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Abstract: In this study, a numerical method for the formation and dissipation of fog and
frost is established using the Eulerian multiphase flow liquid film model. In this approach,
the formation and dissipation of fogging and frosting layers is directly determined by the
saturation of the water vapor surface, and it does not depend on any empirical coefficients.
Additionally, Buck’s formula is used to determine the saturation vapor partial pressure,
which is applicable for a relatively wide temperature range (−50 ◦C to 10 ◦C). This numeri-
cal method was validated by the existing experimental data about fogging and frosting,
and afterwards the fogging and frosting processes on the optical observation window in
the aircraft are further analyzed for three typical working conditions, namely the ground,
the fixed-altitude, and the high-altitude descent. The calculation results show that, under
the ground working condition, the maximum thickness of the fog layer on the outer surface
of the optical window can completely reach the millimeter level within one hour, and
the average thickness of the frost layer can reach the sub-millimeter level, which is one
order of magnitude smaller compared to under the ground working condition. Under the
high-altitude descent working condition, by setting the fixed wall temperature boundary
condition on the outer surface of the glass, it is found that in extreme cases, the maximum
thickness of the frost layer on the inner wall of the glass can reach the sub-millimeter level
within one hour. The research conclusions provide effective basic data support for the
subsequent design of anti-fogging and defrosting devices under flight conditions.

Keywords: optical window glass; fogging and frosting; high altitude; temperature and
humidity; liquid film model

1. Introduction
The problems of fogging and frosting, as well as defogging and defrosting, are com-

monly found in various transportation systems. They exist not only on the windshields of
the cockpits in ground transportation systems like vehicles, but also in crucial positions,
such as in the optical windows of the pilot/crew cabins and various avionic equipment cab-
ins in all kinds of aircraft. Once fogging and frosting occur on the observation windows, the
transmittance of optical signals will be affected, which will directly lead to the “blindness”
of the equipment. Unlike ground transportation vehicles, the equipment compartments of
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aircraft have no operators to observe and manually activate the defrosting and defogging
equipment. Therefore, it is necessary to predict when fogging and frosting will occur based
on the flight operating conditions.

The frosting and fogging processes can be predicted and analyzed by using numerical
methods. Under ground conditions, Kim et al. [1] adopted the Computational Fluid
Dynamics (CFD) method to predict the frosting situation on the surface of the cold plate
and studied the influence of factors affecting the growth of the frost layer, such as the inlet
flow velocity, relative humidity, and cold plate temperature. You et al. [2] established a
numerical model of the test chamber to predict the heat and moisture distribution caused
by air, and investigated the effects of outdoor air temperature, humidity, and wind speed
on the fogging state. Yang et al. [3] conducted a simulation of the condensation process
inside the carriage based on the Energy and Water Film (EWF) model combined with
user-defined functions and found that the temperature, humidity, and mass flow rate of the
intake air all have a direct impact on the thickness of the fog layer. Ene et al. [4] established
a three-dimensional model of the vehicle cabin at actual scale. They evaluated different air
supply temperature of the air conditioner and found that, compared with air at a speed of
6 m/s, introducing air at a speed of 12.5 m/s could reduce the mass flow rate of water-vapor
condensation by up to 0.23 g/s. To facilitate the design of automotive air-conditioning
systems, Leriche et al. [5] utilized the Star-CCM+ software to construct a fogging model
capable of calculating the number of condensed water droplets on the windshield. This
model can accurately predict the time and location of fog formation, as well as calculate the
size of droplets formed through condensation and the heat and mass transfer processes
occurring during the condensation process. Wang et al. [6] established a mathematical
model to predict the frosting situation on the aircraft under ground conditions and studied
the influence of the aircraft surface temperature, environmental temperature, and relative
humidity on the frosting rate of the aircraft.

Under high-altitude conditions, fogging and frosting often occur. The aircraft’s thermal
insulation materials create a temperature difference between the cold air between the
aircraft skin and the insulation layer and the hot air in the warm cabin. This causes the
hot air to leak through the thermal insulation materials to the cold surface of the aircraft
skin, and, thus, causes the water vapor to condense when it encounters the cold [7]. When
the aircraft passes through a cloud, icing occurs on its surface as the supercooled water
droplets strike it [8].

There are mainly two methods for defogging and defrosting glass: hot-air heat-
ing [9,10] and electric heating [11,12]. At present, most of the research on defrosting
and defogging issues focuses on the windshields of automobiles. Kim [13] proposed that
vortex generators could be applied to improve the defroster’s performance without chang-
ing its structure. Kharat [14] established a passenger compartment model using glass,
which comprehensively considered the effects of the latent heat and humidity. The study
investigated the impacts of different environmental conditions on the in-cabin climate to
predict the time required for the fogging and defogging of the windshield to occur. Kitada
et al. [15], in order to accurately predict the transient defogging mode of the vehicle’s
window glass, established a new droplet evaporation/condensation model through an
observation of the atomized glass surface and verified its accuracy on a simplified vehicle
compartment model and actual vehicles. Tan et al. [16] simulated the transient melting of
the frost layer on the front windshield by using the STAR-CCM+ liquid film model and
put forward an optimization scheme to increase the surface speed of the front and side
windshields. Sandhu et al. [17] used CFD technology to model the defogging system and
to assist in the initial design of the defogging and defrosting system, in order to develop a
system that can provide a good air flow velocity distribution over the entire windshield.
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Currently, CFD simulations of the defrosting process generally model the solid-phase
melting region directly, to predict the entire defrosting process [18–20].

Presently, investigations into the phenomena of fogging, frosting, defogging, and
defrosting under high-altitude conditions remain conspicuously scarce. It is necessary to
establish an analytical method that can reflect the real thermodynamic processes for fog and
frost formation under high-altitude flight conditions. In this study, considering Eulerian
multiphase flow liquid film model, the numerical method for the formation and dissipation
of fog and frost is established. This numerical method can reflect the fog and frost formation
under a wide range of temperatures and humidities, from the ground to the high-altitude
environment. In this approach, the increase and decrease in fog and frost layer thickness is
directly determined by the saturation of the water vapor surface, and it does not depend
on any empirical coefficients. Additionally, the application of saturation vapor pressure
formulas for a relatively wide temperature range (−50 ◦C to 10 ◦C) is discussed. Finally,
the simulation analysis is carried out for the typical fogging/frosting working conditions
of optical windows, and the effect of the key environmental parameters on the fogging and
frosting thicknesses and formation time are elucidated.

2. Numerical Methods and Verification
2.1. Numerical Methods for Fogging and Frosting

In this paper, a coupled heat and mass transfer analysis of the air flow field, liquid film,
and solid wall is carried out for the processes of fogging/defogging and frosting/defrosting,
as shown in Figure 1. Among them, the air flow field part has a low-speed incompressible
internal flow, accompanied by the mass transfer process of water vapor and air, as well
as the heat transfer process. It is necessary to solve the continuity equation, momentum
equation, energy equation, and component transfer equation. Inside of the liquid film, the
mass, momentum, energy, and component transfer processes need to be considered as well.
At the interface between the flow field and the liquid film, the phase-change heat and mass
transfer processes such as water evaporation, condensation, and solidification need to be
considered. For the specific control equations of the calculation model, please refer to the
Supplementary Materials.
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Figure 1. Schematic diagram of the coupled fogging and frosting calculation model of the liquid film,
flow field and solid field.

In the numerical simulation in this paper, the commercial CFD software STAR-CCM+
was employed to conduct multi-physical–field coupling calculations for the flow field,
liquid film, phase-change process, etc. Leveraging its robust numerical solution capabilities,
a high-precision simulation of the interaction process between the gas flow field and the
liquid film is carried out. Additionally, in the subsequent analysis, for the aerodynamic
heating and cooling effects of the high-subsonic flow field on the outer side of the glass
optical window, an equivalent treatment is directly implemented by using the convective
heat transfer coefficient.
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2.2. Comparison of Water-Vapor-Saturated Pressure Formulas

The water-saturated vapor pressure is the critical value for the conversion of vapor-
liquid phase change, which directly affects the condensation rate, and its value is also
directly related to the calculation accuracy of the numerical model in Section 2.1. In previous
simulation studies on frosting and fogging, the adopted formula for water-saturated vapor
pressure only needed to be applicable for the ground temperature conditions (−20 ◦C to
10 ◦C). This paper studies the low-temperature conditions (−20 ◦C to −50 ◦C) under the
high-altitude conditions, and it is necessary to reselect the saturated pressure formula to
determine the saturated pressure value under low-temperature conditions. Three saturated
partial pressure formulas, namely the Buck formula, the Marti Mauersberger formula and
the Antoine equation, are selected and compared with the theoretical value of the saturated
pressure at the low temperature [21].

(1) Buck formula
when T < 0 ◦C

Psat = 6.1115 × e
(23.036− T

333.7 )×T
279.82+T (1)

and when T > 0 ◦C

Psat = 6.1121 × e
(18.678− T

234.5 )×T
257.14+T (2)

(2) Marti Mauersberger formula
when T < 0 ◦C

lgPsat =
−2663.5

T
+ 12.537 (3)

(3) Antoine formula

lgPsat = 8.07131 − 1730.63
T + 233.426

(4)

where T (◦C) is the temperature, and Psat (mmHg) is the vapor-saturated pressure.
As shown in Figure 2, when the temperature is below −20 ◦C, the values calculated by

the Buck and Marti Mauersberger formulas are basically consistent well with the reference
theoretical values. When the temperature is above −20 ◦C, the values calculated by the
Buck and Antoine formulas are basically consistent with the reference saturated pressure. In
summary, in the entire temperature range from −50 ◦C to 10 ◦C, the values calculated by the
Buck formula are very close to the theoretical reference values. Therefore, the Buck formula
was selected to determine the saturated pressure of water vapor in the subsequent analysis.

Energies 2025, 18, x FOR PEER REVIEW 5 of 17 
 

 

 

Figure 2. Comparison of the vapor saturated pressure values obtained from the formula and the 
theoretical approach. 

2.3. Experimental Verification of Fogging 

(1) Fogging experiment model 
The experimental data concerning the mass of the fogging layer from Reference [22] 

were selected to validate the numerical methods in the Supplementary Materials. The ex-
periments were conducted in a wind tunnel. The ambient temperature was 293.15 K, the 
humidity was 49.10%, the temperature of the cold surface was 277.45 K, the atmospheric 
pressure was 91.5 kPa, and the wind speed in the wind tunnel was 1 m/s. The experimental 
object was a square aluminum flat plate with a size of 5 × 5 cm2 and a thickness of 3 mm. 
The experiment lasted for 7.5 h in total, and the mass of the condensed water obtained 
was 1.8 g. The details of the test apparatus to measure the mass of the fogging layer is 
shown in Reference [22]. 

(2) Validation of the numerical method 
The computational domain is a cube with a volume of 1 × 1 × 1 m3. An aluminum 

plate with the same size of 5 × 5 cm2 and a thickness of 3 mm is placed at a height of 30 cm 
from the ground. Its temperature is kept constant at 277.45 K. The ambient temperature is 
293.15 K, the humidity is maintained at 49.10%, and the wind speed is 1 m/s. Figure 3 
shows the structure and grid schematic diagram of the numerical calculation model. Pris-
matic layer grids are used to refine the grids at the interface near the solid walls. The 
trimmed mesh is used to divide the fluid and the solid domain, respectively. The basic 
size is 10 mm in the fluid region. The prismatic layer grid is used to refine the boundary 
region close to the aluminum plate. The total thickness of the boundary layer is 2.4 mm, 
and this boundary layer region includes four layers of equally spaced grids, with the 
thickness of each layer being 0.6 mm. The total number of grids in the fluid region is about 
1.08 million. 

 

Figure 3. Schematic diagram of the structure and grid of the numerical calculation model. 

Figure 4 compares the results between the experiment and the numerical calculation 
simulation. To reduce the calculation resource consumption, the numerical calculation 

-20-18-16-14-12-10 -8 -6 -4 -2 0 2 4 6 8 10
0

200

400

600

800

1000

1200

1400

W
at

er
 v

ap
or

 sa
tu

ra
te

d 
 p

re
w

su
re

(P
a)

Temperature(℃)

 Vapor Saturation Perssure Table 
 Amtoine 
 Buck 
 Marti

Vapor saturated perssure theoretical value
Amtoine
Buck
Marti

-50 -40 -30 -20
0

20

40

60

80

100
 Vapor Saturation Perssure Table 
 Amtoine 
 Buck 
 Marti

Temperature(℃)

W
at

er
 v

ap
or

 sa
tu

ra
te

d 
 p

re
w

su
re

(P
a)

Vapor saturated perssure theoretical value
Amtoine
Buck
Marti

Figure 2. Comparison of the vapor saturated pressure values obtained from the formula and the
theoretical approach.
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2.3. Experimental Verification of Fogging

(1) Fogging experiment model
The experimental data concerning the mass of the fogging layer from Reference [22]

were selected to validate the numerical methods in the Supplementary Materials. The
experiments were conducted in a wind tunnel. The ambient temperature was 293.15 K, the
humidity was 49.10%, the temperature of the cold surface was 277.45 K, the atmospheric
pressure was 91.5 kPa, and the wind speed in the wind tunnel was 1 m/s. The experimental
object was a square aluminum flat plate with a size of 5 × 5 cm2 and a thickness of 3 mm.
The experiment lasted for 7.5 h in total, and the mass of the condensed water obtained was
1.8 g. The details of the test apparatus to measure the mass of the fogging layer is shown in
Reference [22].

(2) Validation of the numerical method
The computational domain is a cube with a volume of 1 × 1 × 1 m3. An aluminum

plate with the same size of 5 × 5 cm2 and a thickness of 3 mm is placed at a height of 30 cm
from the ground. Its temperature is kept constant at 277.45 K. The ambient temperature is
293.15 K, the humidity is maintained at 49.10%, and the wind speed is 1 m/s. Figure 3 shows
the structure and grid schematic diagram of the numerical calculation model. Prismatic
layer grids are used to refine the grids at the interface near the solid walls. The trimmed
mesh is used to divide the fluid and the solid domain, respectively. The basic size is 10 mm
in the fluid region. The prismatic layer grid is used to refine the boundary region close to
the aluminum plate. The total thickness of the boundary layer is 2.4 mm, and this boundary
layer region includes four layers of equally spaced grids, with the thickness of each layer
being 0.6 mm. The total number of grids in the fluid region is about 1.08 million.
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Figure 3. Schematic diagram of the structure and grid of the numerical calculation model.

Figure 4 compares the results between the experiment and the numerical calculation
simulation. To reduce the calculation resource consumption, the numerical calculation
simulation was carried out for 0.5 h, and a total of 0.12 g of condensed water was obtained.
During the experiment, at 0.5 h, the mass of the condensed water obtained was 0.1 g. The
slopes of the two lines in the figure represent the condensation rates, and it can be seen that
the slopes of the two lines are approximately the same. Through linear interpolation, when
the simulation calculation was carried out for 7.5 h, the calculated condensation mass after
7.5 h was (2 × 0.12 g)/h × 7.5 h = 1.8 g, which is consistent with the experimental value.
Therefore, it can be considered that the numerical calculation in this paper can reflect the
macroscopic process laws of condensation fogging.
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2.4. Experimental Verification of Frosting

(1) Frosting experiment model

The experiment was carried out in a wind tunnel system which consists of a low-
temperature environmental chamber, a fan, a humidifier, a flow equalizer and a plexiglass
air duct [23]. In the wind tunnel, the ambient temperature was 284.15 K, the humidity
was 60%, the temperature of the cold surface was 264.65 K, the atmospheric pressure was
97 kPa, and the wind speed was 0.6 m/s. The size of the aluminum flat plate was 4 × 4 cm2

and its thickness was 1 mm. The mass of the frost layer was recorded every ten minutes
during the experiment. The experiment lasted for 1.5 h, and the mass of the frost layer
reached 1.4 g. The details of the test apparatus used to measure the mass of the frosting
layer is shown in Reference [23].

(2) Validation of the numerical method

The computational domain is shown in Figure 2. The left computational domain is a
cube with a volume of 1 × 1 × 1 m3. An aluminum plate with a size of 4 × 4 cm2 and a
thickness of 1 mm is placed at a height of 30 cm from the ground. Its temperature is kept
constant at 264.65 K. The ambient temperature is 284.15 K, the humidity is maintained at
60%, and the wind speed is 0.6 m/s. On the right side is a schematic diagram of the grid
of the computational domain for the aluminum plate and its surrounding area. Prismatic
layer grids are used to refine the grids at the interface, and their total number is 1.53 million.
For the grid of the actual inner cabin computational domain, the cut body grid is also used
to divide the fluid and the solid (glass) domains, respectively. The basic size is 4 mm. The
prismatic layer grid is used to refine the boundary of the fluid-solid coupling area. The grid
size is controlled within 0.25 mm, and the total number of grids increases to 6.15 million.

Figure 5 is a comparison chart of the results between the experiment and the numerical
calculation simulation. Six data points within one hour of the experiment are extracted
and compared with the simulation data. The simulation results match the experimental
results relatively well within the first 40 min. However, the difference between the experi-
mental results and the simulation results gradually increases in the subsequent time. The
calculation error is within 20% during the period from 40 min to 60 min.
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Figure 5. Variation histories of the frost layer mass in numerical simulation and the experiment [23].

Since the experiment reflects real frosting conditions and may be affected by the
humidifier, flow equalizer, and other components in the wind tunnel system, the frosting
rate fluctuates up and down. However, in the simulation, the relative humidity in the fluid
region and the temperature of the aluminum plate are kept constant, so the frosting rate is
maintained at a constant level with an unchanged slope. Meanwhile, the density difference
between the bottom and the top of the actual frost layer is relatively obvious [23], and it is
not taken into account in the numerical model of this paper. The numerical model in this
paper does not account for the factor of the frost layer density change, which may also be
the reason why the slope of the mass change in the simulation results does not increase.

Anyway, the difference between the calculated results and the actual experimental
results in Figure 5 can also reflect the level of errors existing in the numerical simulation
on the one hour time order under the ground working conditions. Since the subsequent
discussion in this paper mainly focuses on the frosting process, which is also on the one
hour time order, the error level in Figure 5 can still be used as a reference.

Therefore, it is considered that the results of the numerical calculation simulation for
the frosting match the experimental results quite well, and the numerical frosting model is
relatively reliable.

3. Simulation Analysis of Frosting and Fogging on the Optical Window
3.1. Optical Window Cabin Section Model

As shown in Figure 6, the optical window is in the form of a circular optical window,
with the thickness of the outer skin being 5 mm. The cut-cell grids are used to divide the
fluid domain and the solid (glass), respectively, and the prismatic layer grids are applied to
refine the boundary of the fluid–solid coupling area.

The space inside the cabin is 1 m × 1 m × 1 m. The size of the internal observation win-
dow box (electronic equipment) is 500 mm × 420 mm × 450 mm (length × width × height),
and it is about 50 mm away from the observation window. The size of the hot air device is
445 mm × 140 mm × 150 mm (length × width × height).

The grid of the actual computational domain of the inner cabin also uses cut-cell grids
to divide the fluid domain and the solid (glass), respectively, with a basic size of 4 mm.
And prismatic layer grids are adopted to refine the boundary of the fluid–solid coupling
area, as shown in Figure 7.
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3.2. Boundary Condition

When calculating the ground working condition, as shown in Figure 5, the boundary
condition of the left sidewall is set as the velocity inlet with a velocity of 1 m/s. The right
sidewall is set as the pressure outlet condition. The two symmetrical sidewalls are set as
symmetrical planes. Both the upper and lower surfaces are set as wall conditions.

When calculating the high-altitude working condition, a hot-air device and an internal
observation window box (electronic device) are added below the optical window glass in
the computational domain of the actual inner cabin. The electronic device is self-heating,
with a steady-state power of approximately 150 W, and the heat flux density of each surface
is evenly distributed according to the area.
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3.3. Grid Independence Verification

The frosting situation under high-altitude conditions is selected as the benchmark
case. Grid independence verification is carried out for the grid size of the refined area and
the size of the first layer of grid near the wall surface, respectively. Table 1 presents the size
of the Mesh0, Mesh1 and Mesh2 at different locations in the computational domain.

Table 1. Grid parameters for Mesh0, Mesh1 and Mesh2.

Mesh Mesh0 Mesh1 Mesh2

Encryption size of the refined area (mm) 1 2 4
The size of the first layer of grid near the wall surface (mm) 0.1 0.1 0.1

Total number of grids (×104) 1738 720 589

Figure 8 shows the graph of the average frost layer thickness changing over time
under different refinement sizes. It can be seen from Figure 7 that the mesh sizes of 4 mm
and 2 mm in the encrypted area have little impact on the results. When the mesh size
in the encrypted area is reduced to 1 mm, there is a slight difference compared to the
results of mesh sizes of 4 mm and 2 mm, but its error remains below 2%, and there is no
need to further improve the mesh quality. Since the number of meshes is too large when
the mesh size in the encrypted area is 1 mm, the simulation calculation in this paper is
carried out based on the mesh with an encrypted size of 4 mm. It should be noted that the
corresponding numerical model presented in the Supplementary Materials is based on the
macroscopic thermodynamics physical process. Therefore, the macroscopic phenomena
for the fogging and frosting layer accumulation are mainly discussed in this paper. The
thickness of both the fog and frost layer in Figure 7 is very thin (sub-micrometer level), and
it will eventually reach the macroscopic level of sub-millimeter. In other words, the results,
at this moment, reflect a relatively short period within the entire macroscopic process,
and this paper will not be focusing on the growth mechanism of the frost layer at the
microscopic level.
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Table 2 shows the size of the Mesh2, Mesh3 and Mesh4 at different locations in the
computational domain. Conduct grid-independence verification on the size of the first
layer of grid near the wall surface. Set the basic grid size in the refined area to 4 mm
and set the size of the first layer of grid near the wall surface to 0.1 mm, 0.2 mm and
0.05 mm, respectively.
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Table 2. Grid parameters for Mesh2, Mesh 3 and Mesh4.

Mesh Mesh2 Mesh3 Mesh4

Encryption size of the refined area (mm) 4 4 4
The size of the first layer of grid near the wall surface (mm) 0.1 0.05 0.2

Total number of grids (×104) 589 589 589

Figure 9 shows the graph of the average frost layer thickness changing over time under
different sizes of the first layer of grid near the wall surface. Considering the calculation
accuracy and cost, the size of the first layer of grid near the wall surface is selected as
0.1 mm for calculation.
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3.4. Analysis of the Ground Working Condition

Since there is limited research on frosting under high-altitude conditions in the existing
literature, simulation calculations are first carried out for fogging and frosting situations
under high temperature and high pressure in the ground condition. This serves as a
foundation for the subsequent study of frosting under low temperatures and low pressures
at high altitudes.

For the fogging working condition under the ground condition, the external environ-
mental temperature is set at 288.15 K, the relative humidity is 75%, the air pressure value is
one standard atmosphere, and the initial temperature of the outer surface of the optical
window glass is 288.15 K. The air velocity in the computational domain is 1 m/s. Since it is
under the ground working condition, the heating power of the electronic equipment is not
taken into account in the calculation.

Figure 10 shows the variation law of the average fog layer thickness on the outer
surface of the optical window over time. In the first forty minutes, the condensation and
fogging rate is stable. After forty minutes, the fogging rate gradually decreases. This is
because the external environmental temperature is higher than that of the optical window
glass. After a long period of heat exchange, the temperature of the outer surface of the glass
keeps rising, and the corresponding saturated vapor pressure of the water vapor increases
with the rise in temperature, reducing the difference between it and the water vapor
pressure of the external environment, which leads to a decrease in the condensation rate.
The difference between the initial temperature of the glass and the external environmental
temperature is small, and so is the difference in water vapor pressure. Even a small
fluctuation in the temperature of the outer surface of the glass will have a considerable
impact on the condensation rate.
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window with time.

Figure 11 shows the variation law of the average frost layer thickness on the outer
surface of the optical window over time. The average frost layer thickness gradually
increases as time accumulates, and the frosting rate remains stable and essentially does
not change over time. Due to the huge difference in the temperature of the outer surface
of the glass, the difference in water vapor pressure is also large, so there are significant
differences in both the condensation rate and the frost layer thickness. In addition, since
the density of frost is smaller than that of liquid water, under the condition of the same
mass, the volume of frost is larger. Given that the surface area of the outer surface of the
optical window glass is fixed, the difference in thickness is, thus, even greater.
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3.5. Analysis of the Descent Working Condition at High Altitude

After the aircraft has been cruising at a high altitude for a period of time, the tem-
perature of the optical window glass drops to a relatively low temperature. When the
aircraft starts to descend, both the environmental temperature and the relative humidity
are constantly rising, and the partial pressure of water vapor on the glass surface is greater
than the saturated vapor pressure of water vapor corresponding to the glass temperature.
Moreover, since the atmosphere at a high altitude is basically below 0 ◦C and the cabin
section is unsealed, the inside of the it should also be below 0 ◦C. Therefore, under such
conditions, frosting should be the predominant phenomenon.
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(1) Influence of cabin temperature

To study the influence of the cabin temperature on the frosting thickness on the surface
of the optical window, a situation where the temperature of the optical window drops to
248.15 K when the aircraft is cruising at a high altitude (8000 m) is simulated, and then
the frosting situation in autumn and winter, when the aircraft descends to an altitude of
1500 m, is simulated.

Figure 12 shows the variation law of the average frosting layer thickness on the inner
surface of the optical window in autumn and winter over time. According to the then
literature [24], the atmospheric temperature at an altitude of 1500 m is 288.15 K in autumn
and 283.15 K in winter, and the humidity in both seasons is 75%. The frosting layer thickness
increases as time accumulates. Since the temperature is higher and the water vapor content
is larger in autumn, the frosting layer thickness on the optical window can reach 0.05 mm
in one hour. In the winter, the temperature is lower, and the water vapor content is less,
so the frosting layer thickness in one hour is 0.04 mm, which is still half the distance from
0.1 mm. As the water vapor pressure gradually decreases, the growth rate of the frosting
layer slows down.
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(2) Influence of the optical window temperature

To study the influence of the optical window temperature on the surface frosting,
under autumnal conditions (at an altitude of 1500 m), the optical window temperatures
were set at 248.15 K and 233.15 K (corresponding to the altitudes of 8000 m and 10,000 m,
respectively), and the frosting situations when the aircraft descends to 1500 m after cruising
at these temperatures were analyzed.

Figure 13 shows the variation law of the average frost layer thickness on the inner
surface of the optical window under different optical window temperatures over time.
On average, the frost layer thickness gradually increases as time accumulates. When the
optical window temperature is higher, the frosting rate is relatively slower. After one hour
of frosting, the average frost layer thickness can exceed 0.05 mm in both cases. The frosting
rate basically remains stable and slightly decreases as time accumulates.
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(3) Influence of cabin humidity

To study the influence of the cabin humidity on the frosting thickness on the surface
of the optical window, under the conditions of spring and autumn, at an altitude of 3000 m
(with a temperature of 283.15 K and humidities of 70% and 65%, respectively), the frosting
changes after the aircraft descends to 3000 m from cruising at 8000 m are simulated. The
results show that the higher the relative humidity is, the more significant the increase in
the frost layer thickness will be.

Figure 14 shows the variation law of the average frost layer thickness on the inner
surface of the optical window under different relative humidities in spring and autumn
over time. The average frost layer thickness gradually increases as time accumulates. Since
the relative humidities in spring and autumn only differ by 5%, and the difference in the
water vapor pressure value is only about 60 Pa, the influence on the frost layer thickness
and the frosting rate is very small. However, when the environmental temperatures inside
the cabin are different, the difference in the water vapor pressure is about 360 Pa. In
addition, due to the different temperatures, the mass transfer rate is also higher at a higher
temperature, so it has a greater impact on the frost layer thickness and the frosting rate.
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According to the literature [24], two isobaric surfaces of 850 hPa (hectopascal) and
500 hPa are selected for the frosting analysis. The region is southern China and the
season is summer. With relatively high temperatures and relative humidities, the frosting
phenomenon is more likely to occur. The conditions inside the cabin are consistent with
those of the outside environment. The initial temperature of the glass is 237 K, and the heat
generated by the equipment is taken into account. In order to obtain the maximum thickness
that frosting and fogging can reach under extreme conditions, the thermal boundary
condition of the outer surface of the optical window was set as a fixed wall temperature,
which is 237 K, the environmental temperature under high-altitude conditions.

Figure 15 shows the graph of the variation of the average frost layer thickness on the
glass surface over time, at different altitudes. As the altitude decreases, both the frosting
speed and the frosting thickness increase. The water vapor content inside the cabin is
constantly decreasing, and the frosting rate gradually decreases over time. When the
altitude is 1500 m, the frost layer thickness can reach 0.1 mm. However, when the altitude
is 5500 m, due to the limited water vapor content inside the cabin, the magnitude of the
frost layer thickness is approximately, or just below, 0.01 mm. Judging from its growth
trend, it is very difficult for the frost layer thickness on the glass surface to reach 0.1 mm.
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different altitudes under the condition of fixed wall temperature.

In the actual situation when an aircraft is cruising at an altitude of 10,000 m, the external
environmental temperature is 237 K, and the temperature of the outer surface of the optical
window is close to the environmental temperature at the corresponding altitude [25]. When
the aircraft rapidly descends to 5500 m or 1500 m, the thermal boundary condition of the
outer surface should correspond to the convective heat transfer coefficient and the reference
temperature at that altitude, with an initial temperature of 237 K.

The temperature change of the inner surface of the optical window glass is shown in
Figure 16. When the aircraft descends to 1500 m, the temperature of the inner surface of
the optical window gradually increases due to aerodynamic heating. After about 150 s, the
temperature exceeds the freezing point, the frost begins to melt, and fogging occurs. By
240 s, the fog layer reaches a plateau and stops growing, with a thickness not exceeding
0.01 mm. If the aircraft descends to 5500 m, since the environmental temperature of
268.15 K is lower than the freezing point, only frosting occurs, and it gradually stops as the
temperature rises.
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4. Conclusions
This paper focuses on the fogging and frosting problems of optical window glass.

The numerical simulation method was used to study the formation mechanism of fog and
frost under the ground and high-altitude working conditions. Simulation analyses were
carried out for three typical fogging/frosting working conditions of optical windows. The
fogging and frosting thicknesses as well as the fogging and frosting durations under typical
working conditions were obtained. The conclusions are as follows:

(1) Under the ground working condition, the maximum thickness of the fog layer on
the outer surface of the optical window can completely reach the millimeter level within
one hour, and the average thickness of the frost layer can reach the sub-millimeter level.

(2) Under the working condition of a fixed altitude, as the temperature and humidity
inside the cabin increase, the fogging and frosting rates, as well as their thickness, will
increase, while as the glass temperature rises, the fogging and frosting rates, as well as their
thickness, will decrease.

(3) Under the working condition of high-altitude descent, by setting the fixed wall
temperature thermal boundary condition on the outer surface of the glass, it is found that,
under extreme conditions, the maximum thickness of the frost layer on the inner wall of
the glass can reach the sub-millimeter level within one hour. However, under the thermal
boundary condition of the convective heat transfer coefficient found on the outer surface of
the glass, it is very difficult to reach the sub-millimeter level.
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