticipated—such as
archaeological sites, water bodies (e.g., lakes and rivers), parks, hills, and other similar
regions—are assigned a factor of 0. In contrast, grids representing areas with expected
energy consumption are assigned a factor of 1. This classification can be specified manually
by the user or automatically extracted from a Geographic Information System (GIS), as
illustrated in Figure 3.

Figure 3. Constraints factor.

2.1.3. Attraction Poles (E.L)

Developed regions exert a significant underlying force that drives growth in sur-
rounding areas. Populations tend to settle as close as possible to zones offering enhanced
economic opportunities, access to services, quality of life, education, modernization, and
technological advancements. This phenomenon, observable at various scales, is frequently
modeled using gravity-center frameworks, also referred to as growth pole models. These
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models typically assume that a pole’s influence diminishes inversely with distance, with
the strongest impact occurring in adjacent areas.

Attraction poles, such as city centers, airports, industrial parks, and similar entities,
represent focal points of growth. In large metropolitan areas, multiple attraction poles often
coexist and can be modeled at varying scales. In the proposal, the influence of the poles of
attraction is represented mathematically through the relative growth (E.L) of the grids in
segments S1, S2, and S3, as illustrated in Figure 4 for segment S1.

Figure 4. Attraction poles.

2.1.4. Convolution Kernel (M)

The convolution kernel is represented mathematically by a matrix of order [2N − 1].
The matrix illustrates the influence of the neighboring grids on the growth in the center,
including its own.

M =

1 1 1
1 1 1
1 1 1

 =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 =



1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1


. . .

For the spatial analysis, the kernels with N = 1, 2, 3, and 4 are analyzed and the metrics
R2, MAE, RMSE, MAPE, and WAPE are evaluated to assess their efficiency in forecasting.

2.2. Machine Learning Methods
2.2.1. Clustering

Before applying the clustering algorithm, it is imperative to preprocess and normal-
ize the data to ensure meaningful and robust results. Preprocessing and normalization
techniques standardize the data, reduce noise and outliers, and eliminate irrelevant or
redundant features. In this research, data preprocessing involved cleaning the dataset
using an outlier detection and removal method, selecting the most relevant features for
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clustering based on the correlation coefficient method, and applying Z-score normalization
to transform the features into a consistent scale.

The clustering algorithm used is K-means, recognized for its accuracy and effi-
ciency [28]. The primary mechanism of K-means employs the Euclidean distance as a
similarity measure, assigning data points to the nearest centroid by minimizing the distance
within clusters. Additionally, the algorithm identifies discrete outliers and groups them
into distinct clusters. The objective function for K-means is represented as:

min
S

E(ui) = min
S

k

∑
i=1

∑
Zcj∈Si

∥Zcj − ui∥2

Let S denote the dataset, where each element (Zcj) corresponds to the historical
trends of the electrical grids. The dataset is partitioned into k clusters, with each cluster
characterized by a centroid (µi). To identify the optimal number of clusters, the elbow
method and silhouette analysis are applied, ensuring a robust and reliable clustering
configuration.

2.2.2. Forecast

The Prophet method is proposed to determine the relative growth of the grids. Prophet
is designed to automatically detect seasonality and trends while offering user-friendly pa-
rameters without requiring extensive expertise in time series analysis. Prophet implements
an additive model with the following components:

E(t) = g(t) + s(t) + h(t) + ε(t)

where:

• E(t) represents energy consumption;
• g(t) is the trend function modeling non-periodic changes in the mean value of the

time series, describing long-term behavior;
• s(t) is the seasonal component representing periodic changes of known periods (e.g.,

monthly), modeled using the Fourier series;
• h(t) accounts for the effect of irregular events impacting the series (e.g., COVID-19);
• ε(t) represents the random component or error term, capturing any changes not

accounted for by the other components.

2.3. Convolution

Given a matrix A ∈ Rn×m and a matrix M ∈ R2n′+1×2m′+1, the convolution of matrices
A and M is defined as a new matrix B = A ∗ M, formulated by the expression:

Bi,j =
i

∑
i′=i

j

∑
j′=j

Ai′ ,j′ Mi′−i+n′+1,j′−j+m′+1 (1)

where i′ and j′ are index elements surrounding Ai,j, bounded by the size of A as follows:

i = max{1, i − n′}, i = min{n, i + n′}

j = max{1, j − m′}, j = min{m, j + m′}

The matrix M is referred to as the kernel of the convolution. A simple example is
illustrated in Figure 5a.
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(a) (b)

Figure 5. Matrix convolution. (a): Standard convolution (unweighted kernel); (b): weighted convolution.

Weighted Convolution

To improve the spatial analysis, especially for areas with restrictions equal to 0 and
future areas without energy consumption, it is proposed to incorporate a weighting factor,
1/k, to the above equation. In the example in Figure 5b, the weighting factor is 1/8.

B∗
i,j =

1
k

i

∑
i′=i

j

∑
j′=j

Ai′ ,j′ M(i′−i+n′+1),(j′−j+m′+1) (2)

where:
k = ∑ ki,j (ki,j = 0 if Ai,j = 0 and ki,j = 1 if Ai,j > 0)

This factor allows for greater emphasis on growth areas and aligns with the actual
development patterns of cities.

3. Proposed Method
For the analysis of electricity forecasting in distribution systems, a geospatial demand

forecasting method is proposed. This method employs a segmentation process that con-
siders grid maps from the largest to the smallest scale, integrating machine learning and
convolution methods. It is designed for application in large-scale systems and accounts
for the overall growth of the system across short-, medium-, and long-term horizons. The
proposed approach facilitates the processing of large-scale data and their integration with
the global forecast, where the cell length at each stage corresponds to the elements of the
electrical network. A simplified schematic representation of this method is presented in
Figure 6.

1. Global forecasting: this refers to estimates made by the distributor at the total sys-
tem level and serves as a reference for geospatial analysis. Over the years, total
system-level forecasting studies have evolved significantly, with abundant literature
highlighting diverse approaches. Each author emphasizes the importance of explana-
tory variables, their selection, and their application through statistical or artificial
intelligence methods. This research does not aim to analyze or discuss these methods
but focuses on geospatial forecasting.

2. Supply database: contains information on the consumption of all clients and their
geographical location. This database will be used to determine consumption within
the defined grids.

3. Geographic Information System (GIS): includes the development of the distribution
network and the territorial cadastre within the area served by the distributor. This
will form the basis for determining coverage factors and consumption constraints
within the grids.
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4. Global forecast estimate: using the data from point 2, the global forecast can be
obtained using the Prophet method. For spatial analysis, a choice must be made
between this result and the data from point 1. In this study, it will serve as an input
variable. In the proposed geospatial analysis, the results of segment S1 must be
adjusted using the global forecast (N = 1). Similarly, the results of segments S2 and
S3 must be adjusted using the outcomes of segments S1 and S2, respectively (see
Figure 7).

5. Definition of number of segments (NS) and scales: the analysis considers different
geospatial scales. Smaller grid sizes (e.g., 100 m, 50 m) often result in historical energy
consumption data with low correlations, limiting the applicability of existing methods
in the literature.

6. Segmentation process: this step involves determining the historical consumption of
grids at various scales and preparing the database for clustering and relative growth
estimation. Additionally, it includes the necessary matrix arrangements for geospatial
analysis. This article proposes a three-stage segmentation approach: segment S1
with a scale of 1:10,000, segment S2 with a scale of 1:1000, and segment S3 with
a scale of 1:100. To achieve this, the locations of energy supplies are mapped to
the corresponding grids for each segment, using their geographic coordinates: S1
with a resolution of 104 m (C10,000: UTM/10,000), S2 with a resolution of 103 m
(C1000: UTM/1000), and S3 with a resolution of 102 m (C100: UTM/100). The
historical energy consumption within each grid (Zc) is calculated by summing the
consumption of all supplies located within it, providing the foundation for clustering
and forecasting processes.

7. Clustering process: conducted for each segment using the K-means algorithm to
determine the optimal number of clusters.
Before applying the algorithm, detecting and removing outliers is crucial, evaluating
features through the correlation coefficient, and performing normalization. The elbow
and silhouette methods were utilized for optimal clustering of areas with complete his-
torical data due to their simplicity, computational efficiency, and ease of interpretation.
For regions with incomplete historical data, a specific group previously identified was
assigned through a training process and confidence intervals. Compared with other
evaluated methods, DBSCAN was not practical due to its computational inefficiency
and the lack of consistent clustering. Additionally, the processing time for Gaussian
Mixture Models was significantly longer, making their use less efficient. On the other
hand, employing more complex algorithms such as Random Forest or neural networks
did not offer significant benefits at this stage due to the increased computational load.

8. Relative growth estimation: for each cluster of grids resulting from the previous
process, relative growth is estimated using the Prophet method.
Prophet was selected due to its outstanding balance between accuracy and simplicity
in time series analysis, particularly in contexts similar to electrical demand forecast-
ing. It is intuitive and robust against missing data, easily adjustable, and effective
when data exhibit clear trends and seasonal effects. Prophet replaces more sophisti-
cated models such as LSTM, which requires a larger data set, more tuning time, and
careful hyperparameter configuration, or ARIMA and SARIMA models, which face
limitations in handling series with multiple seasonalities or dynamic trends. In this
study, the comparison of reported errors confirms that Prophet achieves competitive
performance, and its selection is justified by the problem’s characteristics and the
available resources.

9. Geospatial analysis: geospatial analysis involves the application of the convolution
algorithm and its subsequent normalization or adjustment based on the results of
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the global forecast (EG). The fundamental concept behind the convolution of relative
growth (T.E) with attraction poles (M) is to determine a reference growth (G) for
geospatial forecasting, prior to normalization. Since the convolution process includes
grids with restricted areas (R) and areas that are partially or fully covered (C), these pa-
rameters must be incorporated into the determination of G. The proposed formulation
is expressed in the following equation:

G = C · R · [(T.E) ∗ M]

Subsequently, this reference growth is normalized to ensure that the globally fore-
casted growth (∆EG) matches the total growth of the grids within each segment. The
mathematical formulation used for normalization is expressed as follows:

E′ = E +
∆EG

∑i ∑j Gi,j
· G

where ∆E represents the growth matrix for the grids in segments S1, S2, and S3.
Specifically:

∆E = E − E′ = ∑
i∈S

∑
j∈S

(
E′

i,j − Ei,j

)
New consumption grids are identified when the forecast exceeds the historical average
obtained based on the statistics of the distribution company.

10. Final outputs: the results of geospatial forecasting at the grid level and for each
segment.

SUPPLY DATABASE
GEOGRAPHIC 

INFORMATION 
SYSTEMS

GLOBAL
FORECAST

GEOSPATIAL ANALYSIS 
(Convolution Method)

GEOSPATIAL 
FORECAST

CLUSTERING PROCESS
(Kmeans)

SEGMENTATION
(grids)

¿N>NS?

O

GLOBAL FORECAST 
(Prophet Method)

RELATIVE GROWTH
(Prophet Method)

N+1

1 2 3

4

6

7

8

9

NS, 
Scales?

5

N=1

10

Figure 6. Flowchart of the proposed method.
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S2: C1000
1 2 3 4 5 6 7 8 9 10

2

S1: C10000 3

1 2 3 4 5 6 7 8 9 10 4
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3 6

4 7

5 8

6 9

7 10

8

9 S3: C100
10 1 2 3 4 5 6 7 8 9 10

11 2

12 3

13 4

14 5

15 6

7

8

9

10

Figure 7. Grid C10,000, C1000, and C100 in segments S1, S2, and S3.

3.1. Simple Application

The initial consumption of an area composed of 12 grids, represented by the matrix
E3×4, is 3000 MWh, and the details are as follows:

E =

450 300 0 150
600 300 300 0
300 450 150 0

 MWh

A global growth of 50% is anticipated over a time horizon.

3.1.1. Spatial Forecasting with Global Growth Rate (EG)

Considering this growth, the projected global consumption would be 4500 MWh
(∆E′ = 1500 MWh). In the scenario of scarce historical information at grid level, the
resulting growth would be homogeneous, as shown below:

E =

675 450 0 225
900 450 450 0
450 675 2250 0

 MWh

3.1.2. Spatial Forecasting with Relative Growth Rate (T)

In a real scenario, the growth in the grids is heterogeneous. In this context, for a
scenario of relative growth T:

T =

80% 80% 0% 80%
60% 60% 60% 0%
40% 40% 40% 0%
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The total projected consumption would be 4800 MWh. This result is 10% more than
that obtained considering global growth (∆Er = 1800 MWh).

T · E =

360 240 0 120
360 180 180 0
120 180 60 0

 MWh

Therefore, it is necessary to make the necessary adjustments to normalize it with the
global forecast:

E′ = E +
∆E
∆Er

(T · E) =

750 500 0 250
900 450 450 0
400 600 200 0

 MWh

3.1.3. Geospatial Forecasting Using Convolution

Additionally, in a real scenario, new areas are served due to horizontal growth. In the
example, these areas include the grids E(1, 3), E(2, 4), and E(3, 4). To solve this problem,
the following parameters are considered in the example: M, C, and R.

M =

1 1 1
1 1 1
1 1 1



C =

100% 100% 80% 80%
100% 80% 90% 90%
80% 80% 90% 0%



R =

1 1 1 1
0 1 1 1
1 1 1 0


where R(0, 1) represents an area that is saturated and not growing, and R(3, 4) corresponds
to an area occupied by a river.

Convolution

(T · E) ∗ M =

285 264 180 150
240 210 160 120
210 180 150 120

 MWh

Reference Growth (W)

W = C · R · [(T · E) ∗ M] =

285 264 144 120
0 168 144 108

168 144 135 0

 MWh

In total, this amounts to 1680 MWh, which represents a 6% increase over the global
forecast.

Final Adjustment

Finally, an adjustment is made to these results to reach the total forecast:
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E′ = E +
∆E

∑i ∑j Ri,j
· W =

704 536 129 257
600 450 429 96
450 579 270 0

 MWh

3.2. Error Measurement

The spatial forecast error is measured using the following metrics: Coefficient of
determination (R2), Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and Weighted Absolute
Percentage Error (WAPE). These metrics are defined as follows:

ε̂R2 = 1 −
∑n

i=1 ∑m
j=1(eij)

2

∑n
i=1 ∑m

j=1(Eij − Ê)2

ε̂MAE =
1

mn

n

∑
i=1

m

∑
j=1

|eij|

ε̂MSE =
1

mn

n

∑
i=1

m

∑
j=1

(eij)
2

ε̂RMSE =

√√√√ 1
mn

n

∑
i=1

m

∑
j=1

(eij)2

ε̂MAPE =
1

mn

n

∑
i=1

m

∑
j=1

|%eij|

ε̂WAPE =
∑n

i=1 ∑m
j=1 |%eij|

∑n
i=1 ∑m

j=1 Eij

where:

• eij denotes the error value at grid cell (i, j);
• Eij denotes the actual value at grid cell (i, j);
• Ê represents the average value of the grid cells;
• n and m are the dimensions of the spatial grid.

These metrics provide valuable insights into the accuracy and reliability of the spatial
forecasting model, helping to assess its performance effectively.

4. Validation
In this section, the proposed method is validated in a Peruvian electrical distribution

system, whose served area is illustrated in Figure 8. For validation, historical data from the
period 2007–2017 are considered for training the models and the period 2018–2023 is pro-
jected, comparing the results obtained with the actual values recorded in the same period.
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Figure 8. Area served by the “Lima Sur” electrical distribution system.

The number of users and historical consumption considered in the analysis is shown
in Table 1.

Table 1. Global energy consumption and number of supplies during the period 2007–2023.

Year Energy Consumption (GWh) Number of Supplies
2007 4573 739,832
2008 4942 767,013
2009 5774 795,316
2010 6285 824,621
2011 6721 859,094
2012 7162 890,984
2013 7547 924,800
2014 8120 957,574
2015 8239 984,299
2016 8653 1,012,234
2017 8633 1,041,790
2018 8910 1,074,496
2019 9233 1,109,807
2020 8930 1,130,554
2021 8586 1,176,210
2022 9095 1,215,024
2023 9394 1,255,141

The data in Table 1 show the impact on energy consumption in 2020 and 2021 due to
the pandemic caused by COVID-19 and its recovery in 2022 and 2023. For validation, the
real global growth recorded year-on-year in the period 2018–2023 is considered.
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4.1. Segmentation and Clustering

Table 2 highlights two groups within segments S1, S2, and S3: grids with energy
consumption records for the entire period from 2007 to 2023 (complete data) and grids that
began recording consumption after 2007 (incomplete data).

Table 2. Number of grids in segments S1, S2, and S3.

Year Grids with Consumption New Grids

S1: C10,000 S2: C1000 S3: C100 S1: C10,000 S2: C1000 S3: C100

2007 41 888 32,038

2008 41 895 32,471 0 7 433

2009 41 906 33,040 0 11 569

2010 41 920 33,578 0 14 538

2011 41 930 34,180 0 10 602

2012 41 938 34,623 0 8 443

2013 41 942 35,158 0 4 535

2014 41 948 35,596 0 6 438

2015 41 955 35,859 0 7 263

2016 41 966 36,197 0 11 338

2017 41 980 36,667 0 14 470

2018 41 986 37,089 0 6 422

2019 42 1006 37,630 1 20 541

2020 42 1016 37,950 0 10 320

2021 42 1027 38,919 0 11 969

2022 42 1040 39,577 0 13 658

2023 42 1061 40,357 0 21 780

The data in Table 2 reveal that, within segment S1, consumption was recorded in a
new grid starting in 2009. In contrast, segments S2 and S3 incorporated 173 and 8319 new
grids, respectively, during the period 2008–2023. Figure 9 highlights the new areas in
segments S1, S2, and S3 in blue. In these grids, the initial consumption recorded represents
on average 1% of the consumption in the surrounding areas.

(a) (b) (c)

Figure 9. Consumption grids. (a): Segment S1; (b): segment S2; (c): segment S3.
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The analysis results of the historical consumption behavior across the grids for the
period 2007–2017 are presented in Table 3. This table categorizes the grids by segment,
identifying those with complete and incomplete data. Additionally, it lists the number of
outliers and specifies the sample size to be considered for clustering purposes.

Table 3. Analysis of historical consumption in grids.

Grids Complete Data Incomplete Data
S1: C10,000 S2: C1000 S3: C100 S1: C10,000 S2: C1000 S3: C100

Total 41 885 31,943 0 95 4773
Outliers 8 76 1578 0 24 637
Clusters 33 809 30,365 0 71 4136

The results of the clustering of grids in segments S1, S2, and S3 are shown in Table 4.

Table 4. Clustering results.

Groups S1: C10,000 S2: C1000 S3: C100

Optimal 6 7 14
Outliers 1 1 1
Total 7 8 15

4.2. Parameters for Geospatial Analysis in Segment S1

The following tables present the base spatial energy (E), consumption groups, annual
relative growth rate (T), coverage factors (C) and restrictions (R) for segment S1. A similar
procedure is applied for segments S2 and S3.

The spatial analysis to forecast consumption in 2018–2023 is carried out sequentially
each year. Table 5 contains the energy for the base year recorded in 2017 and the consump-
tion groups obtained for segment S1. In this context, X and Y represent the UTM Easting
and Northing coordinates, respectively, scaled to 1:10,000.

Regarding the last column labeled “36”, it is suggested to remove or eliminate it across
all tables, specifically Tables 5, 7, 9 and 10.

Table 5. Base energy (E) and consumption groups.

Baseline Energy: 2017 Consumption Groups

Y↓/X→ 27 28 29 30 31 32 33 34 35 36 Y↓/X→ 27 28 29 30 31 32 33 34 35 36
871 0,0 0,0 0,0 0,0 0,0 0,0 0.5 0,0 0,0 0,0 871 0 0 0 0 0 0 1 0 0 0
870 0,0 0,0 0,0 0,0 0,0 0.2 0.0 0,0 5.2 0,0 870 0 0 0 0 0 1 5 0 7 0
869 0,0 0,0 0,0 0,0 0,0 0.7 0.0 1.3 1.1 0,0 869 0 0 0 0 0 5 5 5 7 0
868 0,0 0,0 0,0 0,0 40.4 3.3 1.6 5.2 0,0 0,0 868 0 0 1 0 5 2 2 5 0 0
867 0,0 62.8 585.1 162.5 25.9 0,0 0.2 0,0 0,0 0,0 867 0 1 6 2 2 0 2 0 0 0
866 963.5 2891.6 204.9 22.4 0,0 0,0 0,0 0,0 0,0 0,0 866 2 2 2 1 0 0 0 0 0 0
865 351.9 1560.1 370.5 6.3 0,0 0,0 0,0 0,0 0,0 0,0 865 2 2 7 6 0 0 0 0 0 0
864 0,0 201.6 498.8 226.2 0,0 0,0 0,0 0,0 0,0 0,0 864 0 1 6 4 0 0 0 0 0 0
863 0,0 0,0 9.3 133.6 0,0 0,0 0,0 0,0 0,0 0,0 863 0 0 7 7 0 0 0 0 0 0
862 0,0 0,0 0,0 12.1 9.7 0,0 0,0 0,0 0,0 0,0 862 0 0 0 1 1 0 0 0 0 0
861 0,0 0,0 0,0 5.7 84.6 0.3 0.6 0,0 0,0 0,0 861 0 0 0 1 7 3 3 0 0 0
860 0,0 0,0 0,0 0,0 5.0 16.4 0,0 0,0 0,0 0,0 860 0 0 0 0 6 2 0 0 0 0
859 0,0 0,0 0,0 0,0 0,0 135.3 0,0 0,0 0,0 0,0 859 0 0 0 0 0 7 0 0 0 0
858 0,0 0,0 0,0 0,0 0,0 19.8 6.9 0,0 0,0 0,0 858 0 0 0 0 0 2 7 0 0 0
857 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 857 0 0 0 0 0 0 0 0 0 0

Table 6 shows the relative growth rates of the consumption groups of segment S1
obtained for the period 2018–2023.
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Table 6. Relative growth rate in consumption groups of segment S1 (T).

Group 2018 2019 2020 2021 2022 2023

1 6.4% 6.0% 5.7% 5.4% 5.1% 4.8%
2 2.0% 1.9% 1.8% 1.9% 1.8% 1.8%
3 9.0% 8.3% 7.6% 7.1% 6.6% 6.2%
4 8.5% 7.7% 7.0% 6.9% 6.3% 5.9%
5 −0.1% −0.2% −0.6% 0.2% −0.2% −0.2%
6 1.1% 1.0% 1.0% 1.0% 1.0% 1.0%
7 4.9% 4.0% 3.3% 4.4% 3.6% 3.5%

Table 7 presents the coverage and restriction factors obtained for the grids in segment
S1. The tables emphasize the factors related to new areas that should be considered for
horizontal growth. The areas highlighted in blue indicate regions where future energy
consumption is anticipated. Conversely, in the remaining areas, future energy consumption
would not be feasible, resulting in a restriction factor of zero. Regarding the coverage
factors, an estimate of 2.0% has been assigned, as the majority of these areas are covered by
rocky mountains.

Table 8 shows the energy consumption in the grids for the training and validation
period.

Table 7. Coverage factor (C) and constraints (R).

Coverage Factor Constraints

Y↓/X→ 27 28 29 30 31 32 33 34 35 36 Y↓/X→ 27 28 29 30 31 32 33 34 35 36
871 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0.2% 0,0% 0,0% 871 0 0 0 0 0 0 1 0 0 0
870 0,0% 0,0% 0,0% 0,0% 0,0% 0.1% 0.0% 0,0% 0.1% 870 0 0 0 0 0 1 1 0 1 0
869 0,0% 0,0% 0,0% 2.0% 0,0% 0.2% 0.0% 0.2% 0.2% 869 0 0 0 1 0 1 1 1 1 0
868 0,0% 0,0% 2.4% 0,0% 3.7% 1.2% 0.3% 0.2% 0,0% 868 0 0 1 0 1 1 1 1 0 0
867 0,0% 4.6% 25.2% 12.6% 4.2% 0,0% 0.1% 0,0% 0,0% 867 0 1 1 1 1 0 1 0 0 0
866 11.7% 48.3% 21.6% 5.7% 0,0% 0,0% 0,0% 0,0% 0,0% 866 1 1 1 1 0 0 0 0 0 0
865 3.4% 58.0% 15.7% 2.6% 0,0% 0,0% 0,0% 0,0% 0,0% 865 1 1 1 1 0 0 0 0 0 0
864 0,0% 14.8% 41.0% 7.6% 2.0% 0,0% 0,0% 0,0% 0,0% 864 0 1 1 1 1 0 0 0 0 0
863 0,0% 0,0% 0.6% 6.8% 2.0% 0,0% 0,0% 0,0% 0,0% 863 0 0 1 1 1 0 0 0 0 0
862 0,0% 0,0% 0,0% 3.8% 2.9% 2.0% 0,0% 0,0% 0,0% 862 0 0 0 1 1 1 0 0 0 0
861 0,0% 0,0% 0,0% 2.1% 8.0% 0.1% 0.2% 0,0% 0,0% 861 0 0 0 1 1 1 1 0 0 0
860 0,0% 0,0% 0,0% 0,0% 0.5% 2.7% 0,0% 0,0% 0,0% 860 0 0 0 0 1 1 0 0 0 0
859 0,0% 0,0% 0,0% 0,0% 0,0% 4.6% 0,0% 0,0% 0,0% 859 0 0 0 0 0 1 0 0 0 0
858 0,0% 0,0% 0,0% 0,0% 0,0% 2.0% 4.2% 0,0% 0,0% 858 0 0 0 0 0 1 1 0 0 0
857 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 2.0% 0,0% 0,0% 857 0 0 0 0 0 0 1 0 0 0

Table 8. Energy consumption in S1 grids (GWh).

S1 Model Training Period Model Validation
C10,000 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
27-865 225 243 263 278 289 306 318 328 341 361 352 352 362 319 285 316 345
27-866 638 682 709 763 822 867 876 904 937 986 963 973 999 904 801 872 960
28-864 81 95 99 113 124 135 153 166 173 188 202 213 225 239 233 244 265
28-865 940 1012 1055 1118 1191 1269 1334 1400 1444 1532 1560 1618 1682 1798 1583 1616 1703
28-866 1814 1919 2133 2306 2422 2535 2662 2784 2789 2919 2892 2912 2966 2746 2575 2738 2841
28-867 30 32 32 36 39 43 47 52 56 62 63 69 72 71 82 86 87
29-863 2 2 2 2 2 2 3 3 5 8 9 9 11 17 16 16 15
29-864 203 224 231 266 321 384 422 478 475 488 499 525 545 579 560 572 559
29-865 33 37 347 366 354 344 337 465 417 396 370 402 440 327 456 484 437
29-866 117 129 139 149 160 166 175 183 191 203 205 213 220 252 227 230 242
29-867 194 230 289 353 397 453 508 565 586 616 585 622 656 632 661 710 718
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Table 8. Cont.

S1 Model Training Period Model Validation
C10,000 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
29-868 0 0 0 0 0 0 0 0 0 0 0 0 15 16 16 18 18
30-861 2 2 3 3 3 3 3 4 4 6 6 6 7 8 8 12 14
30-862 6 6 7 7 8 9 10 11 11 12 12 13 13 17 16 16 16
30-863 22 22 50 62 77 80 92 125 122 131 134 144 144 135 155 173 159
30-864 42 66 71 86 88 112 156 175 193 212 226 242 238 212 252 281 287
30-865 2 3 3 4 4 5 6 6 6 6 6 7 7 8 8 8 8
30-866 11 12 13 14 15 16 18 19 20 22 22 24 25 29 28 28 29
30-867 103 114 123 130 139 148 154 164 167 167 163 171 179 192 187 195 197
31-860 2 2 2 2 3 3 3 4 4 5 5 5 6 6 6 6 7
31-861 9 10 11 11 13 16 20 27 40 65 85 100 120 112 132 138 144
31-862 2 3 3 3 4 4 4 4 5 6 10 14 17 15 18 21 21
31-867 18 19 20 22 23 23 24 25 26 27 26 27 28 31 28 29 29
31-868 30 32 33 35 36 37 40 41 41 42 40 41 42 47 42 42 41
32-858 10 11 12 12 13 14 15 16 17 18 20 19 19 21 21 20 22
32-859 14 11 97 105 114 119 119 132 127 130 135 140 140 136 135 164 168
32-860 8 9 10 11 12 12 13 15 16 16 16 17 19 22 19 20 21
32-861 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
32-868 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 8
32-869 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32-870 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33-858 2 2 2 3 4 5 6 6 6 7 7 8 8 9 9 10 10
33-861 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
33-867 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33-868 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
33-869 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33-870 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33-871 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 1
34-868 5 5 5 5 5 6 6 6 5 5 5 6 7 7 9 10 9
34-869 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2
35-869 1 1 1 12 29 32 13 3 1 1 1 3 5 5 4 3 3
35-870 2 2 3 2 2 2 2 4 5 5 5 5 5 3 3 4 4
Total 4573 4942 5774 6285 6721 7162 7547 8120 8239 8653 8633 8910 9233 8930 8586 9095 9394

Finally, for the spatial analysis, the kernels with N = 1, 2, 3, and 4 are analyzed and
the metrics R2, MAE, RMSE, MAPE, and WAPE are evaluated to assess their efficiency
in forecasting.

4.3. Geospatial Forecast Results in Segment S1

The analysis was conducted on a year-by-year basis using the proposed formulation
through the convolution algorithm, covering the period from 2018 to 2023. Table 9 presents
the geospatial forecast for 2018 within segment S1, utilizing the 3 × 3 core matrix. The table
highlights the distribution of energy demand across geospatial coordinates, represented
by rows (Y) and columns (X). The results reveal concentrated demand in specific grid
cells, particularly along coordinates Y = 866 and Y = 867, with peaks of 2949.2 GWh and
605.8 GWh, respectively. These high-demand regions correspond to urban or industrial
zones, where consumption is typically more intense. In contrast, cells with minimal or zero
values indicate sparsely populated or low-consumption areas. The total energy demand
for the segment in 2018 amounts to 8910.3 GWh, reflecting the spatial variability inherent
in the segment.

The geospatial forecast for 2023, presented in Table 10, provides a detailed distribution
of energy demand across a 3 × 3 core matrix. The forecast highlights significant variability
in energy consumption, with notable concentrations in specific geographic zones. The
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highest energy demand is observed in cell (866, 28), with a value of 3052.5 GWh, followed
by cell (866, 27) at 1014.5 GWh and cell (865, 28) at 1762.4 GWh, indicating densely popu-
lated or high-consumption areas. Conversely, the majority of cells show negligible or zero
consumption, reflecting sparsely populated or low-demand zones. This spatial distribu-
tion underscores the algorithm’s ability to identify hotspots of energy usage and allocate
resources accordingly. The total projected demand for the region amounts to 9394.2 GWh,
providing a comprehensive basis for infrastructure planning and optimization. These
results demonstrate the utility of the geospatial forecasting methodology in capturing
localized consumption patterns critical for effective energy distribution.

Table 9. Geospatial forecast for 2018: core matrix 3 × 3.

Y↓/X→ 27 28 29 30 31 32 33 34 35 36
871 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0
870 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 5.2 0.0
869 0.0 0.0 0.0 0.0 0.0 0.7 0.0 1.4 1.1 0.0
868 0.0 0.0 0.0 0.0 40.7 3.3 1.6 5.2 0.0 0.0
867 0.0 68.3 605.8 165.0 26.2 0.0 0.2 0.0 0.0 0.0
866 981.4 2949.2 224.5 24.2 0.0 0.0 0.0 0.0 0.0 0.0
865 357.5 1633.0 387.5 7.7 0.0 0.0 0.0 0.0 0.0 0.0
864 0.0 213.5 530.2 230.3 0.0 0.0 0.0 0.0 0.0 0.0
863 0.0 0.0 9.6 136.1 0.0 0.0 0.0 0.0 0.0 0.0
862 0.0 0.0 0.0 12.7 10.1 0.0 0.0 0.0 0.0 0.0
861 0.0 0.0 0.0 5.9 85.0 0.3 0.6 0.0 0.0 0.0
860 0.0 0.0 0.0 0.0 5.1 16.8 0.0 0.0 0.0 0.0
859 0.0 0.0 0.0 0.0 0.0 135.8 0.0 0.0 0.0 0.0
858 0.0 0.0 0.0 0.0 0.0 20.1 7.6 0.0 0.0 0.0
857 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total: 8910.3

Table 10. Geospatial forecast for 2023: core matrix 3 × 3 (GWh).

Y↓/X→ 27 28 29 30 31 32 33 34 35 36
871 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0
870 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 5.2 0.0
869 0.0 0.0 0.0 0.0 0.0 0.7 0.0 1.4 1.1 0.0
868 0.0 0.0 1.2 0.0 41.3 3.3 1.6 5.2 0.0 0.0
867 0.0 77.7 642.1 169.4 26.9 0.0 0.2 0.0 0.0 0.0
866 1014.5 3052.5 259.3 27.1 0.0 0.0 0.0 0.0 0.0 0.0
865 367.6 1762.4 416.7 9.8 0.0 0.0 0.0 0.0 0.0 0.0
864 0.0 233.8 581.0 236.5 0.0 0.0 0.0 0.0 0.0 0.0
863 0.0 0.0 10.1 139.9 0.0 0.0 0.0 0.0 0.0 0.0
862 0.0 0.0 0.0 13.5 10.7 0.0 0.0 0.0 0.0 0.0
861 0.0 0.0 0.0 6.2 85.8 0.3 0.6 0.0 0.0 0.0
860 0.0 0.0 0.0 0.0 5.2 17.3 0.0 0.0 0.0 0.0
859 0.0 0.0 0.0 0.0 0.0 136.5 0.0 0.0 0.0 0.0
858 0.0 0.0 0.0 0.0 0.0 20.6 8.6 0.0 0.0 0.0
857 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total: 9394.2



Energies 2025, 18, 424 20 of 28

Figure 10 highlights, in blue, the new grid areas that recorded electricity consumption
during the 2018–2023 period. Specifically, Figure 10a, 10b, and 10c provide details for
segments S1, S2, and S3, respectively. In real-world scenarios, such as those illustrated
in Figure 10b,c, smaller-scale segments reveal new consumption areas located far from
urban zones (isolated regions). These areas are typically associated with industrial loads or
regions that previously lacked electrical coverage, particularly in rural distribution systems.

(a) (b) (c)

Figure 10. New grids with real consumption in the period 2018–2023. (a): Segment S1; (b): segment
S2; (c): segment S3.

Figure 11 presents the geospatial forecasting results for 2018–2023, depicted in red.
Specifically, Figure 11a, 11b, and 11c illustrate the forecasts corresponding to segments
S1, S2, and S3, respectively. In Figure 11b,c, it is evident that isolated areas from the real-
case scenario were not accurately identified by the convolutional kernels analyzed, which
included sizes of 3 × 3, 5 × 5, 7 × 7, and 9 × 9. For these cases, particularly in smaller-scale
segments, it is recommended to explore the use of higher-order kernels to enhance their
range and improve forecasting accuracy.

(a) (b) (c)

Figure 11. Forecast of new grids with consumption in the period 2018–2023. (a): Segment S1;
(b): segment S2; (c): segment S3.

4.4. Calculation of Metrics

The metrics were determined year-on-year and for the analyzed projection scenarios
as follows:
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• Spatial forecast considering global growth rates (global).
• Spatial forecast considering growth rates by groups in segments S1, S2, and S3 (zonal).
• Spatial forecasting using standard convolution (spatial [27]).

Additionally, convolution kernels of sizes 3 × 3, 5 × 5, 7 × 7, and 9 × 9 were incorpo-
rated into the proposed methodology. In the measurement tables of the metrics MAE, RMSE,
MAPE, and WAPE, the values with the lowest magnitude for each year are highlighted in
blue for clarity and emphasis.

The results of the metrics obtained in segment S1 are summarized in Table 11.

Table 11. Calculation of MAE, MSE, RMSE, and MAPE.

Scenario Grid Size
MAE (GWh) RMSE (GWh)

2018 2019 2020 2021 2022 2023 2018 2019 2020 2021 2022 2023

Global 5.3 8.8 22.4 25.0 25.5 20.8 13.1 22.7 52.8 58.8 59.3 53.3

Zonal 5.0 9.8 23.1 25.0 23.3 18.1 11.2 20.2 52.4 58.7 55.6 48.0

Spatial [27] 5.3 10.2 21.0 25.6 22.0 19.1 9.2 18.3 47.6 60.4 44.4 33.1

Proposed

3 × 3 4.3 7.2 19.3 25.3 23.4 18.6 8.4 14.2 45.3 59.2 50.9 40.3

5 × 5 3.8 6.5 18.9 25.9 21.2 15.9 7.2 12.8 46.0 60.8 47.8 35.1

7 × 7 3.6 6.3 18.8 25.8 21.3 15.5 6.9 11.9 45.7 60.5 47.6 34.6

9 × 9 3.5 6.1 18.6 25.7 21.1 15.0 6.6 11.3 45.5 60.3 47.2 33.8

Scenario Grid Size
MAPE WAPE

2018 2019 2020 2021 2022 2023 2018 2019 2020 2021 2022 2023

Global 8.0% 13.7% 23.9% 26.2% 25.1% 24.5% 2.4% 4.0% 10.5% 12.2% 11.8% 9.3%

Zonal 7.9% 13.8% 24.0% 26.3% 24.1% 22.9% 2.3% 4.4% 10.9% 12.2% 10.8% 8.1%

Spatial [27] 15.2% 20.8% 20.9% 27.9% 23.9% 24.7% 2.5% 4.6% 9.9% 12.5% 10.2% 8.5%

Proposed

3 × 3 8.4% 14.6% 23.2% 26.1% 25.3% 25.3% 2.0% 3.3% 9.1% 12.4% 10.8% 8.3%

5 × 5 8.7% 14.5% 22.4% 26.7% 24.5% 24.4% 1.8% 2.9% 8.9% 12.6% 9.8% 7.1%

7 × 7 8.5% 13.4% 21.1% 27.0% 23.3% 23.1% 1.7% 2.8% 8.8% 12.6% 9.8% 6.9%

9 × 9 8.4% 12.3% 18.8% 27.4% 20.8% 19.0% 1.6% 2.8% 8.8% 12.6% 9.8% 6.7%

The data analysis presented in Table 11 highlights the comparative performance of
different methodologies and grid sizes regarding the metrics MAE, RMSE, MAPE, and
WAPE. The proposed methodology consistently demonstrates superior accuracy compared
with the global, zonal, and spatial methods across all metrics and years.

In terms of MAE and RMSE, the proposed 9× 9 grid configuration achieves the lowest
error values across all years. For instance, in 2018, the 9× 9 grid records an MAE of 3.5 GWh
and an RMSE of 6.6 GWh, outperforming other grid configurations such as 3× 3, 5× 5, and
7 × 7. Similar trends are observed in subsequent years, where the 9 × 9 grid consistently
yields the smallest error margins, demonstrating its effectiveness in capturing demand
variations with high precision.

The MAPE values further corroborate the effectiveness of the proposed 9 × 9 grid. It
achieves the lowest percentages in multiple years, particularly in 2019 (12.3%) and 2020
(18.8%). These results highlight the ability of the 9 × 9 configuration to minimize relative
prediction errors, making it a robust choice for accurate energy demand forecasting.

The MAPE is an indicator that is frequently used in demand forecasting because it is
easily interpretable. However, in spatial analysis it can be biased when there are divisions
by zero, outliers, or due to the scale of the actual values. For example, if a grid with a
consumption of 1000 GWh has an error of 1% (10 GWh) and another with a consumption
of 10 GWh has an error of 10% (1 GWh), the MAPE of the set would be 5.5%.

The WAPE that weights the errors by the volume of demand is a highly recommended
measure since it minimizes the impact of grids with very variable demands. In the example
above, the WAPE of the set would be 1.09% = [(10 + 1)/(1000 + 10)], which is more
reasonable on a global scale.
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The WAPE metric also underlines the advantages of the 9 × 9 grid. It achieves the
smallest WAPE percentages, notably 1.6% in 2018 and 6.7% in 2023, indicating its reliability
in maintaining low-weighted aggregate prediction errors. Overall, the 9 × 9 grid consis-
tently outperforms other configurations, making it the most effective choice within the
proposed methodology.

Finally, Table 12 presents the average values of the MAPE and WAPE metrics obtained
for segments S1, S2, and S3 during the periods 2018–2019 and 2018–2023, which include
the years affected by the COVID-19 pandemic. The scenario with the lowest metrics is
highlighted in blue. The table compares results obtained using standard convolution with a
3 × 3 kernel [27] and weighted convolution for kernels of sizes 3 × 3, 5 × 5, 7 × 7, and 9 × 9.
The Global and Zonal scenarios are not included, as these do not forecast new consumption
areas, such as those shown in Figure 11 (marked in red).

Table 12. MAPE and WAPE metrics in segments S1, S2, and S3: average for periods 2018–2019 and
2018–2023.

Scenario Grid Size

MAPE WAPE
Segment S1 Segment S2 Segment S3 Segment S1 Segment S2 Segment S3

18–19 18–23 18–19 18–23 18–19 18–23 18–19 18–23 18–19 18–23 18–19 18–23

Spatial [27] 18.0% 22.2% 16.7% 31.4% 16.6% 25.8% 3.5% 8.0% 6.3% 12.8% 12.9% 23.3%

Proposed

3 × 3 11.5% 20.5% 13.9% 26.2% 15.9% 26.9% 2.6% 7.6% 6.1% 12.7% 12.6% 23.2%

5 × 5 11.6% 20.2% 14.1% 27.4% 16.4% 27.1% 2.4% 7.2% 6.0% 12.5% 12.8% 23.3%

7 × 7 11.0% 19.4% 14.3% 27.7% 16.7% 26.8% 2.3% 7.1% 5.8% 12.3% 12.8% 23.2%

9 × 9 10.3% 17.8% 14.6% 27.6% 17.0% 27.3% 2.2% 7.0% 5.8% 12.3% 12.8% 23.2%

The metrics MAPE and WAPE obtained through weighted convolution outperform
those obtained through standard convolution, except for the estimate for the period
2018–2023 in segment S3. In segment S1, the proposed method reduces the MAPE by
up to 7.7% and the WAPE by up to 1.3% during the period 2018–2019. For the period
2018–2023, the MAPE is reduced by up to 5.6% and the WAPE by up to 1.0%.

Similarly, the MAPE and WAPE metrics for segment S2 increased by over 3% during
the period 2018–2019 and by over 5% during 2018–2023. In segment S3, these metrics
increased by more than 5% during 2018–2019 and by over 10% during 2018–2023.

5. Long-Term Forecast
This section presents a proposal for spatial energy forecasting over a 20-year horizon,

extending to 2043. The results of the global forecast, generated using the Prophet method,
are summarized in Table 13. The forecast indicates a steady annual increase in energy
consumption, starting at 9659 GWh in 2024 and reaching 14,750 GWh by 2043. The annual
growth rates (T.C.) exhibit a gradual decline over the forecast period, decreasing from 2.9%
in 2024 to 1.9% in 2043. As previously indicated, this article aims to explore geospatial
forecasting in alignment with the global growth of the system. In this context, the results
produced by the Prophet model are analyzed; however, in practical applications, the input
data would likely be derived from more advanced and efficient methods or techniques.
Additionally, alternative scenarios, both pessimistic and optimistic, may also be considered
for a more comprehensive analysis.

The relative growth of consumption groups within segment S1 is presented in Table 14.
This table provides a detailed overview of the annual growth rates for seven consumption
groups from 2024 to 2043. The analysis reveals distinct trends, with Group 1 consistently
exhibiting positive growth, albeit at a declining rate, starting from 4.9% in 2024 and tapering
to 2.2% in 2043. In contrast, Group 2 shows minimal or negative growth throughout the
period, with rates fluctuating between 0.1% and −1.0%, highlighting challenges in this
segment. Groups 3, 4, and 5 maintain moderate but steady growth rates, with notable peaks
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in the earlier years, such as 4.8%, 7.5%, and 6.8%, respectively, in 2024, before gradually
decreasing over time. Groups 6 and 7 demonstrate lower growth rates overall, with values
generally remaining below 3.6% and 5.8% in the initial years and tapering to less than
2.0% by 2043. These trends suggest a general deceleration in growth across most groups,
emphasizing the need for targeted strategies to address consumption dynamics, particularly
for underperforming groups such as Group 2.

Table 13. Global forecast, period 2024–2043.

Año Energy Consumption
(GWh)

T.C. Año Energy Consumption
(GWh)

T.C.

2024 9659 2.9% 2034 12,339 2.2%
2025 9927 2.8% 2035 12,607 2.2%
2026 10,195 2.7% 2036 12,874 2.1%
2027 10,463 2.6% 2037 13,142 2.1%
2028 10,731 2.6% 2038 13,410 2.0%
2029 10,999 2.5% 2039 13,678 2.0%
2030 11,267 2.4% 2040 13,946 2.0%
2031 11,535 2.4% 2041 14,214 1.9%
2032 11,803 2.3% 2042 14,482 1.9%
2033 12,071 2.3% 2043 14,750 1.9%

Table 14. Reference growth rate for segment S1 consumption groups.

Año
S1 Consumer Groups

1 2 3 4 5 6 7
2024 4.9% 0.0% 4.8% 7.5% 6.8% 3.6% 5.8%
2025 4.2% 0.1% 4.0% 6.8% 6.4% 2.8% 4.2%
2026 3.6% −0.5% 3.3% 6.1% 5.9% 2.1% 3.1%
2027 3.5% −0.5% 3.2% 5.7% 5.6% 2.1% 3.0%
2028 3.0% −0.9% 2.7% 5.2% 5.3% 1.6% 2.1%
2029 3.7% 0.1% 3.5% 5.4% 5.1% 2.5% 3.7%
2030 3.2% −0.5% 2.9% 4.9% 4.8% 2.0% 2.7%
2031 3.1% −0.5% 2.8% 4.7% 4.6% 1.9% 2.6%
2032 2.7% −0.9% 2.4% 4.3% 4.3% 1.4% 1.8%
2033 3.2% 0.1% 3.1% 4.4% 4.2% 2.3% 3.3%
2034 2.8% −0.5% 2.6% 4.1% 4.0% 1.8% 2.5%
2035 2.7% −0.5% 2.6% 3.9% 3.8% 1.8% 2.4%
2036 2.4% −0.9% 2.1% 3.6% 3.7% 1.3% 1.7%
2037 2.9% 0.1% 2.8% 3.8% 3.6% 2.2% 3.0%
2038 2.5% −0.5% 2.4% 3.5% 3.4% 1.7% 2.2%
2039 2.5% −0.5% 2.3% 3.4% 3.3% 1.7% 2.2%
2040 2.2% −1.0% 1.9% 3.2% 3.2% 1.3% 1.5%
2041 2.6% 0.1% 2.6% 3.3% 3.2% 2.0% 2.8%
2042 2.3% −0.5% 2.2% 3.1% 3.0% 1.6% 2.0%
2043 2.2% −0.5% 2.1% 3.0% 2.9% 1.6% 2.0%

The remaining parameters are held constant for the geospatial analysis.
The spatial forecast presented in Table 15 illustrates the projected energy demand

within segment S1 using a 3 × 3 convolution matrix for a 20-year horizon. The data reveal
significant variations in energy consumption across different spatial coordinates, with
high-demand zones concentrated in specific areas while others exhibit negligible or no
demand. This variation emphasizes the importance of geospatial forecasting in identifying
critical zones for targeted infrastructure development and efficient resource allocation.
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A detailed examination of Table 15 highlights that rows 866 and 865, particularly
in columns 28 and 29, represent areas of peak energy demand, with values reaching
3416.7 GWh and 3772.2 GWh, respectively. These zones are likely indicative of urban or
industrial hubs that will continue to drive energy consumption growth in the future. Addi-
tionally, localized demand spikes, such as the 745.2 GWh forecast in row 867, column 29,
suggest emerging consumption centers that may require strategic interventions to ensure
adequate energy supply. Conversely, many regions in the forecast exhibit minimal or zero
demand, reflecting underdeveloped or sparsely populated areas where significant growth
is not expected within the projection horizon. However, incremental increases in previously
low-demand regions, such as the 46.9 GWh forecast in row 868, column 29, indicate the
gradual expansion of electrical coverage and development in these zones.

The forecast projects the addition of five new service areas within segment S1 over the
20-year horizon, a marked acceleration compared with the historical trend. Between 2007
and 2023, the distribution company expanded its serviced area by only one grid, achieved in
2019. This forecasted growth highlights the increasing electricity demand and underscores
the need for proactive infrastructure planning to meet future consumption requirements.

Table 15. Spatial forecast for the year 2043 in S1—3 × 3 matrix (GWh).

Y↓/X→ 27 28 29 30 31 32 33 34 35 36
871 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0
870 0.0 0.0 0.0 0.0 0.0 0.5 0.3 0.0 4.6 0.0
869 0.0 0.0 0.0 4.9 0.0 3.4 0.6 2.3 3.7 0.0
868 0.0 0.0 46.9 0.0 45.7 11.2 3.0 10.2 0.0 0.0
867 0.0 93.4 745.2 352.6 52.6 0.0 2.5 0.0 0.0 0.0
866 959.6 3416.7 290.9 145.2 0.0 0.0 0.0 0.0 0.0 0.0
865 347.8 3772.2 722.7 68.9 0.0 0.0 0.0 0.0 0.0 0.0
864 0.0 689.0 1602.0 430.5 21.7 0.0 0.0 0.0 0.0 0.0
863 0.0 0.0 61.2 255.6 17.8 0.0 0.0 0.0 0.0 0.0
862 0.0 0.0 0.0 33.6 33.0 2.0 0.0 0.0 0.0 0.0
861 0.0 0.0 0.0 21.2 164.2 5.6 1.1 0.0 0.0 0.0
860 0.0 0.0 0.0 0.0 16.2 33.3 0.0 0.0 0.0 0.0
859 0.0 0.0 0.0 0.0 0.0 189.0 0.0 0.0 0.0 0.0
858 0.0 0.0 0.0 0.0 0.0 33.6 34.6 0.0 0.0 0.0
857 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0

14,754.2

Five (5) new areas, highlighted in blue, were identified due to the spatial analysis.
This outcome is optimistic, considering the current level of electrical coverage provided
by the distribution company and the historical precedent recorded during the 2007–2023
period, where only one new area was served for 17 years.

However, with the 9 × 9 core matrix, the projection for a 20-year horizon anticipates
the inclusion of two (2) new areas in segment S1, with estimated consumption values
highlighted in blue, as shown in Table 16. This result aligns more closely with the historical
horizontal growth of the distribution company, which expanded its coverage by only one
(1) grid square in 2019 during the 2007–2023 period.

The spatial forecast for 2043, presented in Table 16, highlights the predicted energy
consumption across various grid segments using the 9 × 9 matrix. The results indicate
significant variability in predicted consumption, with certain grid cells exhibiting high
demand, while others remain at minimal or zero levels. This variability underscores the
importance of spatial granularity in energy demand forecasting, as it enables the identifi-
cation of critical consumption areas and potential zones for infrastructure development.
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Key findings from the forecast include notable energy concentrations in specific segments,
such as cells (866, 28), (866, 29), and (865, 28), which show the highest consumption
levels of 3607.7 GWh, 1158.2 GWh, and 2582.2 GWh, respectively. These high-demand
zones are predominantly situated in areas characterized by urban or industrial growth.
In contrast, several cells display zero or negligible demand, indicating either uninhabited
regions or areas with limited infrastructure and minimal consumption activity. Highlighted
values in blue, such as 16.1 GWh in cell (864, 31) and 17.3 GWh in cell (857, 34), repre-
sent smaller yet strategically significant growth zones. These areas may require targeted
infrastructure enhancements to address future energy demand effectively and support
anticipated development.

Additionally, the energy distribution pattern suggests horizontal growth in specific
segments, aligning with historical expansion trends documented by the distribution com-
pany. Furthermore, the use of the 9× 9 core matrix demonstrates its capability to accurately
predict long-term energy consumption patterns, including the identification of two (02)
new areas in segment S1 over the 20-year horizon. This result is consistent with the histori-
cal horizontal growth observed by the distribution company, emphasizing the reliability
and robustness of the proposed forecasting approach in accommodating dynamic urban
expansion and evolving consumption trends.

Table 16. Spatial forecast for the year 2043 in S1—9 × 9 matrix (GWh).

Y↓/X→ 27 28 29 30 31 32 33 34 35 36
871 0.0 0.0 0.0 0.0 0.0 0.0 21.3 0.0 0.0 0.0
870 0.0 0.0 0.0 0.0 0.0 2.1 21.0 0.0 9.8 0.0
869 0.0 0.0 0.0 0.0 0.0 3.8 28.0 8.7 8.4 0.0
868 0.0 0.0 55.5 0.0 79.5 32.6 46.5 28.2 0.0 0.0
867 0.0 168.8 1088.8 364.6 74.2 0.0 43.4 0.0 0.0 0.0
866 1158.2 3607.7 549.4 102.1 0.0 0.0 0.0 0.0 0.0 0.0
865 401.9 2582.2 653.5 41.4 0.0 0.0 0.0 0.0 0.0 0.0
864 0.0 489.0 1296.4 417.6 16.1 0.0 0.0 0.0 0.0 0.0
863 0.0 0.0 45.5 264.4 0.0 0.0 0.0 0.0 0.0 0.0
862 0.0 0.0 0.0 48.7 45.9 0.0 0.0 0.0 0.0 0.0
861 0.0 0.0 0.0 66.4 340.3 49.7 45.5 0.0 0.0 0.0
860 0.0 0.0 0.0 0.0 52.4 83.4 0.0 0.0 0.0 0.0
859 0.0 0.0 0.0 0.0 0.0 211.5 0.0 0.0 0.0 0.0
858 0.0 0.0 0.0 0.0 0.0 38.1 44.1 0.0 0.0 0.0
857 0.0 0.0 0.0 0.0 0.0 0.0 17.3 0.0 0.0 0.0

14,754.2

Finally, Figure 12 shows the geospatial forecasting results for the year 2043, depicted
in red. Figure 12a, 12b, and 12c correspond to segments S1, S2, and S3, respectively. These
results were obtained using the 9 × 9 convolutional kernel.
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(a) (b) (c)

Figure 12. Geospatial forecast for the year 2043: kernel 9 × 9. (a): Segment S1; (b): segment S2;
(c): segment S3.

6. Conclusions
The proposed geospatial analysis algorithm demonstrates remarkable versatility and

efficacy in addressing both system-wide energy forecasting and segmented consumption
analysis. By integrating relative growth trends across consumption areas of varying scales,
the algorithm enables precise modeling and strategic planning. Its ability to incorporate
new consumption zones, constrained only by geographic limitations, ensures adaptability
to dynamic urban expansion and evolving development needs.

In the evaluated case study, which utilized 17 years of historical data (11 years for
training and 6 years for validation), the 9 × 9 core matrix exhibited superior performance
for segments with scales of 1:10,000 and 1:1000. For smaller-scale segments at a 1:100 ratio,
higher-order core matrices yielded better results. However, due to the smaller scale and
inherent historical distortions in consumption patterns, additional data would be required
to enhance accuracy in long-term forecasting for these cases.

The proposed methodology, along with the developed algorithms for consumption
segmentation, learning models, and convolution operations, is fully implementable by
electrical distribution companies, even those with limited historical records. Moreover, for
the analyzed distribution system, the proposed geospatial energy consumption forecasting
model extends over a 20-year horizon, offering a practical and scalable solution for long-
term planning and system optimization.

7. Recommendations
The proposed model’s primary limitation is the dynamic nature of coverage factors,

which require greater precision for smaller-scale grids (e.g., 100 m resolution). To en-
hance long-term geospatial forecasting, geographic systems and cadastral data must be
periodically updated.

Incorporating additional spatial analysis parameters, such as physical or economic
proximity factors, can further refine forecasting models. Growth patterns from logistic and
Gompertz curves (S-curves) could also be integrated at various scales using optimization
or machine learning techniques.

The analysis of satellite images to detect night lights offers potential applications, in
particular for assessing demand in areas without an electricity grid. These data can be
incorporated into the proposed algorithm as an additional parameter and guide the location
of new “isolated” grids in the forecast and their integration into the existing electricity grid.
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Incorporating real-time data from IoT sensors can significantly enhance geospatial
demand analysis. Data such as electricity consumption, solar resources, wind resources,
temperature, and other environmental factors can make spatial analyses more dynamic
and responsive.

For more heterogeneous or larger-scale datasets, it is recommended to evaluate the suit-
ability of alternative methods, such as DBSCAN and GMM for clustering, as well as models
like LSTMs to determine relative growth. Defining the number of segments, grid sizes, and
convolutional kernel is essential to ensure the effectiveness of the proposed methodology.

The proposed methodology can also be applied to other essential services such as gas
and water. However, adaptations are necessary to accommodate different types of data and
the specific dynamics of each resource. These modifications are crucial to achieve effective
integration into the planning of multi-energy systems.

Include the analysis of the demand characterization factors for the geospatial forecast
of the maximum demand in the different components of the electrical infrastructure. This
analysis can be addressed using machine learning techniques (load factor) and the Monte
Carlo method (simultaneity factor).
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