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Abstract: Wind turbine blade leading edge erosion (LEE) reduces energy production and
increases wind energy operation and maintenance costs. Degradation of the blade coating
and ultimately damage to the underlying blade structure are caused by collisions of falling
hydrometeors with rotating blades. The selection of optimal methods to mitigate/reduce
LEE are critically dependent on the rates of coating fatigue accumulation at a given location
and the time variance in the accumulation of material stresses. However, no such assess-
ment currently exists for the United States of America (USA). To address this research gap,
blade coating lifetimes at 883 sites across the USA are generated based on high-frequency
(5-min) estimates of material fatigue derived using a mechanistic model and robust meteo-
rological measurements. Results indicate blade coating failure at some sites in as few as
4 years, and that the frequency and intensity of material stresses are both highly episodic
and spatially varying. Time series analyses indicate that up to one-third of blade coating
lifetime is exhausted in just 360 5-min periods in the Southern Great Plains (SGP). Con-
versely, sites in the Pacific Northwest (PNW) exhibit the same level of coating lifetime
depletion in over three times as many time periods. Thus, it may be more cost-effective to
use wind turbine deregulation (erosion-safe mode) for damage reduction and blade lifetime
extension in the SGP, while the application of blade leading edge protective measures may
be more appropriate in the PNW. Annual total precipitation and mean wind speed are
shown to be poor predictors of blade coating lifetime, re-emphasizing the need for detailed
modeling studies such as that presented herein.

Keywords: blades; CONUS; hydroclimate; LCoE; LEE; operations and maintenance;
Springer model; USA; wind energy

1. Introduction
1.1. Motivation: Wind Turbine Blade Leading Edge Erosion

Wind turbines are a low-cost, low-carbon electricity generation source and thus an ef-
fective means to reduce climate forcing [1,2]. Accordingly, the global wind energy installed
capacity passed 1 TW in 2023 and is projected to surpass 2 TW before 2030 [3]. In the United
States of America (USA), wind turbines contributed over 450 TWh of electricity to the grid
(over 10% of national consumption) in 2023 [4] from an installed capacity of approximately
150 GW [3].

The efficiency of electricity generation, as measured using capacity factors (ratio of
annual energy production (AEP) to maximum AEP of all wind turbines operated at their
rated capacity all of the time), for wind turbines installed in the USA between 2009 and
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2020 increased from 0.29 to 0.41 [5]. This is due in part to increasing wind turbine rated
(or nameplate) capacity [6] and wind turbine dimensions, including rotor diameter, which
increases the blade tip speed [7].

The levelized cost of energy (LCoE) from a generation source is given as follows:

LCoE =
∑i

n=1 (CAPEXn + O&Mn)/(1 + r)n

∑i
n=1 AEPn/(1 + r)n (1)

where CAPEXn = capital expenditures in year n, O&Mn = operations and maintenance
costs in year n, AEPn = annual electricity production in year n, where n = 1 to i, where i is
the lifetime, and r = discounting rate.

Inflation-adjusted LCoE in USD 2020/MWh from wind installations in the USA ap-
proximately halved between 2009 and 2020 [8], in part due to reductions in O&M costs [8].
Future O&M cost estimates are uncertain, but there is evidence that they are an increasing
component of LCoE [9].

Wind turbine blades are multi-layered, comprising an outer coating layer that is
designed to protect the underlying glass fiber (or carbon fiber)-reinforced polymer that
is applied to a load-carrying shell [10]. Blade integrity is essential to efficient electrical
power generation from wind turbines (AEP) and blades significantly contribute to both
overall purchase price (>20% of CAPEX, [11]) and O&M costs [12,13]. During 2019, global
O&M costs for onshore wind farms exceeded USD 15 billion with over half of expenditures
being on unplanned repairs [14]. Past research has reported blade damage as the major
cause of wind turbine failures [15]. A sample of 5800 wind turbine failure events during
1993 and 2006 found blade repairs typically took between 260 and 340 h [16]. One analysis
found that “preventive maintenance could reduce the average lifetime maintenance cost
11.8 times comparing the corrective maintenance for wind turbine blades” [17].

An important cause of blade damage and degraded aerodynamic performance is
leading edge erosion (LEE) [18]. LEE involves material loss of blade coatings, leading to
exposure and loss of the glass fiber laminate. The resulting roughening of the blade [19]
reduces lift and increases drag, leading to reduced power production (AEP) [20–24]. Accord-
ingly, a range of techniques have been proposed to more efficiently detect blade damage
to inform possible repair [25,26], and a number of research projects have been initiated
to predict and reduce LEE [18]. The issuance of testing standards for erosion resistance
of leading edge protective (LEP) products by Det Norske Veritas (DNV) in 2020 further
emphasizes the importance of LEE to the wind energy industry [27].

Recent research on indicative costs for repair of LEE as a function of damage severity
report ranges (for 3 blades) from GBP 7000 for minor damage (categories 1–2, discoloration
of coating to removal of up to 10 cm2 of coating) to GBP 42,000 for major damage (category 4,
coating removed and partial removal of first layer of laminate, resulting in AEP losses of
3%) to GBP 3,750,000 (category 5, holes in laminate, loss of AEP ≥ 5%) [28] (estimated AEP
loss as a function of damage severity from [19]). While relatively few wind farm owner-
operators have released information regarding the extent or timing of LEE emergence,
according to one report when EDP Renewables inspected 201 rotor blades on a wind farm
after 14 years of operation, 174 blades (87%) had visible signs of erosion, and 100 blades
(50%) showed severe LEE [29]. Further, an analysis of wind turbine blades from India found
evidence of LEE in as little as two years of operation [30]. Slowing/mitigating coating
failure and LEE and thus extending blade lifetimes has the potential to contribute further
reductions in LCoE from wind turbines via both increased AEP and reduction of O&M costs
and may aid in partially alleviating cost/environmental issues linked to recycling/disposal
of blades [31].
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LEE is primarily the result of material stresses induced when hydrometeors (i.e.,
rain droplets, hail stones) impact on rapidly rotating blades [32–36]. Experimental data
and detailed modeling using finite element methods indicate that the impact force and
von Mises stresses in coatings for individual hydrometeor impacts scale with impact
velocity and hydrometeor mass and hence diameter [37–39]. Hence, impacts from larger
hydrometeors lead to coating failure with fewer impacts per unit area because they have
higher kinetic energy of impact and induce both larger stress values at the impact site
and stress waves that travel further through the material [39]. Therefore, the cumulative
material stresses in blade coatings from hydrometeor impacts are amplified under the
following conditions:

• Under high wind speeds when closing velocities (vc) between the hydrometeors and
the rotating blade are maximized. vc is typically dominated by the blade tip speed
(Figure 1a) which exceeds the terminal fall velocity (vt) of hydrometeors (Figure 1b)
frequently by an order of magnitude.

• During periods of intense precipitation when there are many, and larger, hydromete-
ors [38] (Figure 1c) and/or during periods of hail.

Energies 2025, 18, x FOR PEER REVIEW 3 of 22 
 

 

O&M costs and may aid in partially alleviating cost/environmental issues linked to recy-
cling/disposal of blades [31]. 

LEE is primarily the result of material stresses induced when hydrometeors (i.e., rain 
droplets, hail stones) impact on rapidly rotating blades [32–36]. Experimental data and 
detailed modeling using finite element methods indicate that the impact force and von 
Mises stresses in coatings for individual hydrometeor impacts scale with impact velocity 
and hydrometeor mass and hence diameter [37–39]. Hence, impacts from larger hydro-
meteors lead to coating failure with fewer impacts per unit area because they have higher 
kinetic energy of impact and induce both larger stress values at the impact site and stress 
waves that travel further through the material [39]. Therefore, the cumulative material 
stresses in blade coatings from hydrometeor impacts are amplified under the following 
conditions: 

• Under high wind speeds when closing velocities (vc) between the hydrometeors and 
the rotating blade are maximized. vc is typically dominated by the blade tip speed 
(Figure 1a) which exceeds the terminal fall velocity (vt) of hydrometeors (Figure 1b) 
frequently by an order of magnitude. 

• During periods of intense precipitation when there are many, and larger, hydrome-
teors [38] (Figure 1c) and/or during periods of hail. 

 

Figure 1. Overview of parameters that dictate wind turbine blade leading edge erosion. (a) Rotor 
rotational (RPM, black) and tip (Tip, red) speed and electrical power generation (Power, in MW , 
blue) as a function of the hub-height wind speed for the 3 MW WINDPACT reference wind turbine 
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distance to failure (ADF) values computed using the Springer model [44,45] and 4 years of hydro-
meteor size distribution and wind speed measurements from the US Department of Energy’s At-
mospheric Radiation Measurement (ARM) experimental station in the Southern Great Plains (loca-
tion shown in Figure 2a by the magenta dot, see details in [46]). 

Figure 1. Overview of parameters that dictate wind turbine blade leading edge erosion. (a) Rotor
rotational (RPM, black) and tip (Tip, red) speed and electrical power generation (Power, in MW, blue)
as a function of the hub-height wind speed for the 3 MW WINDPACT reference wind turbine [40].
(b) Terminal fall velocity (vt) as a function of hydrometeor diameter [41]. (c) Number density of
rain droplets (#m−3 per mm of diameter space) computed using the Marshall–Palmer distribution
approximation (prefix M) [42] and the approximation of Best [43] (prefix B) for three different rainfall
rates (in mmhr−1). (d) Cumulative density function (CDF) of 1-min blade coating accumulated dis-
tance to failure (ADF) values computed using the Springer model [44,45] and 4 years of hydrometeor
size distribution and wind speed measurements from the US Department of Energy’s Atmospheric
Radiation Measurement (ARM) experimental station in the Southern Great Plains (location shown in
Figure 2a by the magenta dot, see details in [46]).

Most wind turbines in the contiguous USA (CONUS) are deployed in locations with
good wind resources, but also where hydroclimatic conditions associated with highest
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material stresses and hence LEE potential are frequent (heavy precipitation and hail dur-
ing periods with high wind speeds; thus, turbines are operating at maximum rotational
speed) [35] (Figure 2a–c). Further, wind turbines being deployed offshore are physically
larger and have both longer blades and higher tip speeds than those deployed onshore [3].
This leads to higher closing velocities with falling hydrometeors and thus potentially more
rapid erosion in offshore locations that also have higher O&M costs [47] and are also
experiencing pricing challenges linked to risk and cost of capital [48].
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Figure 2. Overview of datasets. (a) Wind turbine locations in the CONUS at the end of 2023 based on
data from the USGS Wind Turbine Database [49,50] (black dots). The magenta dot shows the location
for which blade coating ADF estimates are shown in Figure 1d. Contours show estimated annual
hail frequency from the NASA Passive Microwave Hail Climatology Data Products V1 dataset [51].
(b) Annual total precipitation at the Automated Surface Observing Station (ASOS) sites computed
using 1-min observations from 2005 to 2022. (c) Probability that the wind speed at the hub height
(90-m) of the 3 MW WINDPACT reference wind turbine is in the range with maximum rotor rotational
speed (RPM, Figure 1a) based on ASOS observations to 10-m height and application of the power
law (see Equation (2)). The arrows and text (PNW, SGP, and NE) in frame (b) show the locations used
to illustrate the time series of ADF. Color bar limits in (b,c) are set to 5th to 95th percentile values to
aid legibility of spatial gradients.
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Options for reducing wind turbine blade LEE include the following:

(i) Redesign of blades, use of more energy absorbing materials in coatings or reduction of
manufacturing defects [52–54]. These may increase manufacturing, and hence CAPEX
costs, and they can only be applied to new wind turbines.

(ii) Use of leading edge protection (LEP) products [55,56]. The application of LEP as part
of the blade manufacture or after wind turbine deployment will increase CAPEX or
O&M costs, respectively. Use of LEP may also negatively impact blade aerodynamics,
resulting in reduced AEP [21,57,58].

(iii) Dynamical operation of wind turbines to reduce rotor speed during periods associ-
ated with high material stresses (i.e., intense precipitation at high operating wind
speeds) [32]. This erosion-safe mode operation necessarily reduces AEP due to the
loss of electricity production during curtailment/deregulation to slow rotor speeds,
but may decrease O&M costs by increasing blade coating lifetimes, leading to a net
benefit in terms of LCoE [46].

Cost–benefit analyses designed to select between options (ii) and (iii) for a given
environment are critically reliant on modeling using the joint probability distributions of
wind speeds and hydroclimate properties that dictate material stresses in blade coating
and LEE.

The ASOS observations used in the current analysis illustrate the presence of marked
geospatial variability in annual total precipitation (Figure 2b) and the frequency with which
wind turbines are likely to have their blades rotating at the maximum speed (Figure 2c).
There is, therefore, an expectation that wind turbine blade coating lifetimes will equally
exhibit high spatial variability across North America. No comprehensive geospatial de-
scription of blade coating lifetimes is currently available for the CONUS, but past research
using wind speeds and precipitation estimated from six National Weather Service RADARs
demonstrated very high spatial variability in precipitation-induced blade coating damage
potential and indicated the importance of low-probability, high-impact events to cumula-
tive annual total kinetic energy transfer [36]. Analyses for a site in the Southern Great Plains
(SGP) region of the USA also showed that the probability distribution of high-frequency
accumulated distance to failure (ADF) of blade coatings due to hydrometeor-induced
stresses is extremely heavy tailed. That is, when ADF estimates are derived using the
Springer model applied to 1-min resolution hydrometeor size distribution and hub-height
wind speed measurements, relatively few 1-min periods dominate the accumulation of
material stress (Figure 1d) and hence the duration of time required for onset of erosion
(when ADF = 1) [46].

In analyses of data from the SGP where total ADF is dominated by a few time periods,
modeling using rotor-speed curtailment during the most erosive 0.1–0.2% of 10-min periods
(i.e., enactment of option (iii) erosion-safe mode) was found to substantially increase blade
coating lifetimes and thus lead to a minimized LCoE despite the associated loss of power
production and hence revenue [46]. Conversely, in a situation where ADF increments occur
in more numerous and more evenly weighted periods, option (ii) may be preferable in
terms of net impact on LCoE. Selecting between options (ii) and (iii) will necessarily depend
on the cost of blade repair, purchase of LEP products, and their deployment costs [28], as
well as quantification of the amount of time when erosion-safe mode operation is required
and, thus, how much AEP is sacrificed. Hence, market conditions, such as the purchase
price of electricity, which exhibits marked variations in time and space, must also be
considered [59,60]. For this reason, it is useful, as herein, to quantify not only wind turbine
blade coating lifetimes but also the frequency of periods that cause large material stress
(ADF increments) and the seasonality of these highly erosive periods. Such information can
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facilitate economic modeling by wind farm owner operators to select the most appropriate
LEE mitigation approach in each location.

1.2. Objectives

Our primary objective is to develop and present the first geospatial description of wind
turbine blade coating lifetime and hence LEE potential for the continental USA (CONUS)
that can be used to aid in decision making for wind farm owner-operators with respect
to adoption/selection of LEE mitigation measures. Importantly, the modeling presented
herein not only quantifies the duration of time prior to coating failure and erosion onset
but is also used to quantify the degree to which coating ADF at each location exhibits
evidence of being dominated by relatively few extreme events and their seasonality. This
information is essential for costing of each LEE mitigation option at a given location.

2. Materials and Methods
2.1. Meteorological Observations

Precipitation intensity is zero-bounded, and the probability distribution is both heavy
tailed and dependent on spatial and temporal resolution of the data and hence the degree
of averaging [61–63]. As described above, high ADF values occur during periods of very
intense precipitation and high wind speeds when many, large hydrometeors (Figure 1c)
collide with a rapidly rotating blade at high closing velocities (Figure 1a,b). Hence, there
is evidence that the probability distribution of high-frequency ADF increments for blade
coatings may also be heavy tailed (Figure 1d). Thus, it is essential to use high-frequency
meteorological data to generate wind turbine blade coating lifetime estimates and thus the
expected duration of time prior to LEE.

The full research methodology applied in this work is detailed below with a schematic
workflow also given in Figure 3. The first step is to describe the prevailing meteorological
conditions at each location. To do so, we use records from 883 National Weather Service
(NWS) Automated Surface Observing System (ASOS) network stations, covering the period
from 2005 to 2022. These records include 1-min accumulated precipitation plus 2-min
sustained wind speed within a 5-min period. The ASOS network is subject to stringent
site selection [64], instrument maintenance [65], and data quality assurance protocols [66].
Sustained wind speed measurements at 10-m height are obtained using a heated 2D sonic
anemometer [67]. They are reported herein in ms−1, but are recorded in whole knots with
values below 3 knots reported as 0 [68]. Accumulated precipitation measurements are
taken using a heated and wind-shielded tipping bucket rain gauge [69,70]. The minimum
1-min precipitation depth is 0.01 inch (0.254 mm) and is equal to one tip of the pivoted
bucket within the rain gauge. One-minute accumulated precipitation is aggregated to 5-min
periods for which wind speeds are reported and converted to a rainfall rate in mmhr−1.
Blade coating lifetime statistics presented herein are corrected for missing data periods to
generate an effective 18-year blade coating ADF. Three of the 883 ASOS stations have <50%
of possible observations available and are excluded from further analyses.

The WINDPACT reference wind turbine [40] used in this analysis to derive 5-min time
series of blade rotational speed as a function of prevailing wind speed (Figure 1a). This
wind turbine has a rated capacity of 3 MW and hub height of 90-m and thus is a reasonable
representation of the average of the current US wind turbine fleet [4]. ASOS wind speeds
as measured at 10-m (WS10) are scaled to the hub height of 90-m (WS90, referred to here as
WSHH) using the power law and a coefficient of 1/7 [71]:

WS90 = WS10 ×
(

90
10

)1/7
(2)
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Figure 3. Flowchart presenting the workflow used to create a time series of 5-min blade coating
accumulated distance to failure increments (ADFt), 18-year ADF and blade coating lifetimes for
each site.

Thus, the scaling factor applied to the ASOS 5-min interval wind speed measurements
for use in determining the blade rotational speed and tip speed is 1.38.

To illustrate variations in 5-min coating ADF increments as derived using the ASOS
measurements and the Springer model in different climates and regions of the CONUS,
we present data from indicative stations in the Pacific Northwest (PNW) from KAST in
Astoria, Oregon; Southern Great Plains (SGP) from KOKC in Oklahoma City, Oklahoma;
and the Northeast (NE) from KACK in Nantucket, Massachusetts. These locations are close
to major wind turbine deployments (Figure 2a). The PNW experiences high annual total
precipitation (Figure 2b). The SGP has the greatest concentration of wind turbines and
an extreme hydroclimate with a high frequency of deep convection and intense precipi-
tation [72,73] (Figure 2a,b). The NE site is selected to be close to the US eastern coastline
and hence adjacent to areas where major offshore wind energy installations are currently
underway [74].

2.2. Mapping Atmospheric Drivers to Damage

Multiple engineering models have been developed to simulate the material stresses
induced by hydrometeor collisions with the wind turbine blade that cause coating degra-
dation and lead to blade LEE [38,75,76]. Herein, we employ a multi-layer version of the
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Springer model [44,45,77–79] that uses the material properties of the blade and coating to
compute the number of impacts required for failure per unit area (Ni, m−2) for a given
hydrometeor diameter (D, m), impact velocity (vc, ms−1), and impact angle (θ). Using
the integration of hydrometeor diameter, closing velocity, and then time, the model can
be used to derive an accumulated distance to failure of the coating and hence onset of
blade erosion. The Springer model has been widely described and validated relative to
rain erosion tests [78] and is also employed within the recommended practice (RP) for
evaluation of erosion and delamination for leading edge protection systems of rotor blades
issued by DNV [27].

The fundamental equations of the Springer model are presented below. A range of
coefficient values have been postulated to represent wind turbine blade materials [79].
Hence, the values of the model coefficients used in the current research are given below
along with the reference from which the values are drawn.

Ni =
4π
D2 a1

(
Sec

σ0

)a2

(3)

where Sec = erosion strength of the coating. In addition, a1 and a2 are constants that in the
current implementation of the model have values of 7 × 106 and 5.7, respectively [79]. Here,
σ0 = average stress of the coating surface, and scales with the thickness of the coating, the
coating and substrate material properties, and the hydrometeor diameter and is expressed
as follows:

σ0 = vc
ZLcos(θ)(ψsc + 1)(
ZL
Zc

+ 1
)
(1 −ψscψLc)

(
1 − (1 − eγ)(ψLc + 1)ψsc

γ(ψsc + 1)

)
(4)

where vc = impact velocity (set as the closing velocity between the hydrometeor and the
blade); θ = impact angle between the hydrometeor and the blade (assumed here to be
0, i.e., there is no deflection of the hydrometeor and the impact if normal to the leading
edge [79]); Zx = impedance of each material; and ρxCx, where ρx = material density. In the
following, subscripts (x) are used to refer to L = liquid, c = coating, and s = substrate. Here,
ρ = material density: ρc = 1690 kgm−3 [78], ρL = 997 kgm−3 [79] and ρs = 1930 kgm−3 [78].
C = elastic wave speed: CL = 1481 ms−1 [79], Cc = 1730 ms−1 [78,79] and Cs = 2390 ms−1 [78].
ψxx = relative acoustic impedance, where sc = substrate coating and Lc = liquid coating.

ψsc =
Zs − Zc

Zs + Zc
(5)

ψLc =
ZL − Zc

ZL + Zc
(6)

Here, γ = coating thickness parameter (maximum number of reflections during the impact
time within the coating thickness) and is expressed as follows:

γ =
2CcZc(ZL + Zs)D

CL(Zc + ZL)(Zc + Zs)h
(7)

where h = coating thickness. A range of blade coating thicknesses are reported in the
literature. For example, values of 100 to 3000 × 10−6 m are given in [75]. Increasing the
coating thickness reduces the number of stress reflections at the coating/substrate boundary.
Thus, for given substrate impedance, the ratio Sec

σ0
and hence the number of impacts to
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failure from Equation (3) are minimized for high D to h ratios [75]. In the current research,
h is set to 750 × 10−6 m [79].

Sec =
4(bc − 1)σUc

(1 − 2νc)

(
1 −

(
σIc
σUc

)bc−1
)
(2k|ψsc|+ 1)

(8)

where σUc = coating ultimate tensile strength (1.30 × 107 Pa [78]), σIc = coating endurance
limit (6.30 × 106 Pa [78]), and bc = coating Springer fatigue knee, which is computed from
the material fatigue knee (b2c, 16.52 [78]) as follows:

bc =
b2c

log10

(
σUc
σIc

) (9)

where νc = coating Poisson ratio (0.295 [78]). Here, k is given as follows:

k =
1 − e−γ

1 −ψscψLc
(10)

Palmgren–Miner’s rule is used to integrate across all hydrometeor D and closing
velocities to quantify the accumulated distance to failure (ADFt) of the blade coating in
each 5-min period [78,79]:

ADFt = ∑d=kk
d=1 ∑v=mm

v=1
N(d, v)
Ni(d, v)

(11)

where ADFt is the accumulated distance to failure of the blade coating in time interval t; d is
the hydrometeor diameter class (d = 1 to kk, where kk is the largest hydrometeor diameter
class considered); v is the closing velocity class (v = 1 to mm, where mm is the largest
class of closing velocity considered); N(d,v) is the number of impacts in each diameter and
velocity class; and Ni(d,v) is the number of impacts in that diameter and velocity class to
failure (see Equation (3)).

Integration of ADFt through time is used to define the duration of time required for
the accumulated number of impacts in each diameter and closing velocity class required to
reach ADF = 1. When ADF = 1, this indicates the end of the incubation period where stress
is accumulated by the surface, but the aerodynamic performance is virtually unaffected.
ADF = 1 indicates the onset of erosion, mass loss from the blade, and degradation of blade
aerodynamic performance. The coating lifetime in fraction of years is thus the duration of
time elapsed for ADF to reach a value of 1.

The Springer model also requires information regarding the hydrometeor size
distribution (HSD, hydrometeor counts in diameter classes). Herein, we employ the
Marshall–Palmer approximation [42] to generate these HSDs:

N =
N0

Λ
e−ΛR (12)

where N = number of droplets above radius, R (m), per cubic meter of air (#m−3);
Λ = 8200 × RR−0.21 (m−1); N0 = 1.6 × 107 m−4; and RR = rainfall rate (mmhr−1) (Figure 1c).
For comparative purposes, we also present example ADF increments based on analyses in
which the HSD is computed using the approximation of Best [43]:
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N =
W
V

(
ki × Dki−1

aki

)
e−⌊D/a⌋ki

(13)

where N = number of droplets above diameter, D (in mm), per cubic meter of air
(#m−3); V = droplet spherical volume (mm3); W = total water volume (67 × RR0.846)
(mm3m−3); ki = 2.25; and a = 1.3 × RR0.232.

The modeling additionally requires information regarding hydrometeor fall velocity
to estimate the closing velocity with the rotating blade. Herein, we use the terminal fall
velocity (vt) as a function of hydrometeor diameter from Gunn and Kinzer [41] (Figure 1b).
The closing velocity (vc) in each time step (t) and for each diameter (D) is a function of the
terminal fall velocity (vt) for that of a hydrometeor of a given diameter, horizontal wind
speed at hub height (WSHH), linear speed of the blade tip (vr), and blade position (ϕ):

vc(D, t,ϕ) =
[
WSHH2 + (vr + vt(D)× cosϕ)2

]1/2
(14)

Thus, if WSHH = 16 ms−1, the blade tip speed is 78.7 ms−1, and a 2 mm diameter
hydrometeor falling at a vt of 6.55 ms−1 will have a closing velocity with the blade that
varies between 73.9 and 86.7 ms−1 depending on the blade position.

The total number of impacts of hydrometeors of a given diameter (D) on the blade
leading edge during time interval t (I(D,t), also known as the impact rate, is a function of
the hydrometeor number density (N(D)) as described using Equations (12) or (13) and their
closing velocity from Equation (14):

I(D, t) = N(D)× vc(D, t,ϕ) (15)

Five-minute rainfall rates (in mmhr−1) and WSHH from ASOS observations are not
continuous but rather take discrete values. Hence, a matrix of ADF values as a function
of 41 WSHH values (0 to 40 ms−1) and 51 RR values (0 to 150 mmhr−1) was computed.
This matrix comprises a look-up table (LUT) that is applied to time series from each ASOS
station to determine the ADF increment (summed across all D) for every 5-min record of
wind speed and rainfall rate (ADFt). Summing the time and correcting for missing data
periods, an effective 18-year blade coating ADF is computed for each ASOS location.

Two statistical metrics are presented to describe the concentration of coating ADF
increments in time: (a) sum of the top n values from each time series of 5-min ADFt, where
n varies from 1 to 1000, and (b) probability that consecutive periods will exceed a specified
ADF threshold. The frequency of occurrence of high ADFt is also presented by computing
the number of occurrences of ADFt > 1 × 10−4 in each calendar month divided by the total
number of observations in that month.

The heavy-tailed nature of the probability distributions of ADFt has the implication
that relatively long records of meteorological drivers are required to generate robust 18-year
ADF and hence blade lifetime estimates at each site. To examine the importance of data
record duration and the precise years present in the record, a resampling analysis using
complete years is performed. In this analysis, 18-year ADF is computed using record
lengths of 1 to 17 years with sampling of individual calendar years without replacement.

Confidential communication with a major wind farm owner-operator indicated that
they purchase estimates of total annual precipitation and mean wind speed to provide
preliminary information regarding the duration of time to coating failure at prospective
development sites. Hence, a final analysis is performed to evaluate the degree to which
the spatial variability in 18-year ADF can be explained by these variables. This analysis
leverages linear regression with parameter fitting using maximum likelihood estimation.
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3. Results
3.1. Simulated Blade Coating Lifetime as a Function of Prevailing Meteorology

Figure 4a presents a heatmap of 5-min accumulated distance to failure (ADFt) for
blade coatings, integrated across all hydrometeor diameters for example combinations
WSHH and RR where the number concentration of hydrometeors of each diameter is
computed using the Marshall–Palmer approximation. While the absolute values of 5-min
ADF increments are naturally dictated by the coefficients used in the Springer model, this
heatmap illustrates several key points. First, based on the multi-layer Springer model,
hydrometeors associated with RR of 15 mmhr−1, across all wind speeds and hence rotor
speeds, are >6 times as efficient at causing material stresses, and contributing to ADF
increments, than those associated with a RR of 1.5 mmhr−1. Second, because the closing
velocity between the hydrometeors and the blade is highly dependent on the rotational rate
of the wind turbine blades, periods when the WSHH is at, or close to, the inflow wind speed
with maximum RPM are particularly important to the ADF. For a RR of 4.5 mmhr−1, there
is 50-fold higher 5-min ADF increment when wind speeds are 16 ms−1 versus 3.25 ms−1.
Third, accurate specification of the frequency of conditions in differing rain rate and wind
speed classes is critical to determining ADF of wind turbine blade coatings and hence the
likelihood of LEE in a given time interval. Finally, the approximation applied to compute
the HSD plays a role in the absolute values of blade coating ADF for a given rain rate
and wind speed (cf. Figure 4a,b). ADF is larger when the HSD is computed using the
formulation of Best (Equation (13)) versus that of Marshall–Palmer (Equation (12)). Thus,
coating lifetimes would be shorter if the Best HSD were applied. For the example WSHH
and RR illustrated in Figure 4, the ratio of ADF increments from calculations using Best
versus Marshall–Palmer range from 2.52 for low rainfall rates (1.5 mmhr−1) to 1.43 for high
rainfall rates (15 mmhr−1).
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Figure 4. A heatmap of blade coating ADFt (×103 to aid visibility) for 5-min periods with example
wind speeds and rainfall rates. ADFt computed using (a) HSD from Marshall–Palmer and (b) HSD
from Best. ADFt is computed using the Springer model, the closing velocity derived using the
WINDPACT 3 MW reference turbine and hydrometeor, and vt from Gunn and Kinzer [41].
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3.2. Geospatial Variability of Blade Coating Lifetime

In accord with a priori expectations and limited past research [36], the blade coating
lifetime estimates across the CONUS exhibit marked geospatial variability. Here, 18-year
ADF estimates range from <0.1 at the ASOS sites with the least erosive climate to a maxi-
mum of 4 (Figure 5a). A value of 4 indicates that a blade coating with the material properties
employed in the Springer model is projected to fail 4 times during an 18-year period. Al-
ternatively stated, the blade coating is expected to fail, on average, in just over 4 years.
Analyses for one-quarter of the ASOS stations indicate an 18-year ADF > 1, and two-thirds
of sites have a ADF > 0.5. Stations with 18-year ADF > 1 that are close to current wind
turbine installations (Figure 2a) are clustered along the US west coast, in the Central Plains,
and along the US east coast (Figure 5a). Several sites exhibit blade coating lifetimes of
<12 years (Figure 5b). The site with the highest 18-year ADF (4) is KCEC in Crescent City,
California. This coastal station experiences high annual total precipitation (1539 mm) and a
relatively high frequency of precipitation during periods when the wind speed is such that
the reference wind turbine would be operating at high RPM.
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Figure 5. Blade coating lifetimes. (a) Eighteen-year accumulated distance to failure (ADF) and
coating lifetime (erosion onset time in years) at each of the ASOS sites. A value of 1 indicates that the
coating lifetime has been exhausted in 18 years, and blade damage is predicted to have commenced.
(b) Histogram of the coating lifetimes for the top 5% of ASOS sites with the highest 18-year ADF
(i.e., 18-year ADF > 1.5). (c) The ADF from the top 100 most erosive 5-min periods during the
measurement record. Color bar limits in panels (a) are set to 5th to 95th percentile values to aid
legibility of spatial gradients.

Data regarding the need for blade repair or LEP application are generally kept confi-
dential by wind farm owner-operators. Thus, it is difficult to evaluate the coating lifetime
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predictions presented in Figure 5a. An earlier analysis using independently measured HSD
and fall velocities from a disdrometer and wind speeds from a lidar at the US Department
of Energy Atmospheric Radiation Measurement (DoE ARM, see location in Figure 2a) site
in Lamont, Oklahoma predicted the 3 MW reference turbine would experience coating
failure in slightly over 16 years (see cumulative density function of 1-min ADF increments
from that analysis in Figure 1d) [46]. Analyses presented herein for an ASOS site 32 km
from the ARM location are consistent with that earlier work and indicate an ADF of 1 over
the 18-year period (i.e., a coating lifetime of ≤18 years).

3.3. Temporal Variability in Blade Coating Lifetime Reduction

The probability distributions of 5-min ADF increments varies markedly across the
USA. Accordingly, the contribution of the top 100, 5-min periods in terms of incremental
contributions to ADF also exhibits marked spatial variability (Figure 5c). Over much of the
western half of the CONUS, the top 100 most erosive 5-min periods contribute less than
5% of the total 18-year ADF, and <5% of a blade coating lifetime. In other locations, for
example much of the SGP, values exceed 0.1, indicating that 10% of the coating lifetime
may be exhausted during as few as 100 5-min periods. The top 100 5-min ADF values
along the Gulf coast of the CONUS (i.e., the southeastern USA) are also very high likely
due, in part, to torrential rain and high wind speeds associated with land-falling tropical
cyclones [80,81].

Analyses of modeled time series from three example ASOS stations with 18-year
ADF > 1.5 that are located close to major wind turbine installations indicate marked varia-
tions in the degree to which the ADF time series is heavy tailed (Figure 6a).
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Figure 6. Concentration of blade coating accumulated distance to failure (ADF) in time. (a) ADF
increment during the top-n most erosive 5-min periods (top axis = equivalent number of hours) at
three example sites where 18-year ADF exceeded 1.5. (b) Fraction of total 18-year ADF contributed
by the top-n most erosive 5-min periods (top axis = equivalent number of hours) at three example
sites where 18-year ADF exceeded 1.5. Pacific Northwest (PNW) reports data from KAST in Astoria,
Oregon (18-year ADF of 2.8). Southern Great Plains (SGP) reports data from KOKC in Oklahoma
City, Oklahoma (18-year ADF of 1.6). Northeastern US (NE) reports data from KACK in Nantucket,
Massachusetts (18-year ADF of 2.9) (see site locations in Figure 2).
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The SGP site achieves an ADF of 0.33 (i.e., one-third of blade coating lifetime expended)
in just 360 5-min periods (or 30 h) (Figure 6a). For the PNW site, 1130 5-min periods are
required to achieve an ADF of 0.33. For the NE station, 790 5-min periods are required. Thus,
approximately three times as many 5-min periods are required in the PNW to achieve the
same accumulated level of material stress as the top 360 periods in the SGP. The dominance
of a few extremely erosive periods in determining overall total 18-year ADF across these
sites is even more marked (Figure 6b). Over one-third of the total 18-year ADF at the
SGP site is associated with ADF increments in just 1000 5-min periods or just over 80 h
(Figure 6b). This implies that there may be the greatest value in the use of erosion-safe
mode in the SGP, given that curtailment of electricity production will be required during
only a small number of hours each year. Conversely, for the PNW site, only just over 10%
of the 18-year ADF is accumulated in the top 1000 most erosive 5-min periods.

The likelihood of highly erosive periods (5-min ADF increments of > 1 × 10−4) in SGP
is maximized during April–June (Figure 7a) likely due to the prevalence of deep convection
during these months and the associated occurrence of high rainfall rates [73]. Thus, the
adoption of erosion-safe mode to extend blade lifetimes would likely be most frequent
during the spring and early summer, before the peak electricity demand, which occurs
during July and August in Oklahoma (data from the US Energy Information Administration
(EIA) https://www.eia.gov/, accessed on 2 November 2024). Highly erosive periods in
the PNW are confined to winter during the season of strongest synoptic-scale storms [82]
and highest electricity demand (data from EIA). Highly erosive periods are more evenly
distributed across all calendar months in the NE, but peak in late fall early winter, which is
displaced from the summer peak in electricity demand (data from EIA) (Figure 7a).
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(a) Seasonality of occurrence of 5-min ADF increments > 1 × 10−4 and (b) the cumulative density func-
tion (CDF) of the time interval between consecutive periods with 5-min ADF increments > 1 × 10−4

for the exemplar sites in the Pacific Northwest (PNW), Southern Great Plains (SGP), and Northeastern
US (NE) (see site locations in Figure 2b).

An additional matter of importance for the possible use of erosion-safe mode to
reduce LEE is the concentration of highly erosive periods in time. Over half of periods

https://www.eia.gov/
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with ADF increments > 1 × 10−4 at the SGP and NE occur in consecutive 5-min periods
(Figure 7b). Run length statistics suggest that 99% of time periods with continuous ADF
increments > 1 × 10−4 have durations in the SGP of less than one hour. This implies that
substantial increments in total coating ADF are contributed not only by relatively few 5-min
periods, but also by those periods being highly concentrated in time. This finding would
suggest a very high economic value in short-term meteorological forecasting of highly
erosive events to inform decisions regarding the implementation of erosion-safe mode and
hence derating of wind farms to extend blade lifetimes. It also suggests high economic
value in on site measurements of precipitation characteristics in addition to wind speeds in
site pre-construction assessments.

In accord with expectations, 18-year ADF computed using larger numbers of years
of meteorological observations increasingly converge on best estimate values derived
from all 18-years of data (Figure 8). Estimates of 18-year ADF, and hence blade coating
lifetime, are also a function of the precise calendar years included particularly at sites where
ADFt is very heavy tailed (Figure 8b). For data records spanning 5 years, the minimum
to maximum range of 18-year ADF estimates, derived using draws of different calendar
year combinations, is 0.44 (PNW), 0.58 (SGP), and 0.39 (NE) of the 18-year ADF estimates
derived using the entire data record (Figure 8). The blade coating lifetime for the PNW site
computed using the most erosive 5 calendar years is 6.3 years, while the coating lifetime
for the least erosive 5 years is 10 years. The best estimate of coating lifetime computed
using the entire data record is 7.6 years. Equivalent estimates for the SGP are 9.6 (most
erosive 5 years), 20 (least erosive 5 years), and 13 years (entire data record). Those for the
NE site are 6.3, 8.9, and 7.5 years, respectively. For data records comprising 15 calendar
years, the minimum to maximum range of 18-year ADF estimates is narrower with values
of 0.12 (PNW), 0.18 (SGP), and 0.10 (NE) of estimates derived using the entire data record.
This analysis affirms the value of using long-duration, high-frequency meteorological data
in computing blade coating lifetime estimates particularly for sites in the SGP where ADF
increments are concentrated in time.
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Figure 8. Boxplots of 18-year ADF estimates at (a) PNW, (b) SGP, and (c) NE ASOS stations derived
using meteorological records of different durations (1–17 years). Each sample draw comprises
different individual years selected without replacement. Also shown is the 18-year ADF derived
using the longest record available (point at far right of each panel).
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Eighteen-year ADF across the ASOS sites scales positively with both annual total
precipitation and mean wind speeds (Figure 9a,b). However, consistent with the non-linear
codependence of ADF on wind speed and rainfall rate (Figure 4) and the concentration
of ADF increments in time (Figures 5b, 6 and 7b), annual mean wind speed and total
precipitation are relatively poor predictors of the spatial variability of modelled 18-year
ADF at sites across the CONUS. For example, 18 ASOS stations have an average annual
total precipitation of 1000 ± 10 mm, and the 18-year ADF at those locations range from
0.26 to 1.33. Less than 29% of the station-to-station variance in 18-year ADF is explained by
annual total precipitation, and <22% is explained by the mean wind speeds (Figure 9a,b).
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Figure 9. Relationship between blade coating lifetime and the primary meteorological drivers.
Scatterplots of 18-year ADF versus (a) annual total precipitation and (b) mean 10-m wind speed
at the ASOS stations. Red line indicates a linear regression fit ( 18yrADF = c0 + c1 × x), where x is
either annual total precipitation (PPT) or mean wind speed, and the c0 and c1 are the regression
coefficients (all are significantly different from zero at p = 0.01). The variance explanation (R2) of each
of the regression fits, adjusted for sample size, is given in the legends. (c) Scatterplot of predictions of
18-year ADF derived using Equation (16) (MLR) versus the 18-year ADF at each site as derived using
the detailed meteorological data and the Springer model.

A multiple linear regression model of 18-year ADF as a function of mean annual total
precipitation (PPT) and a dependency on mean wind speed squared (WS2) to capture the
non-linear dependence of tip speed on wind speed (Figure 1a) with forced zero has an R2

(variance explanation) of 0.55. In addition, the coefficients are statistically different from
zero at p = 0.01 (i.e., 99% confidence level):

18yrADF = 0.0273 × WS2 + 5.2310−4 × PPT (16)

However, this best fit equation does not capture the dynamic range of 18-year ADF
across the CONUS (Figure 8c). This analysis demonstrates the importance of using a more
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mechanistic model such as Springer with high-frequency meteorological data in assessing
blade coating lifetimes.

3.4. Uncertainties in Blade Coating Lifetimes

This is the first geospatial description of wind turbine blade leading edge erosion
potential to be generated for the CONUS and as such represents a substantial advancement
in the state of knowledge and a new tool for the wind energy industry. The atlas is publicly
available and predicated on both a transparent and repeatable methodology and the use of
a high-fidelity federal dataset of meteorological observations with high time resolution.

The modeled estimates of blade coating 18-year ADF, and hence likelihood of onset
of blade erosion, are subject to some caveats. The resolution of the ASOS wind speed
and precipitation data necessarily impacts the ADF estimates provided here. Further, as
shown, the record length of the meteorological observations and the precise years sampled
are also important in dictating 18-year ADF and blade lifetimes (Figure 8). Particularly,
at sites with a high concentration of ADFt in specific events, there is a need to employ
long-duration time series. The absolute values of 18-year ADF are also a function of the
coefficients used in the Springer model [79], and it is important to acknowledge that the
coefficient values are selected to be conservative [46] and may, therefore, overestimate
blade coating lifetimes. The use of alternative HSD approximations would also change the
absolute values of 18-year ADF (Figure 4). However, it is likely that the spatial patterns and
gradients would be substantially unchanged if different model parameters were applied.
The modeling presented herein further assumes an impingement efficiency of 1 for all
hydrometeor diameters. The DNV RP uses an approximation of impingement efficiency
(β) as a function of hydrometeor diameter (D) that is derived from experiments in an icing
research tunnel simulating icing on aircraft wings [83]. It has the following form:

β = 1 − e−15D (17)

where D is in mm. This approximation yields impingement efficiencies > 0.99 for
D > 0.3 mm. Introduction of this correction to the number of blade impacts changes the
example 5-min increments in ADF shown in Figure 4a by <0.3%. Thus, corrections for
impingement efficiency for smaller hydrometeors that may be deflected from the blade has
a negligible impact on coating lifetimes.

The spatial variability in estimated blade coating lifetimes (described using ADF)
presented here are consistent with the limited past research available for the CONUS [46].
Assessment of the reliability of this geospatial analysis would greatly benefit from the
availability of data from wind farm owner-operators or wind turbine manufacturers re-
garding observed coating damage from their wind turbine fleets deployed across North
America. While ASOS is the premier meteorological network in the USA, blade lifetime
estimates derived using different models of material stress and/or meteorological datasets
(observational or derived using numerical weather prediction models) would be a useful
supplement to the information provided here.

An important caveat to the current research pertains to hail as a damage vector.
The material’s response to hail impacts is generally larger than those from rain (liquid)
droplets [36,84–88]. Thus, the 18-year ADF estimates in regions such as the Southern Great
Plains that have a high hail frequency (Figure 2a) [72,73] are likely to be negatively biased.
With the currently available ASOS data, it is not possible to correct coating lifetimes for the
potential effects of hail.
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4. Concluding Remarks
Wind turbine blade leading edge erosion negatively impacts wind farm economics

via decreased energy production (AEP) and increased operations and maintenance (O&M)
costs. O&M costs are also a primary source of uncertainty in projections for future LCoE
from wind energy [6]. While there are options to reduce LEE, the selection of an optimal
solution in each location requires detailed information regarding the causes, magnitude,
and spatiotemporal variability in damage accumulation. Hence, there is value in generating
and applying a robust method to yield spatiotemporally explicit estimates of blade coating
accumulated distance to failure (ADF) and hence erosion onset estimates.

Despite the caveats identified in Section 3.4, it is expected that the geospatial variability
in relative blade coating lifetimes presented herein are relatively robust. These 18-year
coating ADF estimates, computed using conversative estimates of material properties,
illustrate large spatial gradients with one-quarter of locations indicating coating failure
within <18 years, short of the expected wind turbine lifetime of ~30 years [89]. Many sites
with high ADF estimates are in coastal locations and/or in the central CONUS, which have
the highest density of wind turbine assets (cf. Figures 2a and 5).

While previous research has sought to derive estimates of wind turbine blade coating
lifetimes for Danish Seas [90], northern European Seas [91], and the Netherlands [92], to the
authors knowledge this is the first geospatial description of blade coating lifetimes for the
USA and the first to explicitly address temporal variability of blade coating ADF increments
(ADFt). The high-frequency damage increments derived from the modeling presented
here permit important insights into the relative concentration of ADF in time, the degree
to which material stress is focused on consecutive periods, and the seasonality of highly
erosive periods (Figures 6 and 7). This information is valuable in assessing where LEE
reduction might best be achieved via adoption of erosion-safe mode and where, conversely,
implementation of leading edge protective measures is economical. For regions with
current/near future high densities of wind turbine installations, the ADF of blade coatings
is most concentrated in time in the Southern Great Plains and is much less concentrated
in time in either the Pacific Northwest or along the US east coast (Figure 6). One-third of
the blade coating lifetime is expended at the SGP site during the 360 most erosive 5-min
periods (or 30 h) (Figure 6). Hence, erosion-safe mode enacted during just a few minutes
per year may substantially slow the progress toward coating failure and the initiation of
erosion. Thus, erosion-safe mode is likely to be the most effective as a LEE mitigation
measure in this region rather than incurring the cost and loss of AEP associated with the
use of LEP products. Conversely, over three times as many of the highest erosive periods
are required to expend 33% of the coating lifetime (i.e., achieve the ADF = 0.33 threshold) at
the representative site in the Pacific Northwest. Hence, cost-effective solutions to elongate
blade coating lifetimes in this region may involve the use of LEP products.
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