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Abstract: In the domain of industrial process control, the ubiquitous proportional–integral–
derivative (PID) control paradigm, while foundational, is deemed insufficient amidst
evolving complexities. In alignment with China’s strategic “dual-carbon” targets, extant
thermal power installations are mandated to facilitate profound peak load navigation and
expedited frequency modulation services. The incumbent PID control schema is found
wanting in this regard, precipitating the imperative for an innovative process control
technology to supplant the conventional PID regimen. Power system engineers have con-
sequently devised the engineering fastest controller (EFC), which has adeptly succeeded
PID control in nascent applications, thereby meeting the stringent control exigencies for
deep peak regulation and agile frequency modulation. Employing rigorous theoretical
analysis and sophisticated simulation experiments, this investigation meticulously com-
pares the performance attributes of high-order controllers (HOCs) with the EFC. The
empirical findings underscore the EFC’s pronounced superiority over PI, PID, and SOC in
regulatory performance enhancements by 122.2%, 88.0%, and 77.3%, respectively, and in
mitigating disturbances by 140.0%, 80.9%, and 54.5%, respectively. This study culminates
in the assertion that the EFC represents a paradigmatic advancement in industrial control
technology, not only manifesting pronounced performance benefits but also furnishing a
robust theoretical scaffolding that transcends the performance zeniths of traditional PID
and HOC technologies.

Keywords: industrial process control; noise power gain; proportional–integral–derivative
controller; high-order controller; engineering fastest controller

1. Introduction
In the context of global carbon peaking and carbon neutrality [1], commonly referred

to as the “double-carbon” energy target, new energy power sources such as wind power [2]
and photovoltaic power [3] have been developed rapidly. However, one of the challenges
associated with these new energy sources is their volatility and lack of regulation. As new
energy power generation continues to be integrated into the power grid, the proportion
of the amount the power grid facing the new power consumption pressure continuously
increases. In order to effectively solve the “abandoned wind” [4], “abandoned light” [5]
problem, the current stage of the grid urgently needs to rapidly increase the depth of
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the peak and the fast frequency regulation capacity. Traditional coal-fired thermal power
generating units [6], that is, thermal power units, are still the basic component of the power
generation side. The objective requirements of the thermal power units in service are to
provide deep peaking and fast frequency regulation services that are simple to understand.
Sacrificing the traditional thermal power units of power generation to promote the rapid
development of new energy power is the objective choice to accelerate the development of
new energy power at this stage. However, significantly improving the depth of the existing
thermal power units of peaking and fast frequency regulation performance is a relatively
complex technical problem, representing a challenge for the technical personnel of power
companies. Deep peaking and fast frequency regulation performance is a relatively complex
technical issue that challenges the technical staff of power companies. From the control
point of view, the existing thermal power unit process control based on PID [7,8] control
is not enough to continue to meet the new energy power of large-scale grid-connected
control needs, heralding in the new energy power behind the rapid development of the
process control technology. The rapid development of the new energy power behind the
process control technology produces new needs, and the objective need to replace the
existing PID control, in essence, is a significant breakthrough in the existing PID control
performance ceiling.

Huang et al. [9] emphasized that “control science itself belongs to technical science,
and the primary driving force for its development should be the needs of national or
human development”. In the power system, since 2016, in the power engineering practice,
the technicians of power enterprises have identified a significant issue: traditional PID
control. The role of the CI [10] used in traditional PID control is not efficient, which is to
build the CI basis of the FOIF behind the exponential tracking filtering mechanism. The
FOIF is the basis for the construction of the PID structure. Reference [11] pointed out
that: “PID control represents an exponential control mechanism”, and the breakthrough of
the existing PID control is essentially from the filtering point of view of the exponential
tracking filtering mechanism behind the FOIF. Based on this understanding, the technicians
of power grid enterprises invented an EFTF, which significantly improves the performance
of the filter output tracking filter input, and an EFC, which represents a new industrial
process control technology that significantly improves the feedback control performance
relative to traditional PID control. The EFC, which represents a new industrial process
control technology, is developed based on the EFTF and obviously improves the feedback
control performance relative to traditional PID control.

As of 2022, the EFC has been implemented in various aspects of commercial technolog-
ical reform projects such as auxiliary frequency control [11–14], control of the denitrification
system [15], control of the steam temperature system [16], and other aspects of the existing
thermal power units in a certain province. It has been realized to replace PID control in
large-scale applications. Shi et al. [17] point out that “The auxiliary frequency regulation
external control system developed with EFC as the core has been rapidly popularized in
main thermal power units in Guangdong Province. During the period from January 2020 to
June 2021, it has been applied to 3 thermal power units (with a total capacity of 25,600 MW)
for auxiliary frequency regulation external control system commercial contract projects”.
The aim of replacing PID control is not to overthrow the basic PID structure but to consider
the EFC as a basic PI plus filter structure. At the present stage, the EFC plays an important
role in promoting the large-scale consumption of new energy power in the power grid
and ensuring the safe and stable operation of the power grid. In addition, Reference [17]
introduced the EFC into advanced weapon control systems.

The EFC is an important technical advancement in engineering practice, with theoreti-
cal issues behind it. In the face of this emerging process control technology, i.e., the EFC,
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research work has been initiated by research teams in power grids, including, in particular,
some university teams. However, the structure of the EFC is not conducive to theoretical
research. At the present stage, the research mainly analyzes the mathematical analysis from
the perspective of the frequency domain method and gives the theoretical basis of the EFC
beyond traditional PID control.

In order to avoid conflicts with the existing research, the contents of this paper primar-
ily address topics that have not been discussed in the existing research.

In the case not specified in the text, the unit of time constant, time, etc., is s; the unit
of frequency ω is rad/s, gain, ratio, etc., is dimensionless natural numbers; the unit of
phase margin, phase, etc., is degree (◦); the order is a dimensionless natural integer; the
commonly used logarithmic 20 lg unit is dB; the numerical computation interval for the
simulation experiments is 0.5 s; and the input of the process of the simulation experiments
and the process of the process are given as units of steps.

2. Control Constraints in the Industrial Environment
In the industrial environment, there are various types of interferences. The interference

discussed in this paper mainly includes two persistent types of interference that always
exists. The first type is the interference caused by the external environment on thermal
power units. For example, there are obvious stochastic interference components in the
power signal, mainly caused by random fluctuations in the grid’s electricity side of the
load, including new energy power load random fluctuations caused by power signals
directly used for important control system feedback. The second type is related to the
system process of interference in thermal power units. For example, boiler combustion has
obvious randomness, and process signals such as wind pressure, wind temperature, water
level, steam pressure, steam temperature, and other process signals carry obvious random
interference components. The amplitude of these random interferences are not the same;
for example, wind pressure, water levels, and other process signals in the amplitude of the
random interferences are relatively high and steam pressure, steam temperature, and other
process signals in the amplitude of random interferences are relatively low. The amplitude
of these random interferences varies from 0.2% to 30% of the range of the process signals,
such as wind pressure, water level, and other process signals.

The effect of random disturbances has always been an important issue in control
systems; however, there is a notable lack of comprehensive and in-depth research regarding
their effects on control systems. Referring to Shannon’s information theory [18], the
SNR [19] is regarded as a constraint that directly determines the transmission rate and
the quality of information, such as the bit error rate of digital information [20]. In power
systems, the SNR of an industrial frequency signal directly affects the accuracy of power
frequency measurements. While the SNR is also important for control systems, its direct
impact on the performance of control systems is not clear, so how to assess the impact of
SNR also lacks a unified standard. Reference [14] converted the SNR into an NPG problem
and categorized the NPG as an aspect of the SNR. The NPG provides an intuitive constraint
principle. The NPG is:

npg =

∫ 0
−Tnpg

[nout(t)]
2dt∫ 0

−Tnpg
[nint(t)]

2dt
(1)

where npg is the calculation result of the NPG; nout(t) is the output of noise disturbance;
nint(t) is the input of noise disturbance; Tnpg is the time of calculating npg; and Tnpg is 2000
s by default in this paper.

Most of the control processes in thermal power plants are characterized by higher
order inertia [21], i.e., higher-order characteristics and higher-order hysteresis [22]. For
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these processes, a large number of PI controls is used in reality because PI has only two
parameters. In the use of simpler PID, PI belongs to the category of PID. In higher-order pro-
cesses, PI control performance is limited; in order to improve the control performance, there
is a need to use PID, including HOCs. In practice, it has been found that the improvement
in HOC performance relative to PID is not significant, and there may be some unrecognized
problems. One reason is that some industrial environments require that HOCs cannot
amplify random disturbances. The HOLO is a basic component of HOCs, and the main
problem of the HOLO is the amplification of random disturbances. Undifferentiated, the
LO has the problem of the amplification of random disturbances, and the control constraints
of industrial environments are not taken into account in the design of the LO. Another
reason is that even under the control constraints of the industrial environment, the LO with
different construction structures may have very different ahead-of-time performances.

In terms of the effects of random disturbances, the regulating mechanism of the process
control loop in a thermal power unit mainly consists of the electric regulating mechanism
and the pneumatic regulating mechanism. For electric regulators, the peak-to-peak value
of random disturbances should not exceed 5% or more of the control signal travel. For
pneumatic regulators, the peak-to-peak values of random disturbances should not exceed
10% of the control signal travel. This is because the peak-to-peak value of the random
interference is too high to accelerate the damage of the regulating mechanism, such as
causing motor coil overheating and burning, accelerating mechanical wear and tear, and
even causing unplanned downtime for accidents, resulting in large economic losses while
the planned downtime maintenance is normal.

Taking an LO as an example, a pseudo-random signal with zero mean and a variation
range of ±0.01 is input, and the obtained random interference output nout(t) results are
shown in Figure 1.
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Figure 1. The random interference output results.

As shown in Figure 1, the average peak-to-peak value of random interference was 2.8%
with t in the interval of 0 s–3000 s, NPG = 1, and the control signal traveling at 100%. With
t in the 3000 s–5000 s interval and NPG = 10, the average peak-to-peak value of random
disturbances was 8.9%. With t in the interval of 6000 s–9000 s and NPG = 100, the average
peak-to-peak value of random interference was 28.3%. Only based on the qualitative
judgment of the results given in Figure 1, for the electric regulator, the NPG should not
be more than 1 and for the pneumatic regulator, the NPG should not be more than 10;
however, this is not absolute. If process signals in the amplitude of the random interference
are relatively small, NPG = 100 may meet the needs. On the other hand, if the amplitude of
random interference in the process signal is high, NPG = 1 may not be sufficient.

The NPG represents a control constraint principle for industrial environments. In a
general sense, an NPG value not greater than 10 belongs to a lower level of noise interference
amplification, which is suitable for industrial environments. The significance of the NPG
is also to provide a reference standard for the performance comparison of the LO with
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two different build structures; however, the constraints discussed in this paper are not
representative of the full range of constraints in the industrial environment.

3. Limitations of Higher-Order Controllers
Considering HOCs as a kind of series structure of PI and the HOLO, and PID as a

kind of series structure consisting of PI and PD, PD represents the first-order over-observer.
There are two types of leading observers, referred to as the ATLO and BTLO, the

difference being that the denominator of the ATLO is one order higher than the numerator,
and the numerator of the denominator of the BTLO is of the same order. The ATLO and
BTLO are

fATLO(s) =
(1+ TLO

n s)
n

(1+λ
TLO

n s)
n+1 ,

fBTLO(s) =
(1+ TLO

n s)
n

(1+λ
TLO

n s)
n ,

0 < λ ≤ 1

(2)

where fATLO(s) and fBTLO(s) are the transfer functions of the ATLO and BTLO, respectively;
TLO is the time constant of overrun, n is the order; and λ is the overrun coefficient.

3.1. Situational Analysis of the A-Type Over-the-Horizon Observer

Firstly, the performance of the ATLO was analyzed with respect to n. The experimental
results obtained by setting TLO = 100 s and NPG = 10 ± 0.5 are shown in Table 1.

Table 1. Performance index of the ATLO.

Order/n 1 2 3 4

peak phase/◦ 54.8 68.9 72.0 72.3
peak gain/dB 20.17 21.93 21.93 21.64

λ 0.0491 0.177 0.301 0.401

Order/n 5 6 7 8

peak phase/◦ 71.9 70.9 69.7 68.7
peak gain/dB 21.36 20.96 20.56 20.26

λ 0.479 0.542 0.593 0.634

The peak phase value represents the ATLO’s performance. Under the NPG = 10
constraint, the maximum performance of the ATLO is related to n. There exists an upper
limit for n, and up to the upper limit, the performance of the ATLO is positively correlated
with n. The peak phase value represents the maximum performance of the ATLO. Outside
of the upper limit, the performance of the ATLO is inversely correlated with n.

At n = 5, the ATLO’s frequency characteristics obtained are shown in Figure 2.
In Figure 2, PATLO(ω) is the phase–frequency phase of the ATLO and GATLO(ω) is the

amplitude–frequency gain of the ATLO.
The ATLO is used to construct PID and SOC, and using λ given in Table 2, the PID

and SOC values are obtained as

fPI(s) = KP(1 + 1
TIs

),
fPID(s) = fPI(s)

1+TLOs
(1+0.0491TLOs)2 ,

fSOC(s) = fPI(s)
(1+ TLO

5 s)5

(1+0.479 TLO
5 s)6

(3)

where fPI(s), fPID(s), and fSOC(s) are the transfer functions of PI, PID, and SOC, respec-
tively, and KP and TI are the proportional gain and integration constant of PI, respectively.
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Table 2. Group A parameters of the controllers.

Controller [TI:KP]min KP TI

PI 105.96 s 1.039 110.1 s

Controller [TI:KP]min KP TI TLO

PID 79.59 s 1.1057 88 s 75 s

Controller [TI:KP]min KP TI TLO

SOC 66.52 s 1.2327 82 s 197 s

The simulated control system was established and is shown in Figure 3.
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The external perturbation is directly coupled to the process output through the DM.
Simply considered, the process of the DM is

fP(s) =
PG

(1+TPs)6 ,

fDM(s) = 1
(1+50s)2 ,

PG = 1,
TP = 50

(4)

where fP(s), PG, and TP are the transfer function of the process, the process gain,
and the process time constant, respectively, and fDM(s) is the transfer function of the
perturbation model.

After that, the default is PG = 1 and TP = 50 s, unless otherwise stated in the text.
The perturbation process of thermal power units typically exhibits the characteristics

of an RF. Therefore, the use of an RF to measure the performance of the control system of
external perturbation suppression has better intuition. In the RF perturbation stabilization
of the process, the process output and the highest deviation from the set value were used
to measure the performance of the external perturbation suppression. After that, the RF
length was taken to be 2000 s and the RF rate was taken to be 10−3 s−1, unless otherwise
stated in the text.

The OLS of PI, PID, and SOC were

fPI:OLS(s) = fPI(s) fP(s),
fPID:OLS(s) = fPID(s) fP(s),
fSOC:OLS(s) = fSOC(s) fP(s)

(5)

where fPI:OLS(s), fPID:OLS(s), and fSOC:OLS(s) are the transfer functions of the PI, PID, and
SOC open-loop systems, respectively.

The open-loop system stability margin is:

FOLS(jω) = GOLS(ω)ePOLS(ω),
PMOLS

GOLS(ω)=1
= 180◦ + POLS(ω),

AMOLS
POLS(ω)=−180◦

= GOLS(ω)

(6)

where FOLS(jω) is the frequency domain function of the open-loop system, GOLS(ω) is the
amplitude–frequency gain of the open-loop system; POLS(ω) is the phase–frequency phase
of the open-loop system; PMOLS is the phase margin of the open-loop system; and AMOLS

is the amplitude margin of the open-loop system.
At critical stabilization, PMOLS = 0◦ and AMOLS = 0 dB, and we searched for critical

stabilization parameter ranges for PI, PID, and SOC. The curves of the relationship between
TI : KP and KP for one group of PIs, and the curves of the relationship between TI : KP, KP,
and TLO for multiple groups of PIDs and SOCs were obtained and are shown in Figure 4,
Figure 5, and Figure 6, respectively.

The minimum value of TI : KP is expressed in terms of [TI : KP]min, and the parameters
corresponding to TI : KP are selected from Figures 4–6, as shown in Table 2.

Group A controller parameters represent the highest control performance of PI, PID,
and SOC under critical stabilization and are theoretically unique. RZFG is used to measure
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the improvement in PID relative to PI control performance. The improvement in SOC
relative to PI and PID control performance is

lim
s→0

fPID:OLS(s)
fPI:OLS(s)

≈ 1.331,

lim
s→0

fSOC:OLS(s)
fPI:OLS(s)

≈ 1.593,

lim
s→0

fSOC:OLS(s)
fPID:OLS(s)

≈ 1.197

(7)

Based on the results of Equation (7), the RZFG of PID is 1.331 times that of PI, the
RZFG of SOC is 1.593 times that of PI, and the RZFG of SOC is 1.197 times that of PID. The
results of the RZFG comparison represent a theoretical basis.
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Critical stability is not particularly meaningful for practical control systems. Refer-
ence [14] introduced the concept of the relative stability margin (RSM) but did not provide
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a clear definition of the formula. Based on the supplementary information from Refer-
ence [14], the RSM was

RPMOLS
20lg[GOLS(ω)]=GRV

= 180◦ + POLS(ω),

RAMOLS
POLS(ω)=−180◦+PRV

= 20lg[GOLS(ω)]
(8)

where RPMOLS is the relative phase margin; GRV is the relative value of magnitude margin;
RAMOLS is the relative magnitude margin; and PRV is the relative value of phase margin.

Graphical representations of GRV and PRV are shown in Figure 7.
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Reference [14] suggested GRV = −6 dB and PRV = 45◦ with good robust performance,
as shown in Figure 7.

According to the conditions of GRV = −6 dB, PRV = 45◦ was used to search for the PI,
PID, and SOC parameters. For PID and SOC, the extracted [TI : KP]min corresponds to a set
of TI : KP, KP between the change in the relationship between the curves. The obtained
results of the parameter search are shown in Figure 8.
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Figure 8. The parameter search results for PI, PID, and SOC.

Based on Figure 8, the PI, PID, and SOC parameters were obtained and are shown in
Table 3.
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Table 3. Group B parameters of the controllers.

Controller [TI:KP]min KP TI

PI [17] 428.42 s 0.4201 180 s

Controller [TI:KP]min KP TI TLO

PID 321.76 s 0.3854 124 s 101 s

Controller [TI:KP]min KP TI TLO

SOC 274.69 s 0.3859 106 s 269 s

Based on the controller parameters of group B, the simulation experimental compari-
son results obtained are shown in Figure 9.
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In Figure 9, PVPI(t), PVPID(t), and PVSOC(t) represent the process outputs of PI, PID,
and SOC control, respectively.

Based on Figure 9, the performance indexes of PI, PID, and SOC control are compared
in Table 4.

Table 4. Performance index of control of PI, PID, and SOC.

Control
Methods Peak 1 Peak 2 Process

Overshoot
Adjustment

Time/s

PI 1.0 1.0 0 1020
PID 1.0 1.0 0 863 s
SOC 1.0 1.0 0 814 s

In engineering, the regulation time is usually defined as the time in which the deviation
in the process output from a given process value becomes less than 5%.

According to Table 5, the regulation performance of PID is improved by 18.2% with
respect to PI. The regulation performance of SOC is improved by 25.3% with respect to PI
and 6.0% with respect to PID.

Table 5. Performance index of disturbance rejection of PI, PID, and SOC.

Control Methods Maximum Deviation During RF

PI 0.427
PID 0.322
SOC 0.275

Based on Figure 9, the performance indexes of PI, PID, and SOC external disturbance
suppression are compared in Table 5.
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According to Table 6, the perturbation rejection performance of PID is improved by
32.6% compared to PI. SOC’s perturbation rejection performance is 55.3% higher than that
of PI and 17.1% higher than that of PID.

Table 6. Performance index of the BTLO.

Order/n 1 2 3 4

peak phase/◦ 31.5 33.0 33.4 33.6
peak gain/dB 10.08 10.13 10.20 10.21

λ 0.313 0.558 0.676 0.745

Order/n 5 6 7 8

peak phase/◦ 33.7 34.1 34.2 34.3
peak gain/dB 10.23 10.34 10.38 10.39

λ 0.790 0.820 0.843 0.861

Compared with PI and PID, SOC control performance shows significant improvement.
However, for some applications, such as FGBC for the reheat steam temperature in ther-
mal power units, the enhancement in SOC control performance relative to PI and PID is
not sufficient.

3.2. Situational Analysis of the B-Type Over-the-Horizon Observer

For the BTLO, the experimental results obtained by setting TLO = 100 s and NPG = 10
± 0.5 are shown in Table 6.

Under the NPG = 10 constraint, the phase peak of the BTLO is low, and the BTLO does
not perform well relative to the ATLO. The obvious problem with the BTLO is that it has
no transcendence effect under the NPG = 1 constraint, i.e., λ = 1.

At n = 5, the obtained frequency characteristics of the BTLO are shown in Figure 10.
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In Figure 10, PBTLO(ω) is the phase frequency–phase of the BTLO, and GBTLO(ω) is
the amplitude–frequency gain of the BTLO.
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The BTLO is used to construct the PID and SOC values, and for the sake of differentia-
tion, PID and SOC are shown as lowercase PID and SOC. Using the λ given in Table 7, the
PID and SOC values are

fpid(s) = fPI(s)
1+TLOs

1+0.313TLOs ,

fsoc(s) = fPI(s)
(1+ TLO

5 s)5

(1+0.790 TLO
5 s)5

(9)

where fpid(s) and fsoc(s) are the transfer functions of PID and SOC, respectively.

Table 7. Group C parameters of the controllers.

Controller [TI:KP]min KP TI TLO

PID 355.09 s 0.3858 137 s 96 s

Controller [TI:KP]min KP TI TLO

SOC 348.23 s 0.3848 134 s 327 s

For PID and SOC, the analysis of the critical stabilization parameters was not carried
out, and the parameters of PID and SOC were searched only according to the principle of
GRV = −6 dB and PRV = 45◦. Only a set of curves for the relationship between the changes
in TI : KP and KP corresponding to [TI : KP]min were extracted, and the obtained results of
the parameter search are shown in Figure 11.
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Based on Figure 11, the PID and SOC parameters were obtained, as shown in Table 7.
According to the parameters of the group C controller, the simulation experimental

comparison results of PID and SOC were obtained and compared with PI at the same time.
The results are shown in Figure 12.
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Figure 12. Comparison of the simulation experiments for PI, PID, and SOC.

In Figure 12, PVpid(t) and PVsoc(t) represent the process output of PID and SOC
control, respectively.

Based on Figure 12, the performance indexes of PID and SOC control were compared
with PI, and the results are shown in Table 8.
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Table 8. Performance index of the control of PI, PID, and SOC.

Control
Methods Peak 1 Peak 2 Process

Overshoot
Adjustment

Time/s

PI [17] 1.0 1.0 0 1020

PID 1.0 1.0 0 960 s

SOC 1.0 1.0 0 939 s

According to Table 8, the regulation performance of PID is improved by 6.3% with
respect to PI. The regulation performance of SOC is improved by 8.6% with respect to PI
and 2.2% with respect to PID.

Based on Figure 12, the performance indexes of PID and SOC external disturbance
suppression were compared with PI, and the results are shown in Table 9.

Table 9. Performance index of the disturbance rejection of PI, PID, and SOC.

Control Methods Maximum Deviation During RF

PI 0.427
PID 0.355
SOC 0.348

According to Table 9, the perturbation rejection performance of PID is improved by
20.3% with respect to PI. The perturbation rejection performance of SOC is 22.7% higher
than that of PI and 2.0% higher than that of PID.

Compared with PID and SOC, the out-of-phase rejection performance of PID and SOC
decreases significantly.

Under the constraint of NPG = 10, there is little difference between SOC and PID.

4. Engineering Maximum Speed Controller
The EFC is a cascade of EFPI controllers and the EFLO; the category of the EFC

includes the AEFPI controller. The existing research mainly gives the theoretical basis and
experimental results for the EFC and AEFPI. The theoretical basis that the EFC and AEFPI
can significantly improve the performance of feedback control is given in References [14]
and [17], respectively.

The EFC can also be a cascade of AEFPI and EFLO, for which no theoretical basis or
experimental results have been given in the existing research. In order to fill the gap in the
existing research, this paper mainly focuses on the research and experiments concerning
the EFC of the AEFPI and EFLO tandem structure.

AEFPI is constructed based on AEFTF, and EFLO is constructed based on EFTF. AEFTF
is an engineered reconstruction of AFTF, and EFTF is an engineered reconstruction of FTF.

4.1. Engineering Most Velocity Overrun Observer

EFLO represents a high-performance over-the-horizon observer and is essentially an
inverse model of EFTF [23]. The physical defect of AFTF and FTF is the inclusion of pure
hysteresis [24], so the inverse model of AFTF and FTF is not physically valid.
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It has been pointed out before that “FOIF is the basis for the construction of PID
structure”, and for the sake of comparison, FOIF, AEFTF, and EFTF are:

fFOIF(s) =
1

1 + TFOIFs
,

fAEFTF(s) =
1

16
∑

l=1
l

16
∑

i=1
i(

1

1 +
TAEFTF

16
s
)i,

fEFTF(s) =
1

16

16
∑

i=1
(

1

1 +
TEFTF

16
s
)i

(10)

where fFOIF(s), fAEFTF(s), and fEFTF(s) are the transfer functions of FOIF, AEFTF, and EFTF,
respectively, and TFOIF, TAEFTF, and TEFTF are the time constants of FOIF, AEFTF, and
EFTF, respectively.

At TFOIF = TAEFTF = TEFTF = 100 s, the process outputs PVFOIF(t), PVAEFTF(t), and
PVEFTF(t) for FOIF, AEFTF, and EFTF, respectively, were obtained, as shown in Figure 13.
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Figure 13. The process output of FOIF, AEFTF, and EFTF.

Compared with FOIF, AEFTF and EFTF significantly improve the performance of filter
output tracking filter input, and AEFTF and EFTF break through the exponential tracking
filter mechanism behind FOIF.

For comparison, FOIF was used to construct PI and AEFTF was used to construct
AEFPI, and PI and AEFPI were obtained as:

fPI(s) = KP
1

1− fFOIF(s)
,

fAEFPI(s) = KAEFPI
1

1− fAEFTF(s)
(11)

where fAEFPI(s) and KAEFPI are the transfer function and proportional gain of AEFPI,
respectively.

EFTF was used to construct EFLO, and EFLO was

fEFLO(s) = 1.005
0.005+ fEFTF(s)

fSOF(s),

fSOF(s) = 1
(1+TSOFs)2

(12)

where fEFLO(s) is the transfer function of EFLO, and fSOF(s) and TSOF are the transfer
function and time constant of SOF [25], respectively.

For comparison, the EFLO frequency characteristics were obtained by setting
TEFTF = 100 s, where in TSOF = 4.95 s and NPG = 10, as shown in Figure 14.
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Figure 14. The frequency characteristic of EFLO.

In Figure 14, PEFLO(ω) is the phase–frequency phase of EFLO, and GEFLO(ω) is the
amplitude–frequency gain of EFLO.

Based on Figure 14, the phase peak of EFLO is 88.3◦ and the gain peak is 20.8 dB, after
which the default TSOF = 0.0495 TEFTF.

4.2. Open-Loop System Analysis

The EFC open-loop system is

fEFC:OLS(s) = fEFC(s) fP(s),
fEFC(s) = fAEFPI(s) fEFLO(s)

(13)

where fEFC:OLS(s) is the transfer function of the EFC open-loop system and fEFC(s) is the
transfer function of the EFC.

In the critical stabilization, the EFC critical stabilization parameters were searched, and
the curves of the relationship between the changes in multiple TAEFTF : KAEFPI , KAEFPI ,
and TEFTF were obtained, as shown in Figure 15.
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Figure 15. The search results of the critical stability parameters of the EFC.

Based on Figure 15, the critical stabilization parameters of the EFC were obtained, as
shown in Table 10.
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Table 10. Critical stability parameters of the EFC.

Controller [TAEFTF:KAEFPI]min KAEFPI TAEFTF TEFTF

EFC 57.42 s 3.9012 224 s 186 s

For comparison, RZFG was used to measure the improvement in the EFC relative to
the upper limit of PI, PID, and SOC control performance. Based on Tables 3 and 10, the
RZFG comparison results were obtained as follows

lim
s→0

fEFC:OLS(s)
fPI:OLS(s)

≈ 2.684,

lim
s→0

fEFC:OLS(s)
fPID:OLS(s)

≈ 2.016,

lim
s→0

fEFC:OLS(s)
fSOC:OLS(s)

≈ 1.685

(14)

According to the results of Equation (14), the RZFG of the EFC is 2.684 times that of
PI, 2.016 times that of PID, and 1.685 times that of SOC, which indicates that theoretically,
the EFC significantly breaks through the upper limit of the control performance of PI, PID,
and SOC.

4.3. Closed-Loop System Analysis

According to the conditions of GRV = −6 dB, PRV = 45◦ was used to search for the
EFC parameters. We only extracted [TAEFTF : KAEFPI ]min corresponding to a set of TAEFTF :
KAEFPI , KAEFPI change relationship curves between the obtained parameter search results,
as shown in Figure 16.
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Based on Figure 16, the EFC stabilization parameters were obtained and are shown in
Table 11.

Table 11. Stability parameters of the EFC.

Controller [TAEFTF:
KAEFPI]min KAEFPI TAEFTF TEFTF

EFC 263.38 s 1.090 287 s 239 s

According to the EFC parameters given in Table 11, the EFC was compared with PI,
PID, and SOC, as shown in Figure 17.
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Figure 17. Comparison of the simulation experiments for the EFC and PI, PID, and SOC.

In Figure 17, PVEFC(t) represents the process output of EFC control.
Based on Figure 17, the performance indexes of EFC control were compared with PI,

PID, and SOC, as shown in Table 12.

Table 12. Performance index of control of the EFC.

Control
Methods Peak 1 Peak 2 Process

Overshoot
Adjustment

Time/s

EFC 1.026 1.0 0.026 459 s
PI [17] 1.0 1.0 0 1020

PID 1.0 1.0 0 863 s
SOC 1.0 1.0 0 814 s

According to Table 12, the regulation performance of the EFC improved by 122.2%
compared to PI, 88.0% with respect to PID, and 77.3% with respect to SOC.

Based on Figure 17, the performance indices of EFC external disturbance suppression
were compared with PI, PID, and SOC, as shown in Table 13.

Table 13. Performance index of the disturbance rejection of the EFC.

Control Methods Maximum Deviation During RF

EFC 0.178
PI 0.427

PID 0.322
SOC 0.275

According to Table 13, the EFC improves the perturbation rejection performance by
140.0% with respect to PI, 80.9% with respect to PID, and 54.5% with respect to SOC.

Compared with PI, PID, and SOC, the EFC control performance is significantly improved.

4.4. Robustness Analysis

The phase margin PMOLS and amplitude margin AMOLS of the open-loop system
determine the stability of the closed-loop system, and the stability also needs to take into
account the effects of the process PG and TP variations. Based on the EFC stabilization
parameters given in Table 10, the relationship of PMOLS with the variation in PG and TP is
obtained, representing one aspect of the robustness analysis, as shown in Figure 18.
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Figure 18. The result of the margin analysis is 1.

The problem cannot be overlooked. According to the stability margin analysis results
presented in Figure 18, the robustness of the EFC is not good. One reason is that the EFC
stabilization parameters given in Table 10 only represent the highest control performance
at GRV = −6 dB and PRV = 45◦ and do not represent the robustness optimization.

The researchers identified a fundamental problem that the robustness of the EFC
primarily depends mainly on the TTEFT setting, which, in principle, is TTEFT ≤ the inverse
of the process frequency bandwidth, as follows

TTEFT ≤ 1
ωPFB

(15)

where ωPFB is the process frequency bandwidth.
For the given process, theoretically, ωPFB = 0.006976 rad/s; then, TTEFT ≤ 143. It is

obvious that TTEFT > 143 s given Table 10.
For comparison, based on the EFC stabilization parameters given in Table 10, by only

changing TTEFT = 143 s, the relationship of PMOLS with the variation in PG and TP was
obtained, as shown in Figure 19.

Figure 19 shows that changing only TTEFT = 143 s significantly improves the robustness
of the EFC with respect to the results of the stability margin analysis given in Figure 18.
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Figure 19 shows that changing only TEFTT  = 143 s significantly improves the robust-

ness of the EFC with respect to the results of the stability margin analysis given in Figure 
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Figure 19. The result of the margin analysis is 2.

5. Engineering Parameterization of the Engineering Maximum
Speed Controller

Controller parameterization is always an important issue, and the previous param-
eterization was based on the mathematical optimization method, which is based on a
mathematical model. In engineering practice, obtaining accurate mathematical models
can be challenging, making it difficult to depend on accurate mathematical models for
parameter tuning.

Reference [17] presents the engineering tuning method for AEFPI parameters, and
Reference [14] outlines the engineering tuning method for the EFC parameters for EFPI
and EFLO structures. For the AEFPI and EFLO structures of the EFC, the parameterization
method is as follows

fZNM(s) = KZN
1−e−TZNs

TZNs e−τZNs,
KAEFPI =

1
KZN

( TZN
TZN+τZN

+ 0.5),
TAEFTF = TZN + τZN − TEFTF

2 ,
TEFTF = 1

ωPFB
≈ TZN

2

(16)

where fZNM(s), KZN, TZN, and τZN are the transfer function, gain, time constant, and pure
lag constant of the ZNM [26], respectively.

The ZNM represents an engineering modeling of a process. Based on the previously
given process, the process ZNM was created, as shown in Figure 20.
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Figure 20. The procedure output from the ZNM.

PVP(t) and PVP:ZNM(t) represent the process outputs of the process and the process
ZNM, respectively.

Based on Figure 20, the process ZNM was obtained as

fP:ZNM(s) = 1−e−288s

288s e−138s,
KZN = 1,
TZN = 288s,
τZN = 138s

(17)

where fP:ZNM(s) is the transfer function of the process ZNM.
Based on Equations (16) and (17), TAEFTF = 354 s, KAEFPI = 1.176, and TAEFTF = 144 s.

The relationship between PMOLS and AMOLS with the variation in PG and TP was obtained,
as shown in Figure 21.

Energies 2025, 18, x FOR PEER REVIEW 21 of 26 
 

 

where ZNM ( )f s , ZNK , ZNT , and τ ZN  are the transfer function, gain, time constant, and 

pure lag constant of the ZNM [26], respectively. 
The ZNM represents an engineering modeling of a process. Based on the previously 

given process, the process ZNM was created, as shown in Figure 20. 

400

1.5

200 600 800

1.0

0.5

0.0
0

PV
P(
t),

 P
V P

:Z
N

M
(t)

t/s

PVP(t)
PVP:ZNM(t)

 

Figure 20. The procedure output from the ZNM. 

( )PPV t  and : ( )P ZNMPV t  represent the process outputs of the process and the process 

ZNM, respectively. 
Based on Figure 20, the process ZNM was obtained as 

τ

−
−−=

=
=
=

，

288
138

P:ZNM

ZN

ZN

ZN

1 e( ) e ,
288

1,
288 s
138 s

s
sf s

s
K
T

 (17) 

where P:ZNM ( )f s  is the transfer function of the process ZNM. 
Based on Equations (16) and (17), AEFTFT  = 354 s, AEFPIK  = 1.176, and AEFTFT  = 144 s. 

The relationship between OLSPM  and OLSAM  with the variation in GP  and PT  was ob-

tained, as shown in Figure 21. 

(b)Amplitude margin

(a)Phase margin

45.0

0.0
100

22.5

8020 60
TP/s

90.0

PM
O

LS
/°

67.5

40

PG=0.5
PG=0.75
PG=1.0
PG=1.25
PG=1.5

10

0
100

5

8020 60
TP/s

20

AM
O

LS
/d
B 15

40

PG=0.5
PG=0.75
PG=1.0

PG=1.25
PG=1.5

 
Figure 21. The result of the margin analysis is 3.

The simulated experimental results of the EFC were obtained, as shown in Figure 22.
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According to Figure 22, the regulation time of EFC control is 433.5 s, the overshoot of 
the process is 0.022, and the maximum deviation during the RF is 0.207. The engineering 
tuning of the EFC parameters has good performance and robustness. 

6. Engineering Applications 
The process control of thermal power units mainly adopts the strategy of open-loop 

control and feedback correction [27], the open-loop control relies on feedforward control 
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According to Figure 22, the regulation time of EFC control is 433.5 s, the overshoot of
the process is 0.022, and the maximum deviation during the RF is 0.207. The engineering
tuning of the EFC parameters has good performance and robustness.

6. Engineering Applications
The process control of thermal power units mainly adopts the strategy of open-loop

control and feedback correction [27], the open-loop control relies on feedforward con-
trol [28], and the feedback correction is based on PID. From the point of view of feedback
correction, the EFC significantly improves the feedback correction performance compared
with PID.

In a 1000 MW ultra-supercritical thermal power unit, in order to realize the auxiliary
frequency control, the EFC is used to optimize the systems of the main control of steam
engines, main control of boilers, feedwater control [29], main steam temperature control [30],
and the flue gas baffle control of the reheat steam temperature. The optimized structure of
the boiler master control system is shown in Figure 23.
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As illustrated in Figure 23, the feedforward control quantity calculation is used to
calculate the feedforward control quantity according to the deviation in the main steam
pressure from the main steam pressure given the load command, the load, the load rate,
the main control command of the steam engine, etc. The new coal quality online correction
is employed to facilitate the real-time adjustment of coal quality. The new coal quality
online correction can assist power grid enterprise researchers in further meeting the needs
of auxiliary frequency control and developing the basic principle according to the deviation
in the feedback correction quantity. Through the adjustment of the feedforward control
quantity, the feedback correction quantity for the long term can be determined, such as
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the average value of 10 h to control in the vicinity of 0. Details of the new coal quality
online correction can be found in Reference [27]. The EFC parameter correction function,
which is used to modify the EFC parameters according to the load to ensure that the EFC
parameters have good tracking characteristics for the unit load changes, is understood by
engineering researchers as a form of “active adaptive control”.

With the unit load of 680 MW, through the field test, the approximate transfer function
of the boiler master control object was obtained as

fP:680MW(s) =
0.93

(1 + 79s)6 (18)

where fP:680MW(s) is the approximate transfer function of the controlled object at the unit
load of 680 MW.

The 1 h operation trend of the system after commissioning is shown in Figure 24.
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Figure 24 illustrates that in the auxiliary frequency control mode, the load command
has obvious randomness in order to adapt to the new energy power load random change
of regulation needs. In the given trend range, the range of load change is 430 MW-680 MW,
the variable load rate is 20 MW/min, the maximum dynamic error between the load and
load setting is 11 MW, and the absolute deviation between the main steam pressure and
the main steam pressure setting is less than 0.56 MPa. The indexes of the load control and
main steam pressure control satisfy the requirements of the relevant thermal power unit
operation regulations.

7. Conclusions
The issue of control constraints in industrial environments is addressed, focusing

on the limitations of the HGLO and HOC under NPG constraints, which is of some
significance for the comprehensive understanding of the higher-order ahead observer and
higher-order controller.

The EFC with an AEFPI and EFLO structure is investigated and experimented, and
the theoretical basis for the significant breakthrough of the engineering fastest controller
to the upper limits of the control performance of PI, PID, and SOC is given. The relative
stability margin gives a reference for PI, PID, and SOC parameter optimization.

The engineering maximum speed controller is a mature new industrial control technol-
ogy. There is a large number of engineering practices based on the “dual-carbon” energy
target background from the point of view of the process control of the existing thermal
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power units. Improving the controller’s perturbation suppression performance is the main
aspect of this research. The research and experimental results are of great practical signifi-
cance and provide theoretical and technical guidance for the subsequent engineering of the
maximum speed controller.

It should be noted that the theoretical issues behind engineering the fastest controllers
are not problems that can be easily solved in a short period of time.
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Abbreviations

PID proportional–integral–differential
CI conventional integrator
FOIF first-order inertial filter
EFTF engineering fastest tracking filter
EFC engineering fastest controller
SNR signal noise ratio
NPG noise power gain
PI proportional–integral
HOC high-order controller
HOLO high-order leading observer
LO leading observer
PD proportional–differential
ATLO A-type leading observer
BTLO B-type leading observer
SOC sixth-order controller
DM disturbance model
RF ramp function
RZFG relative zero frequency gain
RSM relative stability margin
EFLO engineering fastest leading observer
AEFPI accelerated engineering fastest proportional–integral
AEFTF acceleration engineering fastest tracking filter
AFTF acceleration fastest tracking filter
FTF fastest tracking filter
SOF second-order filter
ZNM Ziegler–Nichols model
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