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Abstract: This paper explores the integration and advancements of artificial neural net-
works (ANNs) in modeling diesel engine performance, particularly focusing on biodiesel-
fueled engines. ANNs have emerged as a vital tool in predicting and optimizing engine
parameters, contributing to the enhancement of fuel efficiency and a reduction in emissions.
The novelty of this review lies in its critical analysis of the existing literature on ANN appli-
cations in biodiesel engines, identifying gaps in optimization and emission control. While
ANNs have shown promise in predicting engine parameters, fuel efficiency, and emission
reduction, this paper highlights their limitations and areas for improvement, especially in
the context of biodiesel-fueled engines. The integration of ANNs with big data and sophis-
ticated algorithms paves the way for more accurate and reliable engine modeling, essential
for advancing sustainable and eco-friendly automotive technologies. This research un-
derscores the growing importance of ANNs in optimizing biodiesel-fueled diesel engines,
aligning with global efforts towards cleaner and more sustainable energy solutions.

Keywords: biofuel; artificial neural networks; CI engine; exhaust emissions; engine
performance

1. Introduction
The diminishing reserves of crude oil and growing global concerns over environ-

mental pollution have prompted researchers to explore clean energy technologies and
environmentally friendly alternative fuels, such as biodiesel, alcohols, vegetable oils, and
hydrogen [1–3]. In the evolving landscape of energy production and utilization, diesel
engines have long been recognized for their efficiency and reliability. These engines have
powered a diverse range of machinery, from small vehicles to massive ships, playing
an essential role in both local and global economies. However, the environmental impacts
of diesel engines, particularly their contribution to greenhouse gas emissions, have raised
concerns, driving a shift towards sustainable alternatives [4].

Biodiesel and higher alcohols have garnered particular attention due to their potential
as sustainable alternatives for diesel engines. Biodiesel, composed of mono-alkyl esters
derived from long-chain fatty acids, is typically produced through the transesterification
of animal fats or vegetable oils. Its popularity has been increasing over the years, largely
due to its numerous benefits over conventional diesel, including renewability, biodegrad-
ability, non-toxicity, and a higher flash point, making it a safer and more eco-friendly
fuel option [5–7]. Biodiesel has emerged as a promising alternative to traditional diesel
fuel. Biodiesel is compatible with existing diesel engines and has a significantly lower
environmental impact than traditional diesel. It reduces carbon emissions, aligns with
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global sustainable energy efforts, and mitigates the reliance on fossil fuels. Studies have
shown that biodiesel blends can effectively run in unmodified diesel engines, providing
a feasible solution for reducing the ecological footprint of these engines [8–10].

Alongside the advancement of renewable energy sources like biodiesel, the field of
engineering has seen significant developments with the integration of artificial neural
networks (ANNs). ANNs, a branch of artificial intelligence, mimic the human brain’s
structure and functions, opening up new possibilities in problem solving and automa-
tion. In the context of engineering, ANNs have demonstrated remarkable potential in
optimizing processes, enabling predictive maintenance, and increasing operational effi-
ciency. This integration signifies a paradigm shift, leveraging AI to enhance engineering
applications [11,12].

The intersection of biodiesel utilization in diesel engines and the application of ANNs
in enhancing their performance and sustainability presents a fascinating area of study.
This review aims to explore the recent developments at this intersection, highlighting the
importance of combining renewable energy solutions with advanced AI technologies. The
focus is on how these technologies can collectively contribute to mitigating environmental
impacts and advancing sustainable practices in energy production and consumption. The
utilization of biodiesel in diesel engines, coupled with the optimization capabilities of
ANNs, holds significant promise for the future of energy sustainability [13,14].

This review aims to offer a novel contribution by precisely outlining the goals of
implementing artificial neural networks (ANNs) in the context of biodiesel-fueled engine
performance and emission control. The specific objectives of this review are:

1. To assess the potential applicability of ANNs in accurately predicting the performance
and emission characteristics of diesel engines fueled with biodiesel.

2. To systematically review the application of ANNs in predicting the critical parameters
of diesel engines.

3. To explore the potential and future prospects of using ANNs for predicting the
performance and emissions of diesel engines fueled by biodiesel as an emerging
green biofuel.

By systematically addressing these objectives, this review provides a deeper un-
derstanding of how ANNs can enhance engine performance and emission control in
biodiesel engines.

2. Fundamentals of Diesel Engines and Biodiesel
Diesel engines operate distinctively compared to gasoline engines, primarily through

the principle of compression ignition. Air in a diesel engine is compressed to high pressure
and temperature, followed by fuel injection into the combustion chamber. The intense
heat from the compressed air spontaneously ignites the fuel, eliminating the need for
a spark plug. This process results in higher efficiency and greater torque than gasoline
engines. However, conventional diesel fuels pose environmental concerns. They contribute
significantly to air pollution by emitting particulate matter, nitrogen oxides, and other
pollutants, impacting health and the environment. Moreover, their petroleum-based nature
contributes to global greenhouse gas emissions, intensifying climate change issues [15,16].
Biodiesel emerges as a promising alternative in this scenario. Produced from renewable
sources, such as vegetable oils, animal fats, or recycled cooking grease, biodiesel undergoes
transesterification to convert fats and oils into fatty acid methyl esters, its main constituents.
This biofuel is biodegradable and nontoxic, and its usage significantly reduces the emissions
of particulates and greenhouse gases compared to traditional diesel [17,18].

Using biodiesel in diesel engines has several benefits. It reduces the ecological footprint
by lowering greenhouse gas emissions and fossil fuel dependence. Biodiesel’s excellent
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lubricity also benefits engine operation. However, there are challenges, such as issues with
performance in cold weather, material compatibility problems, and inconsistent fuel quality
standards [19,20]. Biodiesel, derived from renewable sources, such as spirulina microalgae
and waste cooking oil, has shown significant advantages in reducing harmful emissions.
One of the most critical emissions associated with biodiesel combustion is nitrogen oxides
(NOX). Research by Zheng and Cho (2023) indicates that, while biodiesel can reduce CO
and HC emissions, it often leads to an increase in NOX emissions due to its higher oxygen
content, which promotes more complete combustion [21]. This trend is corroborated
by Khujamberdiev (2023, 2024), who found that increasing biodiesel content in diesel
blends resulted in higher NOX emissions, particularly in blends derived from waste swine
oil [22,23]. For instance, studies by Rajak et al. (2021, 2022) demonstrated that biodiesel
blends can lead to substantial reductions in carbon monoxide (CO), hydrocarbon (HC),
and particulate matter (PM) emissions when used in compression ignition (CI) engines.
Additionally, the oxygenated nature of biodiesel promotes more complete combustion,
resulting in cleaner exhaust gases. However, the use of biodiesel also presents certain
challenges, particularly in terms of engine performance. While biodiesel blends effectively
lower emissions, they have been shown to slightly reduce brake thermal efficiency (BTE)
and mechanical efficiency, especially at higher blend ratios. Furthermore, the higher oxygen
content of biodiesel can lead to increased nitrogen oxide (NOX) emissions due to elevated
combustion temperatures. These findings underscore both the advantages and challenges
of biodiesel as a sustainable fuel for diesel engines, necessitating further optimization
to balance emission reductions with engine performance [24,25]. The role of ANNs in
this context is to optimize engine parameters to mitigate NOX emissions. For instance,
Jaliliantabar et al. (2018) utilized an ANN to model the performance and emissions of
a compression ignition engine, achieving a reduction in NOX emissions by fine-tuning the
operational parameters [26].

3. Mechanism and Classification of ANN
Artificial neural networks (ANNs) are a fundamental component of artificial intelli-

gence, drawing inspiration from the structure and function of the human brain. ANNs
consist of interconnected units or nodes, mimicking biological neurons, and are adept at
processing complex patterns and solving multifaceted problems. The working principles
of ANNs are rooted in their structure, comprising input, hidden, and output layers, with
each neuron in one layer connected to neurons in the subsequent layer [27]. The input layer
receives data, which is then processed by one or more hidden layers. These hidden layers
perform complex computations using the input data and transfer the processed information
to the output layer, generating the desired result. The strength of the connections between
neurons, known as weights, plays a crucial role in the network’s learning process. Through
a method known as backpropagation, ANNs adjust these weights iteratively based on the
difference between the actual output and the desired output, improving the accuracy of
predictions or classifications over time [28,29].

It is essential to recognize that the artificial neural network (ANN) falls under super-
vised learning, as it is trained based on input parameters and corresponding output data.
The primary role of the learning algorithm (LA) in this context is to fine-tune the network
parameters, including weights and biases, ensuring predictions are made with reasonable
accuracy or within acceptable error margins. This is why the error signal, often represented
by the mean squared error, is commonly utilized as the cost function. Once the training
phase is complete, the testing and validation stages become crucial, offering comprehensive
insights into the efficacy of the technologically advanced ANN prediction models. The
effectiveness of the training, validation, and testing processes is typically gauged using
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the correlation coefficient (R) and the coefficient of determination (R2). Validation involves
feeding a new set of input data to the network to assess its predictive capabilities [30].

Moreover, to evaluate the accuracy of the predicted responses, additional statistical
analyses, such as the root mean square error (RMSE), mean absolute percentage error
(MAPE), mean absolute percentage (MAP), mean squared relative error (MSRE), mean
error percentage (MEP), mean relative error (MRE), among others, are frequently conducted.
The various stages of ANN implementation, encompassing these elements, are depicted in
Figure 1, providing a visual roadmap of the process from training to validation [31].
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Figure 1. Process diagram of ANN model development and deployment [31].

ANNs are utilized in diverse applications, showcasing their versatility and adaptabil-
ity. For instance, they are used in environmental risk assessments, where they can predict
pollution levels and assess health risks based on various environmental factors [32]. In the
field of robotics, ANNs are employed to solve complex inverse kinematics problems, opti-
mizing robotic movements for efficiency and precision [33]. Additionally, in the renewable
energy sector, ANNs are applied to detect faults in photovoltaic systems, enhancing the
reliability and safety of solar power installations [34].

The scope of ANN applications extends further into areas like biomedical engineer-
ing, where they assist in creating advanced diagnostic tools, and even in geotechnical
engineering, where they contribute to the analysis and prediction of soil behavior and
material properties. This wide range of applications demonstrates the potential of ANNs as
a transformative tool in various scientific and technological fields, enabling more efficient
and intelligent solutions to complex problems [29,32].

Artificial neural networks (ANNs) have become integral in advancing the capabilities
of various engineering fields, owing to their resemblance to human brain functioning
and adaptability in learning from data. Abiodun et al. [35] provide a comprehensive
survey of ANN applications, highlighting their wide-ranging use across diverse domains.
The basic principle of ANNs involves interconnected neurons processing input data in
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a layered structure, a concept extensively covered by Shanmuganathan [36]. This layered
approach, combined with learning algorithms, like backpropagation, enables ANNs to
make sophisticated predictions and decisions.

4. ANN in Diesel Engine Performance with Biodiesel
Various types of ANN architectures have been utilized in this context, with the most

common being the backpropagation neural network (BPNN) and radial basis function
neural networks (RBFNNs). For instance, in the study by Panda et al., a BPNN was used to
model the performance and emissions of a diesel engine fueled with waste plastic pyrolytic
oil, demonstrating the model’s capability to predict engine behavior based on varying fuel
blends. The BPNN was trained using experimental data collected from engine tests, allow-
ing it to learn the complex relationships between biofuel properties and engine performance
metrics. The effects of specific biofuel properties, such as viscosity, density, and cetane
number, on engine performance have been a focal point in many studies [37]. For example,
Tosun et al. utilized an ANN to predict emissions and performance metrics of diesel engines
fueled with biodiesel, emphasizing the influence of cetane number and other fuel prop-
erties on engine output [38]. The ANN model was able to correlate these properties with
performance outcomes, providing insights into how variations in biofuel composition can
affect engine efficiency and emissions. This predictive capability is crucial for optimizing
biofuel formulations to enhance engine performance, while minimizing harmful emissions.
Moreover, the application of RBFNNs has shown promise in predicting engine performance
characteristics when using biofuels. In the work by Pai and Rao, RBFNNs were employed
to predict the performance and emission characteristics of a diesel engine fueled with waste
cooking oil (WCO) [39]. The RBFNN was trained with input parameters, such as load
percentage, compression ratio, and blend percentage, while output parameters included
brake thermal efficiency and exhaust emissions. The results indicated that RBFNNs could
effectively capture the nonlinear relationships inherent in the combustion process, leading
to accurate predictions of engine performance. The integration of ANN models with exper-
imental data has been pivotal in enhancing the accuracy of predictions related to biofuel
properties. For instance, Karagöz’s study demonstrated that an ANN could predict engine
performance and emissions for a single-cylinder diesel engine fueled with various blends
of pyrolytic oil and butanol [40]. By systematically varying engine loads and fuel composi-
tions during experiments, the ANN was trained to recognize patterns in the data, resulting
in reliable predictions of performance metrics, such as brake specific fuel consumption
and emissions. In addition to BPNN and RBFNN, other advanced ANN techniques, such
as adaptive neuro-fuzzy inference systems (ANFIS), have been explored for predicting
biofuel effects. These hybrid models combine the learning capabilities of ANNs with fuzzy
logic, allowing for better handling of uncertainties and imprecision in biofuel properties.
The study by Menon and Krishnasamy illustrated the use of ANFIS to optimize biodiesel-
fueled engine characteristics, showcasing its effectiveness in capturing the complexities of
biofuel behavior in engines [41]. This approach provides a more nuanced understanding
of how different biofuel compositions can influence engine performance. The predictive
capabilities of ANNs extend beyond performance metrics to include emissions analysis.
For example, the research conducted by Çirak and Demirtas focused on predicting engine
torque and emissions from biodiesel using an ANN model [42]. By incorporating various
input parameters, such as fuel composition and engine operating conditions, the ANN was
able to provide accurate predictions of emissions, highlighting the importance of biofuel
properties in determining environmental impacts. Furthermore, the ability of ANNs to
model the interactions between multiple biofuel properties is a significant advantage. In
a study by Garg et al., ANNs were utilized to analyze the performance and emissions
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of internal combustion engines across a range of fuel compositions [43]. The model’s
ability to integrate multiple input variables allowed for a comprehensive assessment of
how different biofuel properties interact to influence engine behavior, providing valuable
insights for biofuel optimization. Despite the successes of ANN models, challenges remain
in ensuring their generalizability across different engine types and operating conditions. As
highlighted by Wang et al., the performance of ANN models can vary significantly based
on the specific characteristics of the engine and the biofuels used [44]. This necessitates
the continuous refinement of ANN models through extensive experimental validation to
ensure their applicability in diverse scenarios.

4.1. ANNs in Emission Analysis of Biodiesel-Fueled Diesel Engines

One of the most critical challenges in biodiesel combustion is the increase in NOX

emissions, which result from biodiesel’s higher oxygen content and the subsequent rise
in combustion temperatures. ANN models have been developed to specifically address
this issue by incorporating combustion-related parameters. S.V. K and Masimalai (2020)
explored the performance and emissions of a Mahua oil–hydrogen dual fuel engine using
ANN models. The model inputs were engine load, intake temperature, and injection
pressure, while outputs included brake thermal efficiency (BTE), exhaust gas temperature
(EGT), and emissions (HC, CO, NOX, and smoke). A logsig-tansig ANN architecture was
employed with a 70:15:15 partitioning ratio. The results showed strong model performance,
with R = 0.99818 for BTE and 0.99936 for CO. The ANN model closely aligned with experi-
mental data, especially in predicting emissions, making it a valuable tool for optimizing
hydrogen-based dual-fuel engines [45]. Similarly, Javed et al. (2015) developed an ANN
model to predict the performance and emissions of a hydrogen dual-fueled diesel engine
using Jatropha methyl ester (JME) biodiesel blends. The ANN model used a logsig-logsig
transfer function with data normalized between [0.1, 0.9], focusing on engine load, blending
ratio, and hydrogen flow rate. The model produced an R value of 0.99745 for brake specific
energy consumption (BSEC) and 0.99847 for CO emissions. This study confirmed the
effectiveness of logarithmic and hyperbolic tangent transfer functions, as the model closely
matched the experimental results for both performance and emission characteristics [46].

In another study, Channapattana et al. (2017) focused on optimizing the engine pa-
rameters of a DI-CI engine running on second-generation biofuels, using ANN models
for prediction. Input variables included engine load, compression ratio, and blend ratio,
with outputs covering BTE, BSEC, EGT, CO, and other emissions. The model, based on
the trainlm function and a 70:15:15 partition ratio, achieved a very high R value of 0.9999,
making it highly accurate in predicting engine performance and emissions. The results
indicated that combining ANN models with optimization techniques, such as genetic
algorithms, yields better accuracy and lower errors in modeling engine behavior with
biofuels [47]. Tosun et al. (2016) compared linear regression models with ANN mod-
els for diesel engines running on biodiesel–alcohol mixtures. The ANN model, utilizing
a logsig-trainlm architecture and an 80:20 partition ratio, modeled engine speed and fuel
properties as input parameters, with torque and NOX emissions as outputs. The ANN
model achieved an R2 of 0.726 for torque and 0.898 for NOX, showing a significant improve-
ment in predictive capability compared to linear regression models. This demonstrates that
ANNs offer superior accuracy in analyzing engine performance using biodiesel–alcohol
mixtures [48]. To further improve model accuracy, Gul et al. (2019) combined grey Taguchi
and ANN-based optimization techniques to enhance engine performance and emissions
in diesel engines fueled with biodiesel. The input variables included engine load, engine
speed, and blending ratio, while outputs were the heat release rate (HRR), brake power, and
emissions. The logsig-tansig-purelin model, using a 70:15:15 partition ratio, provided an R
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value of 0.99333. By integrating ANNs with grey Taguchi methods, the study improved
model accuracy and reduced experimental time and cost, demonstrating its potential for
optimizing biodiesel-fueled engine performance [49]. Aydın et al. (2020) also applied
advanced modeling techniques by combining ANNs and response surface methodology
(RSM) to predict the performance and emissions of a compression ignition engine fueled
with biodiesel–diesel blends. The input variables were engine load and blending ratio, and
the outputs included BTE, EGT, HC, NOX, and smoke. The model used a trainlm-logsig
function and a 75:25 training/testing ratio. The ANN model demonstrated a mean relative
error (MRE) of 0.0592 for BTE and high R² values (0.97–0.99) for emissions, making it an
effective tool for predicting performance and emissions in complex engine systems [50].
Shivakumar et al. (2010) examined the performance and emissions of a four-stroke CI
engine using honge methyl ester (HME) biodiesel blends. The input parameters included
engine load and blending ratio, with outputs of BTE, EGT, CO, NOX, HC, and smoke.
The ANN model, built with a trainlm-tansig function and normalized between [−1, 1],
achieved an R value of 0.996 for BTE and 0.984 for CO emissions. The use of genetic
algorithms in tandem with ANN models helped optimize engine performance, particularly
in reducing emissions and improving thermal efficiency when using biodiesel blends [51].
Oğuz et al. (2010) took a different approach by developing an ANN model to predict diesel
engine performance using various biofuel blends. The model utilized a tansig transfer
function to predict power, torque, and BSFC. With high R2 values of 0.99989 for torque and
0.99999 for BTE, the model demonstrated excellent reliability, calculated at 99.94%. This
ANN model proved highly effective in simulating engine performance with biofuel blends,
highlighting its potential for optimizing engine parameters in real time [52]. Sharon et al.
(2012) applied a SIMULINK-based ANN model to predict the performance of diesel engines
using biodiesel blends. Input variables included engine load and blending ratio, while
outputs were BTE, BSFC, CO, NOX, and HC. The tansig-trainlm model achieved R values
of 0.999 for BTE and 0.99998 for BSFC. The study showed that the SIMULINK environment
allowed for the accurate and user-friendly modeling of engine behavior, making it an
efficient tool for analyzing higher biodiesel blends in compression ignition engines [53].
The studies reviewed demonstrate that ANN models, often combined with optimization
techniques, have proven to be highly effective tools in predicting engine performance and
emissions across a range of biodiesel and alternative fuel applications. Table 1 summarizes
key studies on ANNs in emission analysis of biodiesel-fueled diesel engines.

Table 1. Key studies on ANN in emission analysis of biodiesel-fueled diesel engines.

Author(s) Focus of Study Key Insights R Values or Accuracy Reference

S.V. K and
Masimalai (2020)

Mahua oil–hydrogen dual-fuel
engine emissions and performance

using ANN.

ANN predicted BTE, EGT, HC, CO,
NOX, and smoke with strong

alignment to experimental data.

R = 0.99818 (BTE),
0.99936 (CO) [45]

Javed et al. (2015)
Hydrogen dual-fueled diesel

engines using Jatropha methyl
ester (JME) blends.

Effective use of logsig-logsig
transfer function for performance

and emission predictions.

R = 0.99745 (BSEC),
0.99847 (CO) [46]

Channapattana
et al. (2017)

DI-CI engine with
second-generation biofuels.

ANN with trainlm function
yielded high accuracy in predicting

emissions and performance.
R = 0.9999 [47]

Tosun et al. (2016)
Comparison of linear regression
and ANN for biodiesel–alcohol

engine emissions.

ANN significantly outperformed
linear regression, modeling torque,

and NOX emissions with
superior accuracy.

R2 = 0.726 (torque),
0.898 (NOX)

[48]

Gul et al. (2019) Grey Taguchi and ANN for engine
optimization using biodiesel.

Integration of ANN with Grey
Taguchi improved accuracy and

reduced experimental costs.
R = 0.99333 [49]

Aydın et al. (2020)
ANN-RSM model for CI engines

fueled with
biodiesel–diesel blends.

Predicted BTE, EGT, HC, NOX,
and smoke with high R2 values

and low mean relative error.

R2 = 0.97–0.99
(emissions),

MRE = 0.0592 (BTE)
[50]
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Table 1. Cont.

Author(s) Focus of Study Key Insights R Values or Accuracy Reference

Shivakumar et al. (2010)
Performance and emissions using

honge methyl ester (HME)
biodiesel blends.

ANN with genetic algorithms
optimized emissions and

thermal efficiency.

R = 0.996 (BTE),
0.984 (CO) [51]

Oğuz et al. (2010) ANN for predicting diesel engine
performance with biofuel blends.

Achieved excellent predictive
reliability for power, torque,

and BSFC.

R2 = 0.99989 (torque),
0.99999 (BTE)

[52]

Sharon et al. (2012) SIMULINK-based ANN for diesel
engines with biodiesel blends.

Highly accurate predictions of BTE
and BSFC in user-friendly
modeling environments.

R = 0.999 (BTE),
0.99998 (BSFC) [53]

4.2. Application of ANNs in Predicting and Analyzing Emissions from Biodiesel-Fueled Engines

A key study by Prabhakar et al. [54] investigated the performance and emission
characteristics of engines fueled with biodiesel blends derived from non-edible vegetable
oils, such as nerium, jatropha, pongamia, mahua, and neem. Their findings indicated
that a diesel engine could successfully run on a blend of 20% biodiesel and 80% diesel
fuel without compromising engine performance. Notably, methyl esters from nerium
oil exhibited better performance and emission characteristics, followed by esters from
other oils, thereby highlighting the potential of ANNs in optimizing biodiesel blends for
improved emissions. Samsukumar et al. [55] conducted performance and emission analysis
on a compression ignition (C.I.) engine using palm oil biodiesel blends at different fuel
injection pressures. Their research focused on optimizing engine parameters to reduce
emissions, specifically carbon monoxide (CO) and nitrogen oxides (NOX), using biodiesel
blends. The study utilized advanced tools, including a computerized variable compression
ratio multifuel direct injection water-cooled engine and a six-gas smoke analyzer, to analyze
the emissions under various operating conditions. Figure 2 illustrates the correlation
between various input parameters, output parameters, and hidden layers in predicting
engine performance and emissions when using biodiesel. The input parameters include
fuel properties, such as types of biodiesel and their blends, and engine variables like
engine speed, loads, compression ratios, injection pressure, and timing. On the other hand,
the output parameters represent engine performance metrics, including power, exhaust
gas temperature, specific fuel consumption, torque, and brake thermal efficiency, along
with emission characteristics like CO, HC, CO2, NOX, and smoke. Predicting engine
performance and emissions using ANN models involves numerous input variables and
output parameters, but excessive inputs or outputs can hinder model training and accuracy.
The careful selection of inputs, hidden layers, and outputs is crucial. Jaliliantabar et al. [26]
found a 3–8–9 architecture optimal for predicting effective power after 150 epochs, using
inputs like engine speed, load, and biodiesel blend ratio. The model achieved R2 values
close to 1 for performance predictions, ranging from 0.93 (EGT) to 0.98 (torque). Emission
predictions showed slightly lower accuracy, with a maximum R2 of 0.94 for CO emissions.

El-Shafay et al. [56] utilized ANNs to predict performance and emissions in diesel
engines fueled with palm biodiesel. Their study demonstrates how ANNs can handle
the variability in biodiesel blends and their impact on engine emissions. Similarly, Uslu
et al. [57] predicted the emissions and performance of a diesel engine using diethyl ether
and biodiesel mixtures, illustrating the versatility of ANNs in emission analysis. Franco
et al. [58] explored the impact of transition teams and social interactions on sustainable en-
ergy innovation. Their study, focusing on NOX and particulate matter reduction, highlights
the role of ANNs in advancing technologies for cleaner energy. This approach is pivotal in
transitioning to sustainable practices and reducing environmental pollutants in various
sectors, including automotive engineering. Okubo et al. [59] conducted research on improv-
ing NOX reduction efficiency in diesel emissions using nonthermal plasma combined with
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exhaust gas recirculation as an after-treatment. Their study suggests that ANNs can be
effectively utilized in designing and optimizing these systems for enhanced NOX reduction
in diesel engines. Such advancements are critical in meeting stringent emission regulations
and promoting cleaner combustion processes. Veratti et al. [60] assessed the impact of NOX

and NH3 emission reduction on particulate matter across the Po Valley. Their research
indicates that ANN models are instrumental in analyzing the nonlinear responses of PM2.5

concentrations to precursor changes. By employing ANNs in air quality modeling systems,
significant insights can be gained into the most efficient emission reduction strategies, con-
tributing to improved air quality and public health. Urrutia-Mosquera at al. [61] examined
the impact of confinement on pollution and particulate matter reduction. Their reflections
on public transport policies underscore the potential of ANNs in predicting and strategizing
effective approaches to reduce emissions in urban environments, thereby contributing to
cleaner and healthier cities. In addition, Sayyed et al. [62] focused specifically on modeling
biodiesel-emitted nitrogen oxides using ANNs. Their research highlights the importance
of ANNs in understanding and reducing NOX emissions in biodiesel engines. Ertuğrul
at al. [63] further demonstrated ANNs’ role in predicting the performance and emission
parameters of a biodiesel-fueled diesel generator, emphasizing the accuracy of ANNs in
emission analysis.
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These studies collectively emphasize the significance of ANNs in understanding and
mitigating emissions from biodiesel-fueled engines. The sophisticated predictive and ana-
lytical capabilities of ANNs make it an indispensable tool in advancing emission control
technologies and supporting the transition towards more sustainable and environmentally
friendly energy solutions. A notable study by Kannan at al. [64] conducted an emission
analysis of Azolla methyl ester with BaO nanoadditives for internal combustion engines.
This research focused on decreasing emissions in diesel engines fueled with biodiesel and
algae biodiesel blends, with the addition of BaO nanoparticles. The results showed that the
addition of nanoparticles reduced emissions, such as carbon monoxide (CO), hydrocarbons
(HC), and oxygen (O2) from biodiesel, emphasizing the role of ANNs in emission reduction
strategies. In another significant study, Samsukumar et al. [55] performed performance and
emission analyses on a compression ignition (C.I.) engine using palm oil biodiesel blends
at different fuel injection pressures. Their research aimed to examine biodiesel properties,
engine performance, and emissions, with a focus on reducing CO and NOX emissions.
Utilizing ANNs, the study provided insights into the emissions pattern and performance
of biodiesel blends, underscoring the potential of ANNs in optimizing biodiesel fuel for
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cleaner engine performance. Prabhakar at al. [54] explored biodiesels as an alternative
renewable energy source for the next century, examining the performance and emission
characteristics of engines fueled with various biodiesel blends. Their findings indicated
that certain biodiesel blends could run in diesel engines without affecting performance,
with notable improvements in emission characteristics. This study highlighted the po-
tential of ANNs in identifying suitable biodiesel blends for emission reduction. Table 2
highlights studies on ANN applications in optimizing emissions and performance of
biodiesel-fueled engines.

Table 2. Key studies on the application of ANNs in predicting and analyzing emissions from
biodiesel-fueled engines.

Author(s) Focus of Study Key Insights

Prabhakar et al. [54] Investigated engines using biodiesel blends from
nonedible oils (e.g., nerium, jatropha, pongamia).

Identified a 20% biodiesel blend that maintained
performance; highlighted ANNs’ role in

optimizing blends.

Samsukumar et al. [55] Analyzed C.I. engine emissions using palm oil
biodiesel blends at different injection pressures.

Optimized parameters to reduce CO and NOX using
ANN; utilized advanced tools for precise

emission analysis.

Jaliliantabar et al. [26] Examined ANN architectures for predicting engine
performance with biodiesel blends.

Found a 3–8–9 architecture optimal for predictions;
achieved R2 values of 0.93–0.98 for various metrics.

El-Shafay et al. [56] Predicted emissions and performance of diesel engines
with palm biodiesel using ANNs.

Demonstrated ANNs’ capability to handle biodiesel
blend variability and predict emissions effectively.

Uslu et al. [57] Predicted diesel engine emissions using diethyl ether
and biodiesel mixtures.

Highlighted the versatility of ANNs in
emission analysis.

Franco et al. [58] Investigated ANNs’ role in NOX and particulate matter
reduction for sustainable energy innovation.

Demonstrated ANNs’ utility in advancing cleaner
energy technologies and reducing pollutants.

Okubo et al. [59] Researched NOX reduction using nonthermal plasma
and EGR optimized with ANNs.

Showed ANNs’ effectiveness in improving
after-treatment systems for NOX reduction.

Veratti et al. [60] Studied NOX and NH3 emission reduction impacts on
particulate matter in the Po Valley.

Emphasized ANNs’ utility in modeling nonlinear
responses of PM2.5 to emission changes.

Urrutia-Mosquera et al. [61] Explored ANNs’ application in urban emission
reduction during confinement.

Highlighted ANNs’ predictive power in strategizing
urban emission policies for cleaner cities.

Sayyed et al. [62] Modeled biodiesel-emitted NOX emissions
using ANN.

Showed ANNs’ role in understanding and reducing
NOX in biodiesel engines.

Ertuğrul et al. [63] Predicted performance and emissions of
biodiesel-fueled diesel generators with ANNs. Demonstrated ANNs’ accuracy in emission analysis.

Kannan et al. [64] Analyzed emissions in engines using biodiesel–algae
blends with BaO nanoparticles.

Found significant reductions in CO, HC, and O2
emissions, emphasizing ANNs’ role in

emission strategies

5. Challenges and Limitations in Using ANNs for Biodiesel-Fueled Engines
5.1. Discussion on the Limitations of Current ANN Models in Accurately Predicting Engine
Performance and Emissions

A critical aspect to consider is the quality and diversity of the training data. ANNs’
performance heavily relies on the data they are trained on. In the context of diesel
engines, these data include a wide range of operating conditions, fuel types, and engine
configurations. If the training data are not comprehensive or lack variability, the ANN
models might not accurately predict engine performance under untested conditions,
leading to less reliable outcomes [65]. Moreover, the complexity of diesel engine systems,
especially when using biodiesel, introduces challenges in ANN modeling. Biodiesel’s
varying properties based on feedstock and production processes add another layer of
complexity. This variability can affect engine performance in ways that might not be
fully captured by existing ANN models, leading to discrepancies between predicted and
actual engine behavior [66].

As illustrated in Figure 2, a multitude of input data, encompassing engine variables
and fuel properties, along with numerous output parameters, require prediction. How-
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ever, overloading the input layer with too much data and attempting to predict a vast
array of output parameters can lead to substantial challenges in the training, learning,
and structuring of the ANN model. This overload can potentially result in less accurate
predictions. Therefore, it is crucial to meticulously consider the selection of relevant input
data, the arrangement of hidden layers, and the determination of output parameters for
more precise outcomes [67]. The generalization capability of ANNs is a concern. While
ANNs are efficient in modeling specific scenarios based on their training, their ability to
generalize to new, unseen scenarios is often limited. This limitation is particularly crucial
when it comes to emissions analysis, where regulatory standards are stringent and require
precise adherence [68]. The limited solubility and viscosity differences between ethanol
and diesel in biodiesel blends pose another challenge. These physical property dispari-
ties can lead to phase separation and impact the lubricity of the fuel, influencing engine
performance and emissions, which ANNs might not accurately predict. The training data
used to develop ANN models can also impact their predictive capabilities. If the training
datasets are not sufficiently diverse or representative of the operating conditions, the ANNs
may fail to generalize well to new scenarios. Kolakoti’s research indicated that, while
ANN models could achieve high accuracy under specific conditions, their performance
may degrade when applied to different biodiesel types or engine configurations [69]. This
limitation emphasizes the need for extensive and varied datasets to enhance the robustness
of ANN predictions.

Furthermore, developing ANN models for biodiesel engines requires expertise in
both engine technology and computational modeling. This interdisciplinary requirement
can be a barrier in terms of resources and knowledge, impacting the development and
refinement of ANN models. One of the primary limitations is the accuracy of ANNs
in predicting engine performance and emissions. Bhatt at al. [70] delve into the state-
of-the-art application of ANNs in internal combustion engines, noting that the complex
interactions in engine processes can be challenging for ANN models to accurately predict.
This limitation is partly due to the variability in biodiesel compositions and the complex
nature of combustion processes.

5.2. Cost Analysis of Biodiesel Usage and the Integration of ANNs in Engine Optimization

ANN models facilitate the prediction of engine performance metrics, such as brake
specific fuel consumption (BSFC), brake thermal efficiency (BTE), and torque, which are
critical for assessing the economic viability of biodiesel as an alternative fuel. For instance,
Umeuzuegbu et al. demonstrated that ANNs could effectively model engine performance
based on biodiesel blends and engine speed, providing insights into the unit cost associated
with biodiesel usage [71]. This predictive capability allows for a more informed decision-
making process regarding the economic implications of biodiesel fuel blends. Moreover,
the cost-effectiveness of biodiesel can be further analyzed through its performance char-
acteristics. Studies have shown that the fatty acid composition of biodiesel significantly
influences its fuel properties and, consequently, the engine’s performance. By employing
ANNs to correlate these properties, researchers can optimize biodiesel blends to achieve
better performance, while minimizing costs. For example, Singh et al. highlighted the
importance of understanding the relationship between biodiesel composition and engine
characteristics, which can lead to more efficient fuel formulations that reduce operational
costs [72]. This optimization process is crucial for commercial viability, as it directly impacts
the economic feasibility of biodiesel as a substitute for conventional diesel fuels. In addition
to performance metrics, the environmental benefits of biodiesel usage also play a role in cost
analysis. The reduction in emissions associated with biodiesel fuels can lead to lower regu-
latory compliance costs and potential financial incentives for using cleaner fuels. Research
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has indicated that biodiesel blends can significantly reduce harmful emissions compared to
traditional diesel, thus providing an economic advantage when considering the costs asso-
ciated with emissions control [73]. For instance, El-Shafay et al. found that palm biodiesel
blends improved engine performance, while also reducing emissions, which could translate
into lower costs related to environmental compliance [56]. This dual benefit of performance
enhancement and emission reduction underscores the economic potential of biodiesel. The
integration of ANNs with optimization techniques, such as genetic algorithms, further
enhances the cost analysis of biodiesel usage. By optimizing the biodiesel–diesel blend
ratios, researchers can identify the most cost-effective combinations that yield optimal
engine performance [73]. For example, the work by Najafi et al. utilized ANNs in conjunc-
tion with response surface methodology to determine the optimal blending conditions for
biodiesel and diesel, demonstrating a systematic approach to cost optimization in biodiesel
applications [74]. This methodology not only aids in achieving better performance but also
ensures that the economic implications are thoroughly evaluated.

5.3. Challenges in Data Collection, Model Training, and Validation

Data Collection Challenges: Data collection for ANN modeling in diesel engines is
multifaceted and requires an extensive and diverse dataset that captures a wide range of
operating conditions, fuel types, and engine specifications. Collecting such comprehensive
data is often time-consuming, expensive, and technically challenging. In the case of
biodiesel, factors like the variety of feedstock sources, the production process, and the blend
ratios significantly affect the fuel’s properties and, consequently, the engine’s performance.
This variability necessitates the collection of a vast array of data to accurately train the
ANN models [75]. Data collection, model training, and validation also pose significant
challenges. As Aghbashlo et al. [76] observe, the quality and quantity of data available
for training ANNs are crucial for their performance. Inaccurate or insufficient data can
lead to models that do not accurately reflect real-world engine behavior. Furthermore, the
training of ANN models to capture the nuances of biodiesel fuel characteristics and engine
responses requires significant computational resources and expertise.

Model Training Difficulties: Training ANNs for diesel engine applications involves
setting a large number of hyper-parameters and structuring layers and neurons in a way
that can best interpret the complex relationship between inputs (like fuel properties) and
outputs (such as emissions and efficiency). This process requires not only substantial com-
putational resources but also specialized knowledge in both engine mechanics and machine
learning. Additionally, ensuring that the ANN is neither underfitting nor overfitting is
a delicate balance that must be achieved during training [77].

Validation Complexities: Validating ANN models is a critical step to ensure their
reliability and accuracy in real-world applications. However, validating models that
predict engine performance and emissions is challenging due to the dynamic and
nonlinear nature of engine systems. Field tests and real-world data are essential for
validation but can be difficult to obtain and may not always be representative of the
broader range of operating conditions. Furthermore, for biodiesel engines, variations
in fuel quality and composition across different sources add an additional layer of
complexity to the validation process [78,79]. Figure 3 highlights the challenges in data
collection, model training, and validation for ANN modeling in diesel engines, with
a focus on biodiesel applications.
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5.4. Potential Areas of Improvement in ANN Modeling for Better Accuracy and Reliability

One area of improvement is the integration of fuzzy systems with ANNs to handle
uncertainties and improve modeling capabilities. Sarma at al. [80] proposed a fuzzy neural
system using a fuzzy time delay fully recurrent neural network (FTDFRNN), which tackles
time-varying inputs in fuzzified form. This approach is especially useful in modeling the
stochastic behavior of engine systems, allowing for better adaptation to minute variations in
propagation conditions, such as those encountered in engine operations. Optimizing neural
network architectures for specific applications is another area of improvement. Rozario
at al. [81] conducted a performance comparison of phoneme modeling using various
optimization algorithms for neural network architectures. Their study highlighted the
importance of selecting the right optimization algorithm and adjusting the neural network’s
structure to enhance the modeling performance, which can be applied to engine modeling
for more precise predictions. Manivannan [82] emphasized the significance of numerical
and experimental studies in engine modeling. By combining thermodynamic and global
modeling techniques, more comprehensive and accurate ANN models can be developed,
especially for lean burn spark ignition engines. This approach can improve performance
and emission characteristics, highlighting the need for a holistic view in ANN modeling.

Advancements in deep learning can provide significant improvements in ANN mod-
eling. Pradeep at al. [83] demonstrated the effectiveness of deep neural networks (DNN)
for Kannada phoneme recognition. The application of DNN in engine modeling, es-
pecially for handling large datasets and complex relationships, can lead to significant
performance enhancements.

Lastly, forecasting engine performance and emission parameters using ANN model-
ing, as explored by Manimaran at al. [84], can benefit from incorporating environmental
considerations. Their study on green diesel extracted from waste biomass resources un-
derscores the potential of ANN models in promoting sustainable and eco-friendly engine
technologies. Potential areas for improvement in ANN modeling include the integration of
more diverse and extensive datasets and the development of more advanced algorithms
that can capture the complex relationships in engine performance and emissions more
accurately. Sharma’s [85] comparative evaluation suggests that integrating ANNs with
other computational techniques could enhance prediction accuracy.

Moreover, addressing the issue of overfitting, where models perform well on training
data but poorly on unseen data, is crucial. Enhancing the generalizability of ANN models
remains a key area of development. Research by Palanivelu et al. [86] into biodiesel-fueled
engine analysis using ANNs highlights the need for models that can adapt to different
types of biodiesel and engine configurations.
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6. Future Prospects and Advancements
6.1. Emerging Trends in ANNs and Their Potential Impact on Biodiesel-Fueled Diesel Engines

A significant trend in ANN applications is observed in reactivity-controlled com-
pression ignition engines, as elucidated by Paykani et al. [87]. Their study explores low-
temperature combustion strategies, including reactivity-controlled compression ignition,
which uses dual-fuel partially premixed combustion. This approach, enhanced by ANN
modeling, offers greater control over combustion phasing and duration, contributing to
improved fuel flexibility and combustion efficiency. Such advances are essential in reducing
NOX and particulate matter emissions, thereby promoting cleaner and more efficient diesel
engine operations. Ennetta et al. [88] discussed current technologies and future trends in
biodiesel production. This comprehensive review underscores the importance of advanced
ANN applications in optimizing biodiesel production processes, directly impacting diesel
engine performance and emissions. By enhancing biodiesel quality and efficiency, ANNs
contribute to more sustainable and eco-friendly diesel engine operations. Kumar at al. [89]
analyzed the performance and emission of antioxidant-treated waste cooking oil biodiesel
using ANNs. This study demonstrates the potential of ANN models in enhancing biodiesel
properties for improved engine efficiency and reduced emissions, reinforcing the relevance
of emerging ANN trends in biodiesel research.

These emerging trends in ANN applications reflect the significant potential of these
models in revolutionizing biodiesel-fueled diesel engine technology. From optimizing
combustion processes to improving biodiesel production and enhancing fuel properties,
ANNs are instrumental in advancing sustainable and efficient diesel engine solutions.

6.2. The Role of Big Data and Advanced Algorithms in Enhancing ANN Applications

The integration of big data and advanced algorithms with artificial neural networks
(ANNs) is revolutionizing their applications, particularly in modeling biodiesel-fueled
diesel engine performance. These advancements not only enhance the predictive capa-
bilities of ANNs but also address the challenges posed by the vast and complex datasets
involved in engine performance modeling [90]. Diamantoulakis at al. [91] emphasizes the
need for advanced data analytics and big data management in handling the immense size
of data generated by smart systems. In the context of diesel engines, this approach is crucial
for dealing with the extensive data generated by various sensors and performance tests.
The use of such data analytics can significantly improve the prediction accuracy of ANNs
in engine modeling.

Efficient big data clustering, explored by Ianni et al. [92], presents another avenue for
enhancing ANN applications. Their work on the CLUBS+ algorithm demonstrates how
complex data mining algorithms can be adapted for scalable deployment on massively
parallel distributed systems. This methodology is particularly relevant for ANNs in diesel
engine modeling, as it allows for the effective clustering and analysis of large-scale engine
performance data, leading to more accurate and reliable predictions. The role of unsuper-
vised clustering algorithms tailored for big data applications, such as CLUBS-P, also shows
promise in enhancing ANN models. This approach, as described by Ianni et al. [93], focuses
on refining clustering algorithms to handle the complexity and scale of big data, which is
vital for improving the performance and reliability of ANNs in engine emission analysis.
The application of algorithms for big data in advanced communication systems and cloud
computing, as discussed by Stergiou at al. [94], has implications for ANN applications in
engine modeling. This research highlights the potential of combining big data functionali-
ties with cloud computing to enhance the security and efficiency of data analysis, which is
instrumental in optimizing ANN models for engine performance predictions.
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Emerging trends in ANNs are leaning towards more complex and efficient algorithms
that can handle big data effectively. Bhatt at al. [70] highlight the potential of ANNs in
dealing with the intricacies of internal combustion engines, suggesting that advancements
in ANNs will lead to more precise modeling and optimization. The integration of ANNs
with big data analytics opens new avenues for understanding engine behavior under
diverse operational conditions, leading to more refined control strategies. The role of big
data in enhancing ANN applications cannot be overstated. As the volume of data from
engine tests and simulations grows, the ability of ANNs to process and learn from this data
will be pivotal in developing more accurate predictive models. This will lead to enhanced
efficiency and emission performance of biodiesel engines [94].

Future research directions are likely to focus on hybrid models that combine ANNs
with other machine learning techniques, such as genetic algorithms and deep learning.
These hybrid models, as Sharma [85] suggests, can potentially overcome the limitations of
current ANN models, offering more robust predictions and optimizations.

Breakthroughs in this field might come from the development of real-time adaptive
ANNs that can adjust to changing engine conditions and fuel properties, leading to opti-
mized engine performance and reduced emissions. The exploration of ANNs in bio-diesel
production techniques indicates a growing interest in applying ANNs beyond engine
performance to encompass the entire biodiesel production and utilization cycle [95].

Further exploration is needed to improve the application of neural networks (NNs)
in biodiesel-fueled compression ignition (CI) engines. Advancements in neural network
structures, refined training techniques, and hybrid machine learning approaches could
provide deeper insights into the dynamics of CI engines. Combining these technologi-
cal improvements with innovations in biofuel production will enable optimized engine
performance, reduced emissions, and a more sustainable energy future [96–98].

6.3. Actionable Recommendations for Future Research

To maximize the potential of ANNs in biodiesel engine technology, future research
should address the following areas:

– Real-time adaptive ANNs: design ANN models capable of adjusting to changes in
engine conditions and fuel properties in real time, improving operational efficiency
and reducing emissions.

– Lifecycle optimization: expand ANN applications beyond engine performance
to encompass biodiesel production, blending, and supply chain optimization for
a holistic approach.

– Hybrid approaches: integrate ANNs with emerging techniques, such as deep learning,
reinforcement learning, and big data analytics for more accurate and scalable solutions.

– Sustainability metrics: incorporate environmental impact assessments into ANN
models to evaluate the sustainability of biodiesel use across its lifecycle.

7. Conclusions
In conclusion, the application of artificial neural networks (ANNs) in biodiesel-fueled

diesel engines highlights their significant potential in improving engine performance and
reducing emissions. ANNs excel in predicting complex relationships between biodiesel
blends and engine parameters, contributing to advancements in renewable energy adoption
within the automotive sector. Despite challenges in data collection, model training, and
generalization, emerging trends, such as integrating ANNs with big data and advanced
algorithms, are driving improvements in modeling precision and reliability.
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The application of artificial neural networks (ANNs) in biodiesel-fueled diesel engines
underscores their significant potential for improving engine performance and reducing
emissions. Key findings include:

• Enhanced prediction and optimization: ANNs effectively model complex relationships
between biodiesel blends and engine parameters, enabling the better prediction of
performance metrics and emission characteristics.

• Emission reduction potential: ANN models demonstrate their utility in optimizing
engine parameters to mitigate harmful emissions, particularly nitrogen oxides (NOX),
while maintaining overall efficiency.

• Integration with advanced technologies: the combination of ANNs with big data
analytics and advanced algorithms has shown promise in improving model accuracy
and reliability across diverse engine configurations.

• Hybrid model effectiveness: studies reveal that integrating ANNs with hybrid tech-
niques, such as genetic algorithms and fuzzy systems, enhances optimization and
adaptability under variable conditions.

Future research should prioritize hybrid ANN models, combining techniques like
genetic algorithms and deep learning to enhance predictive accuracy and optimization.
Developing real-time adaptive systems will enable dynamic adjustments to engine condi-
tions, while comprehensive cost analyses will further establish the economic feasibility of
ANN-optimized biodiesel engines.

The integration of ANNs in biodiesel engines represents a vital step toward environ-
mentally sustainable automotive solutions, underscoring the role of artificial intelligence in
fostering innovative, efficient, and eco-friendly energy systems.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Networks
BPNN Back Propagation Neural Network
RBFNN Radial Basis Function Neural Networks
ANFIS Adaptive Neuro-Fuzzy Inference Systems
BTE Brake Thermal Efficiency
EGT Exhaust Gas Temperature
CO Carbon Monoxide
HC Hydrocarbons
NOX Nitrogen Oxides
PM Particulate Matter
BSFC Brake Specific Fuel Consumption
BSEC Brake Specific Energy Consumption
RMSE Root Mean Square Error
MAPE Mean Absolute Percentage Error
MAP Mean Absolute Percentage
MSRE Mean Squared Relative Error
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MEP Mean Error Percentage
MRE Mean Relative Error
FTDFRNN Fuzzy Time Delay Fully Recurrent Neural Network
CI Engine Compression Ignition Engine
WCO Waste Cooking Oil
HME Honge Methyl Ester
JME Jatropha Methyl Ester
RSM Response Surface Methodology
HRR Heat Release Rate
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Ömer Halisdemir Üniversitesi Mühendislik Bilim. Derg. 2023, 12, 1452–1480.

6. Ai, W.; Cho, H.M.; Mahmud, M.I. The Impact of Various Factors on Long-Term Storage of Biodiesel and Its Prevention: A Review.
Energies 2024, 17, 3449. [CrossRef]

7. Khujamberdiev, R.; Cho, H. Impact of Biodiesel Blending on Emission Characteristics of One-Cylinder Engine Using Waste Swine
Oil. Energies 2023, 16, 5489. [CrossRef]

8. Bawane, R.K.; Choudhary, C.; Muthuraja, A.; Shelke, G.N. Characterization of Calophyllum Oil Biodiesel—Alternative Fuel to
Diesel Engines. In Techno-Societal 2020; Pawar, P.M., Balasubramaniam, R., Ronge, B.P., Salunkhe, S.B., Vibhute, A.S., Melinamath,
B., Eds.; Springer: Cham, Switzerland, 2021. [CrossRef]

9. Bawane, R.K.; Gadge, N.B.; Bawane, D.K. Honne Oil Biodiesel—Alternative Fuel For CI Engine. Int. J. Sci. Res. Sci. Eng. Technol.
2015, 1, 433–435.

10. Zheng, F.; Cho, H.M. The Effect of Different Mixing Proportions and Different Operating Conditions of Biodiesel Blended Fuel on
Emissions and Performance of Compression Ignition Engines. Energies 2024, 17, 344. [CrossRef]

11. Cavalcanti, F.M.; Kozonoe, C.E.; Pacheco, K.A.; Alves, R.M. Application of Artificial Neural Networks to Chemical and Process
Engineering. In Deep Learning Applications; IntechOpen: London, UK, 2021. [CrossRef]

12. Portillo, N.P.; Valdecantos, V.N. Review of the application of Artificial Neural Networks in ocean engineering. Ocean Eng. 2022,
259, 111947. [CrossRef]

13. Elkelawy, M.; El Shenawy, E.A.; Bastawissi, H.A.; El Shennawy, I.A. The effect of using the WCO biodiesel as an alternative fuel in
compression ignition diesel engine on performance and emissions characteristics. J. Phys. Conf. Ser. 2022, 2299, 012023. [CrossRef]

14. Venu, H.; Appavu, P. Al2O3 nano additives blended Polanga biodiesel as a potential alternative fuel for existing unmodified DI
diesel engine. Fuel 2020, 279, 118518. [CrossRef]

15. Gosala, D.B.; Allen, C.M.; Ramesh, A.K.; Shaver, G.M.; McCarthy, J.E.; Stretch, D.; Koeberlein, E.; Farrell, L. Cylinder deactivation
during dynamic diesel engine operation. Int. J. Engine Res. 2017, 18, 991–1004. [CrossRef]

16. Yu, S.; Yin, B.; Deng, W.; Jia, H.; Ye, Z.; Xu, B.; Xu, H. Experimental study on the diesel and biodiesel spray characteristics
emerging from equilateral triangular orifice under real diesel engine operation conditions. Fuel 2018, 224, 357–365. [CrossRef]

17. Dahdah, E.; Estephane, J.; Haydar, R.; Youssef, Y.; El Khoury, B.; Gennequin, C.; Aboukaïs, A.; Abi-Aad, E.; Aouad, S. Biodiesel
production from refined sunflower oil over Ca–Mg–Al catalysts: Effect of the composition and the thermal treatment. Renew.
Energy 2020, 146, 1242–1248. [CrossRef]

18. Kamzolova, S.V.; Morgunov, I.G. Optimization of medium composition and fermentation conditions for α-ketoglutaric acid
production from biodiesel waste by Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 2020, 104, 7979–7989. [CrossRef]

19. Kamalakannan, J.; Prabagaran, S.; Mukuloth, S.; Sunilkumar, R. Performance, emissions, and combustion in turbocharged diesel
engines: The effect of rapeseed oil biodiesel-diesel blends. Therm. Sci. 2023, 27 Pt 6, 4767–4777. [CrossRef]

20. Ng, J.; Teh, J.; Wong, K.Y.; Wu, K.H.; Chong, C.T. A Techno-Economical and Automotive Emissions Impact Study of Global
Biodiesel Usage in Diesel Engines. J. Soc. Automot. Eng. Malays. 2017, 1, 124–136. [CrossRef]

https://doi.org/10.1016/j.seta.2022.102464
https://doi.org/10.1007/s11356-023-26053-x
https://doi.org/10.1007/s11356-023-27121-y
https://www.ncbi.nlm.nih.gov/pubmed/37148511
https://doi.org/10.1139/tcsme-2019-0049
https://doi.org/10.3390/en17143449
https://doi.org/10.3390/en16145489
https://doi.org/10.1007/978-3-030-69925-3_88
https://doi.org/10.3390/en17020344
https://doi.org/10.5772/intechopen.96641
https://doi.org/10.1016/j.oceaneng.2022.111947
https://doi.org/10.1088/1742-6596/2299/1/012023
https://doi.org/10.1016/j.fuel.2020.118518
https://doi.org/10.1177/1468087417694000
https://doi.org/10.1016/j.fuel.2018.03.099
https://doi.org/10.1016/j.renene.2019.06.171
https://doi.org/10.1007/s00253-020-10805-7
https://doi.org/10.2298/TSCI221112219J
https://doi.org/10.56381/jsaem.v1i2.14


Energies 2025, 18, 438 18 of 21

21. Zheng, F.; Cho, H. Combustion and Emission of Castor Biofuel Blends in a Single-Cylinder Diesel Engine. Energies 2023, 16, 5427.
[CrossRef]

22. Khujamberdiev, R.; Cho, H.M. Exploring the Environmental and Performance Implications of Utilizing Waste Swine Oil Biodiesel
in CI Engines. Energies 2024, 17, 551. [CrossRef]

23. Khujamberdiev, R.; Cho, H.M.; Mahmud, M.I. Experimental Investigation of Single-Cylinder Engine Performance Using Biodiesel
Made from Waste Swine Oil. Energies 2023, 16, 7891. [CrossRef]

24. Rajak, U.; Nashine, P.; Dasore, A.; Balijepalli, R.; Chaurasiya, P.K.; Verma, T.N. Numerical analysis of performance and emission
behavior of CI engine fueled with microalgae biodiesel blend. Mater. Today Proc. 2022, 49, 301–306. [CrossRef]

25. Rajak, U.; Singh, T.S.; Verma, T.N.; Chaurasiya, P.K.; Shaik, S.; Afzal, A.; Cuce, E.; Rajhi, A.A.; Saleel, C.A. Experimental and
parametric studies on the effect of waste cooking oil methyl ester with diesel fuel in compression ignition engine. Sustain. Energy
Technol. Assess. 2022, 53, 102705. [CrossRef]

26. Jaliliantabar, F.; Ghobadian, B.; Najafi, G.; Yusaf, T. Artificial neural network modeling and sensitivity analysis of performance
and emissions in a compression ignition engine using biodiesel fuel. Energies 2018, 11, 2410. [CrossRef]

27. Surianarayanan, C.; Lawrence, J.J.; Chelliah, P.R.; Prakash, E.; Hewage, C. Convergence of Artificial Intelligence and Neuroscience
towards the Diagnosis of Neurological Disorders—A Scoping Review. Sensors 2023, 23, 3062. [CrossRef]

28. de Souza, A.C.; Lanteri, S.; Hernández-Figueroa, H.E.; Abbarchi, M.; Grosso, D.; Kerzabi, B.; Elsawy, M. Back-propagation
optimization and multi-valued artificial neural networks for highly vivid structural color filter metasurfaces. Sci. Rep. 2023,
13, 21352. [CrossRef]

29. Holthusen, H.; Lamm, L.; Brepols, T.; Reese, S.; Kuhl, E. Theory and implementation of inelastic Constitutive Artificial Neural
Networks. arXiv 2023, arXiv:abs/2311.06380. Available online: https://api.semanticscholar.org/CorpusID:265150390 (accessed
on 8 December 2024).

30. Namvar-Asl, M.; Soltanieh, M.; Rashidi, A.; Irandoukht, A. Modeling and preparation of activated carbon for methane storage I.
Modeling of activated carbon characteristics with neural networks and response surface method. Energy Convers. Manag. 2008, 49,
2471–2477. [CrossRef]

31. Yusri, I.M.; Majeed, A.A.; Mamat, R.; Ghazali, M.F.; Awad, O.I.; Azmi, W.H. A review on the application of response surface
method and artificial neural network in engine performance and exhaust emissions characteristics in alternative fuel. Renew.
Sustain. Energy Rev. 2018, 90, 665–686. [CrossRef]

32. Akakuru, O.C.; Njoku, U.B.; Obinna-Akakuru, A.U.; Akudinobi, B.E.B.; Obasi, P.N.; Aigbadon, G.O.; Onyeanwuna, U.B. Non-
carcinogenic health risk assessment and predicting of pollution indexing of groundwater around Osisioma, Nigeria, using
artificial neural networks and multi-linear modeling principles. Stoch. Environ. Res. Risk Assess. 2023, 37, 2413–2443. [CrossRef]

33. Saravanan, P.; Pandey, A.; Joshi, K.; Rondon, R.; Narasimharao, J.; Imran, A.A. Using machine learning principles, the classification
method for face spoof detection in artificial neural networks. In Proceedings of the 2023 3rd International Conference on Advance
Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 12–13 May 2023; pp. 2784–2788.
[CrossRef]

34. Dhimish, M.; Tyrrell, A.M. Photovoltaic Bypass Diode Fault Detection Using Artificial Neural Networks. IEEE Trans. Instrum.
Meas. 2023, 72, 3507710. [CrossRef]

35. Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network
applications: A survey. Heliyon 2018, 4, e00938. [CrossRef]

36. Shanmuganathan, S. Artificial neural network modelling: An introduction. In Artificial Neural Network Modelling; Springer
International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 1–14. [CrossRef]

37. Panda, A.K.; Rout, S.K.; Das, A.K. Optimization of diesel engine performance and emission using waste plastic pyrolytic oil by
ann and its thermo-economic assessment. Environ. Sci. Pollut. Res. 2023, 31, 38893–38907. [CrossRef] [PubMed]

38. Tosun, E.; Özgür, T.; Özgür, C.; Özcanlı, M.; Serin, H.; Aydın, K. Comparative analysis of various modelling techniques for
emission prediction of diesel engine fueled by diesel fuel with nanoparticle additives. Eur. Mech. Sci. 2017, 1, 15–23. [CrossRef]

39. Pai, P.S.; Rao, B.R. Radial-basis-function-network-based prediction of performance and emission characteristics in a bio diesel
engine run on wco ester. Adv. Artif. Intell. 2012, 2012, 610487. [CrossRef]

40. Karagöz, M. Ann based prediction of engine performance and exhaust emission responses of a ci engine powered by ternary
blends. Int. J. Automot. Sci. Technol. 2020, 4, 180–184. [CrossRef]

41. Menon, P.; Krishnasamy, A. A composition-based model to predict and optimize biodiesel-fuelled engine characteristics using
artificial neural networks and genetic algorithms. Energy Fuels 2018, 32, 11607–11618. [CrossRef]

42. Çirak, B.; Demirtas, S. An application of artificial neural network for predicting engine torque in a biodiesel engine. Am. J. Energy
Res. 2014, 2, 74–80. [CrossRef]

43. Garg, A.B.; Diwan, P.; Saxena, M. Artificial neural networks for internal combustion engine performance and emission analysis.
Int. J. Comput. Appl. 2014, 87, 23–27. [CrossRef]

https://doi.org/10.3390/en16145427
https://doi.org/10.3390/en17030551
https://doi.org/10.3390/en16237891
https://doi.org/10.1016/j.matpr.2021.02.104
https://doi.org/10.1016/j.seta.2022.102705
https://doi.org/10.3390/en11092410
https://doi.org/10.3390/s23063062
https://doi.org/10.1038/s41598-023-48064-x
https://api.semanticscholar.org/CorpusID:265150390
https://doi.org/10.1016/j.enconman.2008.01.039
https://doi.org/10.1016/j.rser.2018.03.095
https://doi.org/10.1007/s00477-023-02398-0
https://doi.org/10.1109/ICACITE57410.2023.10182551
https://doi.org/10.1109/TIM.2023.3244230
https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1007/978-3-319-28495-8_1
https://doi.org/10.1007/s11356-023-26891-9
https://www.ncbi.nlm.nih.gov/pubmed/37079233
https://doi.org/10.26701/ems.320490
https://doi.org/10.1155/2012/610487
https://doi.org/10.30939/ijastech..771789
https://doi.org/10.1021/acs.energyfuels.8b02846
https://doi.org/10.12691/ajer-2-4-1
https://doi.org/10.5120/15212-3705


Energies 2025, 18, 438 19 of 21

44. Wang, M.; Zhang, S.; Zhang, J.; Yu, F. Prediction of performance and exhaust emission of a marine electronic control diesel engine
based on modeling of bp neural networks. In Proceedings of the 2011 International Conference on Electronic & Mechanical
Engineering and Information Technology, Harbin, China, 12–14 August 2011. [CrossRef]

45. v., K.; Masimalai, S.K. Predicting the performance and emission characteristics of a Mahua oil-hydrogen dual fuel engine using
artificial neural networks. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 2891–2910. [CrossRef]

46. Javed, S.; Murthy, Y.S.; Baig, R.U.; Rao, D.P. Development of ANN model for prediction of performance and emission characteris-
tics of hydrogen dual fueled diesel engine with Jatropha Methyl Ester biodiesel blends. J. Nat. Gas Sci. Eng. 2015, 26, 549–557.
[CrossRef]

47. Channapattana, S.V.; Pawar, A.A.; Kamble, P.G. Optimisation of operating parameters of DI-CI engine fueled with second
generation Bio-fuel and development of ANN based prediction model. Appl. Energy 2017, 187, 84–95. [CrossRef]

48. Tosun, E.; Aydin, K.; Bilgili, M. Comparison of linear regression and artificial neural network model of a diesel engine fueled with
biodiesel-alcohol mixtures. Alex. Eng. J. 2016, 55, 3081–3089. [CrossRef]

49. Gul, M.; Shah, A.N.; Aziz, U.; Husnain, N.; Mujtaba, M.A.; Kousar, T.; Ahmad, R.; Hanif, M.F. Grey-Taguchi and ANN based
optimization of a better performing low-emission diesel engine fueled with biodiesel. Energy Sources Part A Recovery Util. Environ.
Eff. 2019, 44, 1019–1032. [CrossRef]

50. Aydın, M.; Uslu, S.; Bahattin Çelik, M. Performance and emission prediction of a compression ignition engine fueled with
biodiesel-diesel blends: A combined application of ANN and RSM based optimization. Fuel 2020, 269, 117472. [CrossRef]

51. Shivakumar, S.P.; Shrinivasa, R.; Samaga, B.S. Performance and emission characteristics of a 4 stroke C.I. engine operated on
honge methyl ester using artificial neural network. J. Eng. Appl. Sci. 2010, 5, 83–94.
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