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Abstract: A peak shaving approach in selected industrial loads helps minimize power
usage during high demand hours, decreasing total energy expenses while improving grid
stability. A battery energy storage system (BESS) can reduce peak electricity demand
in distribution networks. Quasi-dynamic load flow analysis (QLFA) accurately assesses
the maximum loading conditions in distribution networks by considering factors such
as load profiles, system topology, and network constraints. Achieving maximum peak
shaving requires optimizing battery charging and discharging cycles based on real-time
energy generation and consumption patterns. Seamless integration of battery storage with
solar photovoltaic (PV) systems and industrial processes is essential for effective peak
shaving strategies. This paper proposes a model predictive control (MPC) scheme that
can effectively perform peak shaving of the total industrial load. Adopting an MPC-based
algorithm design framework enables the development of an effective control strategy for
complex systems. The proposed MPC methodology was implemented and tested on the
Indian Utility 29 Node Distribution Network (IU29NDN) using the DIgSILENT Power
Factory environment. Additionally, the analysis encompasses technical and economic
results derived from a simulated storage operation and, taking Puducherry State Electricity
Department tariff details, provides significant insights into the application of this method.

Keywords: quasi-dynamic load flow analysis; distributed energy resources; PV-BESS; state
of charge; peak shaving; model predictive control; economic analysis

1. Introduction
Distribution networks exhibit high energy losses and low voltage stability due to their

high current and low voltage levels. Integrating distributed energy resources (DERs) has
become a significant area in distribution power system research, offering advantages such
as reducing network power losses and improving voltage profiles and system reliability.
Improper integration of DERs may lead to technical, economic, and safety-related issues.
DERs, such as PV units, have stochastic output power constraints, posing challenges to
reliable power system operation [1].

BESSs offer a promising solution to enhance system flexibility and address the in-
termittency of DERs. These systems can be modeled using various methods, including
circuit models, which are particularly suitable for dynamic simulations. BESSs are valuable
for providing ancillary grid services, improving distribution network performance and
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participating in demand response programs by adjusting energy usage during peak times
to avoid expensive infrastructure upgrades [2].

Integrating BESSs with a PV system increases energy availability and boosts PV pene-
tration in distribution networks, though sizing and placement pose complex optimization
challenges. Efficient battery management systems (BMSs) are crucial for minimizing energy
losses and prolonging battery life through intelligent charging algorithms [3].

High peak electricity demand leads to increased costs for utilities and consumers.
BESSs, particularly those using electrochemical technology, are effective in peak shaving by
charging during off-peak times and discharging during peak demand. While large-scale
BESS deployment presents operational challenges, these systems are economically viable
when optimized for capacity and demand profiles, significantly enhancing energy efficiency
and reducing peak demand in both internal microgrids and external networks [4].

Summary of Previous Work

Using a mixed-integer linear programming model, the authors of [5] proposed a
planning-operation-based methodology to address the location and size selection problem
of BESSs and renewable distributed generators (DGs). In [6], a two-layer optimization
structure was created for optimal use of BESSs and renewable energy sources. The multi-
objective optimization problem for a 33-bus test distribution network was solved using
moth search optimization. An optimization process [7,8] was applied using the newly
introduced Coyote Optimization Algorithm to simulate four scenarios involving various
PV and BESS conditions. Time-varying voltage-dependent load models were proposed
to determine the penetration level of photovoltaic units in a distribution network [9].
Different load models resulted in varying levels of penetration after PV allocation. The
authors of [10] proposed a mixed-integer quadratic programming model with quadratic
constraints to determine the optimal number, sitting, and sizing of multiple types of DG
units for power loss minimization. In [11], mixed-integer optimization using a Genetic
Algorithm was presented to determine the optimal size and location of Battery-Sourced
Distributed Photovoltaic Generation (B-SDPVG) in distribution networks. In the referenced
paper, the Total Energy Loss Index was formulated as the primary objective function, while
bus voltage deviations and B-SDPVG penetration levels were simultaneously calculated.
To determine the optimal contract capacities and sizes of battery energy storage systems
(BESSs) for time-of-use rate customers, advanced multi-pass dynamic programming and
expert knowledge base rules were applied [12]. A methodology was developed for dis-
tribution engineers to evaluate the required amount of distributed energy storage (DES)
for different transmission and/or distribution capacities. The primary focus of this work
was on technical design and operations, with financial aspects and specific modular energy
storage technologies receiving only incidental attention and a solution for BESS dimen-
sioning and implementing a novel control algorithm with adjustable state-of-charge limits
and the application of emergency resistors. A stochastic-based BESS planning method
was developed to determine the optimal sizing and location of BESS, aiming to minimize
total investment and operational costs while considering energy savings achieved through
conservation voltage reduction [13].

A bi-level optimization model was created to identify the best placement and sizing
of a battery energy storage system within a distribution network. This model aims to
minimize the total net present value (NPV) of the network throughout the project’s life
cycle. In the referenced work, a newly modified particle swarm optimization technique
was used to determine the optimal configuration of the distribution network [14,15].

Control algorithms and pricing or incentive schemes for peak shaving, are often in
conjunction with other objectives, such as maximizing the self-consumption of solar PV.
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In [16], a simple dispatch strategy for residential peak shaving using building-based energy
storage was proposed, and the economics of various storage technologies operating under
a Con Edison demand tariff were investigated. In [17], the effects of storage and solar PV
curtailment on peak shaving were investigated, showing that curtailment can specifically
reduce peak PV export by half with less than a 7% annual reduction in self-consumption.
The authors also considered the real-time optimization of DNO-owned storage for peak
reduction, developing storage controllers that incorporate demand forecasts and consumer
clustering. The flexibility offered by the electrification of heating and cooling has been
considered, where electric power was stored as thermal energy. A DSM algorithm was
proposed to smooth the load curve and achieve non-disruptive peak shaving [18].

The literature on using BESSs for peak load shaving [19–22] primarily addresses two
key issues: the control method for BESS operation and the system architecture for real-
world implementation. BESS operations are typically optimized based on load forecasts,
and the effectiveness of peak load shaving is also evaluated. Personalized pricing strate-
gies encourage demand management and minimize system demand peaks by offering
consumers tailored non-discriminatory price tariffs. In [23,24], an examination of the eco-
nomic viability of electrochemical storage systems, such as batteries and flow batteries,
in response to time-of-use tariffs in Italy, which focused on public institutions, demon-
strated through case studies that the current costs of battery storage systems make them
economically feasible only when there is a substantial difference between peak and off-peak
electricity prices.

An effective cost model is crucial to evaluate economic feasibility and determine
optimal construction scale and material selection. A life cycle cost model for energy stor-
age systems was introduced in [25], comparing and analyzing various systems using the
annualized storage life cycle cost and the levelized cost. In [26], the researchers introduced
a groundbreaking life cycle cost model for recycling lithium-ion batteries from electric
vehicles, highlighting both financial aspects and sustainability. The study conducts a com-
parative analysis across three techno-economic scenarios, focusing on various stakeholders.
Building on the established life cycle cost model [27], a sizing method with sensitivity
analysis for battery–supercapacitor hybrid energy storage systems was proposed. This
method examines the impact of various factors on the overall system cost. Based on existing
cost models, numerous studies have been conducted on energy storage materials and scale
design [28]. In [29], a bi-level model for the optimal location and scale of grid-side bat-
tery energy storage systems was proposed, featuring coordinated planning and operation,
effectively reducing operational costs and losses.

The study optimized the management of a lithium-ion-based BESSs to maximize
electricity bill savings from peak shaving while minimizing battery degradation [30]. The
focus was on modeling battery degradation mechanisms and assessing the economic
benefits rather than the impact on the distribution grid. In [31], a large-scale profitability
analysis for peak shaving was conducted using over 5300 industrial customer load profiles
in Germany. In [32–34], the authors concluded that peak shaving technology offers the
highest profits compared to other battery use cases. They also stated that minimal payback
periods for peak shaving operations can be achieved in many instances.

In [35], the study of a BESS located within a distribution grid was optimized to
determine the optimal size, location, and control strategy. Based on a 20 kV distribution
grid in Kabul with 22 buses, the research concluded that an optimally placed BESS utilizing
a peak shaving strategy can significantly enhance system performance, reducing power
losses by up to 20.62%. Significant energy savings can be achieved through the scheduling
of industrial loads. Many researchers have suggested in their future recommendations that
integrating renewable sources with DSM is feasible for both commercial and industrial
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sectors. To implement demand-side management, large-scale building loads (industrial
loads) are scheduled to minimize energy consumption during peak hours and reduce
overall energy costs. Additionally, powering the system with renewable energy sources is
proposed to enhance environmental sustainability.

This paper exhibits the implementation of peak load shaving for Indian practical
distribution, including the following objectives:

(i) Integration of a PV system with a battery energy storage system for industrial loads
(ii) Proposing MPC-based optimized control to find the optimal PV-BESS
(iii) Adopting the reliable PV-BESS model for peak shaving application
(iv) Proposing the economic analysis for PV-BESS installation.

This paper is organized as follows: Sections 2 and 3 of the article describe the inves-
tigation of PV-BESS integration and peak shaving in loads. Section 4 gives details of the
peak shaving on the test system, BESS optimal control, strategy, and economic benefits of
BESSs. Then, the findings and conclusions of the study are discussed in Section 5.

2. PV-BESS Integration
Integrating PV systems and BESSs for industrial peak shaving involves several techni-

cal, operational, and regulatory constraints. Figure 1 depicts a typical block diagram of a
distribution network with PV-BESS integration.
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The primary technical restrictions are taken into account when developing the BESS
model. Using the BESS round-trip efficiency ηRTP(α) at year α assumes identical charging
and discharging efficiencies ηCh&ηDis, as in Equation (1):

ηch = ηDis =
√

ηRTP(α) (1)

The BESS power PBESS(t) is a combination of the discharging power PDis(t) and the
charging power PCh(t)

PBESS(t) = PCh(t)− PDis(t) (2)

However, the discharging action is indicated by the negative sign of PDis(t) in
Equation (2). The maximum of both charging and discharging power limitations, which are
equivalent to the converter AC power rating, Pnom, limit both the charging and discharging
powers, which are non-negative, presented in Equations (3) and (4).

0 ≤ Pch(t) ≤ Pnom (3)
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0 ≤ PDis(t) ≤ Pnom (4)

The optimization limitations are connected to the BESS’s state of charge (SOC). The
operating points of BESSs have a limited range of SOC to maintain battery discharge
characteristics. The initial and final values of SOC should be the same in order to accurately
reflect BESS capacity to optimize results expressed in Equation (5). It should be mentioned
that the optimization data results will be used to determine the one-year operating profit of
the defined systems.

SOCMin ≤ SOC(t) ≤ SOCMax (5)

where SOCMin and SOCMax indicate the minimum and maximum permitted states of
charge for a certain BESS system. In this study, the charging and discharging of the BESS
are performed with SOC ranging in Equation (6) from 20% to 80%. During charging mode,
SOC reaches 80%. However, in the battery’s discharging mode, SOC decreases to 20%, and
if there is little demand, electricity is used to charge the BESS until it reaches its maximum
capacity of 80%.

SOC(t + 1) = SOC(t) +
(
ηCh × PBESS(t)−

PBESS(t)
ηDis

)
× ∆t (6)

where ηCh&ηDis represents the efficiency rates for the charging and discharging of the BESS;
∆t represents the time step duration.

Battery capacity, an essential health metric, determines how well it will work during
its entire life cycle, including the gradual deterioration of the battery’s maximum capacity
Cδ(t). SOC (7) at time t is then compared to the battery’s complete capacity so that

SOC(t) = SOC(t − 1)− 1
Cδ(t)

t∫
t−1

I(τ)dτ. (7)

The SOC change is calculated by dividing the current I(τ) between t − 1 and t by the
battery’s entire capacity Cδ(t) at time t. Creq is the battery’s minimum capacity; if Cδ(t)
falls below Creq, the battery’s life is over. Tl in Equation(8) stands for battery life, which is
the amount of time needed for Cδ(t) to reach Creq such that

Tl = min
t

{
t
∣∣Cδ(t) < Creq

}
(8)

In other words, Tl is the point in time at which deterioration causes the maximum
battery capacity to fall below the necessary capacity. It is simple to estimate the cycle
life if we know Cδ(t). The BESS is influenced by the charging pattern, which is typically
illustrated through the battery cycle and depth of discharge (DOD). The DOD (t) describes
how deeply the battery is discharged such that

DOD(t) = 1 − SOC(t) (9)

As DOD declines, battery cycle life grows significantly. It is possible to accurately
estimate the overall energy production over the battery’s lifespan by analyzing DOD and
cycle time. Planning a PV system begins with sizing BESS capacity for maximum profit,
where the market structure plays an essential role in determining the appropriate BESS
size for PV integration. If the penetration of renewable energy generators is low and
the system marginal price (SMP) is constant, the financial benefits derived by BESSs will
not be adequate to offset the system’s total capital expenditures. However, as renewable
energy source penetration increases and distribution system operators recognize the value
of storage devices in reducing variability, a more significant gap between the maximum
and minimum SMP enhances the profitability of a PV system with a BESS compared to
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that without a BESS. DIgSILENT Power Factory v15.1.7 software simulated the energy and
power data to examine the optimal size of the BESS, as shown in Tables 1 and 2.

Table 1. PV size and location in IU29NDN.

Test System Node kVA kW

PV IU29NDN 27 25 20

Table 2. BESS size and location in IU29NDN.

Test System Node KAh

BESS IU29NDN 27 31.9

Peak demand shaving is still possible with storage capacities below about 0.90 MWh
per industrial unit, regardless of the installed solar PV capacity. However, when storage
capacity exceeds 0.90 MWh per unit, higher PV capacities can lead to even greater reduc-
tions in peak demand. This occurs because larger storage allows a significant reduction in
evening demand, sometimes shifting peak demand to early in the day, making the impact
of solar PV on reducing daytime demand more noticeable.

As PV penetration increases, energy production on the load side may exceed consumer
demand. To mitigate this, the BESS charges when PV generation exceeds demand and
discharges when demand rises. This advantage can be modeled using the following
Equations (10) and (11).

PExcess = PPV − PDemand (10)

PExcess is the excess power available for storage;
PPV is the power generated power by the PV system;
PDemand is the power demand at load side.

When PExcess > 0, the battery charges, and when PExcess > PPV, the battery discharges

ECharge(t) = ηCh × min(PExcess(t),
Emax − E(t)

∆t
) (11)

ECharge represents the amount of energy stored in the battery;
Emax represents the maximum storage capacity of the BESS;
E(t) represents the current energy stored in the battery at a time t

The higher the efficiency results, the lesser the energy loss during battery charging.
Reducing energy loss is crucial for optimizing the overall system performance and storing
more generated energy. Minimizing energy losses, reducing grid stress, and maximizing
financial returns by charging during low-cost periods and discharging during peak demand
collectively optimize a PV system’s performance and economic viability with an integrated
BESS [36].

Proposed Model Predictive Control

The MPC technique reduces peak PV energy and load demand periods while op-
timizing battery consumption. MPC guarantees maximum efficiency and flexibility by
re-optimizing power flow at each control interval by regularly updating its predictions
based on real-time system data. This MPC approach for the proposed system (shown in
Figure 2) improves PV sharing and load sharing capacity, which may both be significantly
increased without depending on outside signals from the grid operator.
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The optimum control problem is handled using initial battery SOC measurements,
load profiles, and anticipated PV data. Model predictive control controls the output
production of each model, including PV systems with storage batteries, by anticipating
future output values based on previous data and trends [37,38]. This work introduces a
distinctive optimum control problem formulation for achieving peak shaving targets while
maintaining efficient energy management and grid stability.

3. The Objective Functions of Peak Shaving in IU29NDN
The rising cost of electricity for utility companies and consumers is driven by high

peak demand. The most promising option for peak shaving involves connecting BESSs
to the distribution network. This approach can be implemented in residential structures,
industries, and grids to achieve peak shaving. Peak shaving is achieved by charging BESSs
during low-demand periods (off-peak) and discharging them during high-demand periods.

3.1. Cost Objective Function

The proposed model aims to maximize economic benefits, reduce high power imports
during peak hours and demand, lower electricity costs, and enhance the use of BESS.
Equations (12)–(15) present the objective functions of cost analysis and peak shaving
analysis with state-of-charge constraints.

Costtotal =
T

∑
t=1

(Costenergy(t) + CostBESS(t) + Costmaintenance(t)) (12)

Pload(t) = Pgrid(t) + PBESS(t) (13)

where Pload (t) is the power demand at time t;

PGrid (t) is the power supplied by the grid at time t;
PBESS(t) is the power supplied or absorbed by the BESS at time t.

3.2. Peak Shaving Objective Function

The following term helps in reducing the peak power drawn from the grid.
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Minimize
T

∑
t=1

Pgrid(t)
2 (14)

It is subjected to the constraint

SOCmin ≤ SOC(t) ≤ SOCmax (15)

The peak load shaving program consists of BESS-optimized control. The specifics
are provided in the following subsections. The single line practical distribution network
model shown in Figure 3 includes a fundamental distribution system. The model consists
of electric transformers. Transformer1 contains two buses: 110 kV on the high side and
11 kV on the low side. The transformer is four units in size, with a power rating of 20 MVA.
The secondary winding is star-connected, and neutral-grounded, whereas the primary
winding is delta-connected.
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PV facilities have been available at a few feeders. The distribution model and network
simulation software used the DIgSILENT Power Factory application to examine the load
profile. The DIgSILENT Power Factory simulation model of the IU29NDN is shown in
Appendix A.

4. Experimental Procedure for Peak Shaving on IU29NDN
Quasi-dynamic load flow analysis (QLFA) for three different seasons (summer, mon-

soon, and winter) was performed on the IU29NDN [39]. A solar PV-BESS was added to
node 27 of the IU29NDN, which is powered by a three-phase overhead wire from a 110 kV
substation. Different load profiles were chosen for the 27 nodes in the network. The data
were divided into two groups to highlight the factors influencing the incorporation of
PV-BESS systems.

(i) The performance settings for distinct nodes, such as voltage and active power of
different feeds.

(ii) The feeder’s performance and variations for the specified performance criteria, such
as peak load shaving with and without a BESS.
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Simulations of the distribution load flow have been conducted.

4.1. Load Data for IU29NDN

The 12-month measurement period for IU29NDN load demand is from 7 June 2022 to
31 May 2023. Every minute, a sample of the raw data is taken and averaged over a 15-min
period. Figures 4–6 illustrate a load profile for the week from 7 June 2022 to 13 June 2022.
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There is about 77 kW of peak demand on average. Figure 7 provides an example of a
load profile averaged over one week. Furthermore, the amount of power used increases
around 8:00 a.m. and decreases at 9:00 p.m.
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4.2. BESS-Optimized Control

The battery’s power rating PRated and usable energy EUsable are specified as 0.3 MW
and 0.25 kWh, respectively. These values are determined under minimal voltage limits
by the optimal control of the BESS at a SOC of 20%. Figure 8 illustrates the possibility of
minimizing the workings of the BESS according to battery ratings. The peak load region
is increased; ∆PL shows the lowered peak load power, while PO and EO, respectively,
represent the output power and output energy of the BESS.

Initially, the optimal control system seeks to decrease the peak load power by utilizing
all the battery available energy, as illustrated in Figure 8. Next, the power rating or
PRated is looked at and the BESS is restricted by its energy rating if PO ≤ PRated. The
complete available energy is utilized, and the drop in peak load power (∆PL) equals output
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power PO(∆PL = PO). However, if the BESS output power is beyond the rated capacity
(PO > PRated), the discharge power is limited to the rated value PO = PRated.
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Therefore, peak load shaving power (∆PL) is restricted to its power rating
∆PL = PO = PRated. With respect to these energy and power limitations, a BESS has the
capacity to produce a perfect discharge-power profile PDis (t).

4.3. PV Control

The control strategies and the proposed management ensure that the average power
from the BESS and the instantaneous power from the PV work as per the SOC of the battery.
The PV generation during charging mode should generate extra power to store up to SOC,
which comes to 80%. On the other hand, when the SOC drops to 20% in the discharge
mode of the battery, the PV should generate power. Additionally, when there is more PV
generation or low demand such that PO > 0, the BESS can charge until it reaches the limit
(80%). When there is less power generation from PV, the grid provides the power required
by the BESS, even in high demand (PO < 0), assuring assistance progression up to the lower
limit of SOC. Therefore, the load power (PL) control is being assured by the related PV-BESS
as per the flowchart given in Figure 9.
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The optimal discharge profile, PDis(t), corresponds to the portion of the load profile
that is supplied by the BESS between the start of discharge at t = tdis and the end of
discharge at t = tStop. The profile of the BESS is shown in Figure 10.
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4.4. Peak Shaving Strategy

Figure 11 gathers additional peak load shaving studies. Table 3 explains the peak
demand time for three seasons. Table 4 presents the outcome of the peak load shaving
operation. Additionally, the table illustrates the maximum demand simulations.
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Table 3. Peak demand time for various seasons.

Season
Moment of Peak Demand

Starting Time Ending Time

Summer
11:15 a.m. 01:15 p.m.
05:30 p.m. 07:00 p.m.

Monsoon
11:15 a.m. 01:00 p.m.
05:15 p.m. 07:30 p.m.

Winter
11:00 a.m. 01:45 p.m.
05:15 p.m. 07:00 p.m.

Table 4. Peak demand and expected demand reduction.

Interval Peak Demand (MW) Expected Peak Reduction
(MW)

Battery Scheduling Power
(MWh)

Summer (March–June) 0.85 0.21 0.11
Monsoon (July–October) 0.927 0.11 0.224

Winter (November–February) 0.91 0.035 0.1

The monsoon season (July to October) presents a challenging high-peak scenario for
peak shaving applications, as continuous peaks occur over an extended period. In contrast,
the period from March to June offers an ideal scenario where peak shaving can effectively
reduce sharp peak loads, resulting in a significant 20% reduction in peak demand. Table 4
shows peak demand and expected demand reduction, with SOC for all trials from summer
to winter exceeding the 20% minimum demand.

The changing effect of the delivered power is evident from the plots of Figure 12a–c
presenting the battery power and SOC profiles for the peak load shaving during the day.
The battery is completely charged during off-peak hours and is ready for discharge during
peak hours. About 35.9 MW, 23.32 MW, and 22.8 MW peak demand is deducted from the
original peak load during the summer, monsoon, and winter seasons. Discharging time
increases throughout the summer and decreases during the monsoon. This indicates that
the power rating of the battery PRated limits the BESS. Moreover, an additional peak load
reduction was calculated from the actual load profile, yielding two important findings.
Economic analysis has demonstrated the financial feasibility of adopting BESSs for peak
shaving in industrial loads (discussed in Section 4.5). Additionally, the performance of
the peak shaving scheme is measured by the peak load error margin, which is alternately
indicated by the results.

4.5. Economic Benefit of BESSs

A financial assessment is performed based on the scenarios detailed in Tables 5 and 6.
The internal rate of return (IRR) is evaluated from an investment perspective, with a
4.3% IRR established as the break-even point benchmark. The primary cost driver is the
heterogeneous battery price, which dominates the overall investment expense.

Table 5. Potential savings based on peak reduction.

Interval Expected Savings from Peak Saving
(MW) Expected Total Savings (INR)

Summer (March–June) 41 INR 1,230,000
Monsoon (July–October) 12 INR 360,000

Winter (November–February) 28 INR 840,000
Total 81 INR 2,430,000
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Table 6. Investments of BESSs for peak load shaving application.

Item Expected Cost

1. Inverter 194,150 INR/50 kw
2. Li Battery 1,008,033 INR/100 kwh

3. Maintenance 9240 INR/Kw

The battery price decreased from 12,000 INR/kWh in 2023 to 9478 INR/kWh in 2025,
with an IRR of around 9%, beyond the break-even mark. The research study predicts
battery prices will drop below 6710 INR/kWh by 2030, resulting in an IRR of more than



Energies 2025, 18, 428 16 of 20

15%. The Puducherry State Electricity Board imposes a demand charge of 6.12 INR/kW for
connections above 11 kV, along with a peak load penalty of 50 INR/kW. In the calculation
of IRR, two scenarios are the base, one Demand charge 35 INR/kW, and the second peak
load deduction is 41 MW in the summer.

5. Conclusions
This study examined the use of time-series and quasi-dynamic LFA in the proposed

practical Puducherry smart grid IU29NDN for industrial loads with seasonal variations.
The proposed quasi-dynamic LFA enables effective integration of PV-BESS in the distribu-
tion network. Simulations are performed to compute the power flow at the 27 nodes of
the practical IU29NDN test system with a 24-h time horizon, having a 15-min step size to
attain higher accuracy.

In order to lower peak demands, PV-BESS systems were installed at the Puducherry
smart grid system in which peak shaving and energy losses over three seasons are two
challenging technical goals that were achieved by the integrated functioning of PV-BESS
and demonstrated by the simulation results at node 27.

The results of the proposed work with integrated PV-BESS reduce peak power con-
sumption and energy losses. This study demonstrates the effectiveness of optimizing
BESSs for peak shaving and financial viability. By adopting an MPC-based algorithm
design framework with infinite horizon planning and one-step optimization, the control
strategy can efficiently satisfy various constraints inherent in the controlled plants, thereby
achieving optimal peak shaving performance and reducing energy costs. Implementing
proper battery scheduling and Model predictive control technology, the system reduces
annual peak demand by 80 MW. This optimization also effectively reduces peak loads,
mitigating energy and power constraints despite seasonal variations.

The research reveals key findings, including BESS ability to customize discharge power
profiles to meet energy demands. Additionally, peak load shaving power is optimized
within rated capacity limits, and battery power and SOC profiles accurately calculate
peak demand deductions. This results in an impressive 86.03 MW annual reduction.
Moreover, energy consumption is also optimized in this case, which leads to improvement
in potential saving. This research presented the calculation of load demand for three
seasons in IU29NDN and an average peak demand for one week. SOC helps control the
BESS to minimize working and limit voltage. The use of BESSs for managing peak load in
certain regions is explained. The optimal discharge profile gives the limitations of discharge
capacity for the three seasons of peak demand reduction compared and tabulated. In the
summer, reducing the peak demand profile is more effective.

A comprehensive financial assessment is also conducted, calculating the internal rate
of return to evaluate the investment’s viability and potential returns. Integrating BESS
and MPC technology optimizes peak shaving, reduces energy constraints, and ensures
financial viability, making it an attractive solution for renewable energy applications. The
evolution of investment and rate of returns by installing PV-BESS is discussed and tabulated.
The economic benefits of implementing PV-BESS in the IU29NDN system are discussed,
focusing on investment recovery, maintenance cost savings, and peak load electricity
cost reduction.
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Abbreviations
Acronyms
BESS Battery energy storage system
PV Photovoltaic system
MPC Model predictive control
IU29NDN Indian Utility 29 Node Distribution Network
DER Distributed energy resource
BMS Battery management system
B-SDPVG Battery-Sourced Distributed Photovoltaic Generation
NPV Net present value
DNO Distribution network operator
DSM Demand-side management
SOC State of charge
DOD Depth of discharge
SMP System marginal price
QLFA Quasi-dynamic load flow analysis
IRR Internal rate of return
INR Indian rupee
Parameters
ηRTP(α) Round-trip efficiency
ηch Charging efficiency
ηDis Discharging efficiency
Pnom Power rating of the converter
SOCMin Minimum permitted states of charge
SOCMax Maximum permitted states of charge
Creq Battery minimum or required capacity
Tl Deterioration time
PExcess The excess power available for storage
PPV The power generated power by PV system
PDemand The power demand at load side
ECharge The amount of energy stored in a battery
Emax The maximum storage capacity of a BESS
Indices
t index of time
h index of hour
Variables
PBESS(t) The power supplied or absorbed by the BESS at time t
PCh(t) Charging power at a time t
PDis(t) Discharging power at a time t
SOC(t) State of charge at a time t
∆t Time step duration at a time t
Cδ(t) Battery maximum capacity at a time t
PExcess(t) The excess power available for storage at a time t
E(t) The current energy stored in the battery at a time t
Pload (t) The power demand at time t
PGrid(t) The power supplied by the grid at time t
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