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Abstract: Virtual power plants (VPPs) are optimized to maximize profits by efficiently
scheduling their resources. However, dynamic power trading over existing distribution
networks can lead to voltage disturbances and branch congestion, posing risks to network
security. Moreover, distribution network service providers (DNSPs) face the added chal-
lenge of managing VPP operations while complying with privacy preservation. To address
these challenges, this paper proposes a decentralized co-optimization technique for inte-
grating VPPs into distribution networks. The approach enables DNSPs to define dynamic
operational boundaries for VPPs, effectively mitigating network congestion and voltage
fluctuations while ensuring privacy. Additionally, the proposed convex optimization frame-
work allows the publication of operational boundaries for multiple VPPs with minimal
computational effort, making it suitable for real-time applications. The effectiveness of
the technique is validated using the IEEE benchmark network connected with electricity–
hydrogen VPPs. Results demonstrate that the proposed approach maintains voltage levels
within standard limits and prevents branch congestion, confirming its suitability for stable
and secure grid operations.

Keywords: virtual power plant (VPPs); distribution networks; congestion management;
voltage control; hydrogen-to-power concept; electrolyzer; fuel cell

1. Introduction
The widespread deployment of distributed energy resources (DERs), such as pho-

tovoltaic (PV) systems and energy storage, presents valuable opportunities to address
environmental concerns and price volatility [1,2]. However, the high penetration of these re-
sources introduces significant challenges for distribution networks, which have traditionally
been designed for unidirectional power flow from the power plants to the customers [3,4].
The bidirectional flow introduced by DERs can result in voltage instability and congestion,
potentially exceeding network capacity. Previous studies [5,6] explored direct management
of behind-the-meter DERs by DNSPs. However, this approach is impractical in developed
countries like Australia due to several factors. Firstly, the vast number of DERs makes
individual management by DNSPs infeasible. Secondly, privacy regulations restrict DNSPs
from accessing DER data across various power system layers [7].

To overcome these challenges, the concept of VPPs [8,9] has been introduced to aggre-
gate DERs, allowing a local agent to manage them and interact with the broader power
system as a large-scale entity capable of buying or selling power. While forming VPPs
offers significant technical and financial benefits, it also introduces challenges, particularly
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at the distribution level, such as exceeding branch capacity limitations. Since distribution
networks were originally designed for unidirectional power flow, uncoordinated power
trading with VPPs can cause congestion and voltage instability and may exceed branch
capacity limits. Without proper coordination between VPPs and DNSPs, these challenges
could lead to severe disruptions, including potential system-wide blackouts [10]. To miti-
gate these risks, various strategies have been proposed in the literature and are discussed
in the following sections.

Several methods have been proposed for integrating VPPs and managing congestion
in distribution networks. For instance, a congestion relief framework introduced in [11]
enables DNSPs to interact with VPP service providers through a two-step iterative process.
Initially, DNSPs assess VPP bids and perform power flow analysis to detect congestion. If
congestion is identified, the network is reconfigured to resolve the issue. If reconfiguration
proves insufficient, VPPs are signaled to reschedule their resources. This process repeats
until congestion is eliminated. While effective, the approach has limitations, including
the use of a nonlinear formulation and an iterative Newton–Raphson method, which im-
poses a high computational burden, making it impractical for real-time electricity markets.
Additionally, network reconfiguration can introduce power quality issues [12]. Another
strategy proposed in [13] employs a two-stage congestion relief method using cascade
hydro–PV–pumped storage VPPs. The first stage minimizes congestion costs, followed by
VPP power corrections to optimize three objectives using genetic algorithms (GAs) and an
enhanced non-dominated GA (NSGA-II). The results demonstrated cost reductions through
VPP cooperation, with the enhanced NSGA-II outperforming previous versions. However,
the nonlinear formulation remains computationally expensive, limiting its feasibility in
real-time market operations.

To address these challenges, convex optimization has been identified as a preferable
alternative due to its guaranteed convergence within a finite time, making it suitable for
dynamic scenarios where DNSPs must promptly publish operational boundaries while
ensuring network stability. Recognizing this need, the researchers in [14] proposed a convex
bi-level optimization model for VPP integration. Although this approach significantly
improved congestion management, it raised privacy concerns, as the use of Karush–Kuhn–
Tucker (KKT) conditions to simplify the bi-level problem into a single-level formulation
potentially exposes sensitive service provider information.

While the aforementioned studies have made significant contributions to managing
voltage and congestion in distribution networks with VPP integration, most face chal-
lenges related to data sharing among service providers, which may not be practical in
evolving energy markets. To address this issue and ensure privacy while maintaining
voltage stability, researchers have explored pricing mechanisms such as Distribution Lo-
cational Marginal Pricing (DLMP) [15–17] and transactive energy models [18,19]. These
methods offer the advantage of clearly delineating the roles of DNSPs. However, their
practical implementation—such as enabling DNSPs to issue price signals—faces regulatory
challenges due to the transition from traditional passive distribution networks to modern
active networks. In most cases, DNSPs do not have the authority to issue price signals, as
this responsibility typically falls to independent market operators, such as the Australian
Energy Market Operator (AEMO) [7]. In particular, the DNSPs are facing significant chal-
lenges in congestion and voltage fluctuations with the increase of bi-directional trading and
high penetration of DERs [20]. Traditional approaches to these issues rely on centralized
or iterative techniques that may not be able to cope with the dynamic nature of modern
energy markets. Consequently, the distribution networks face branch congestion [21] and
voltage fluctuations [3] driven by the dynamic power trading of VPPs with markets [22].
For instance, each branch of a distribution network has a designed capacity for power



Energies 2025, 18, 518 3 of 27

transfer, usually determined by its cable capacity. If the power trading is not dynamically
managed, then secure network operation becomes infeasible [23].

These challenges highlight the need for a coordinated strategy that allows DNSPs to
manage power trading with VPPs while maintaining technical standards and ensuring
secure operations. However, DNSPs typically lack direct access to VPP data [24], necessitat-
ing the development of a framework that guarantees data privacy. The key limitations of
existing methods are summarized as follows:

• Confidentiality concerns: Conventional methods compromise the privacy of both
DNSPs and VPPs due to centralized data sharing.

• Lack of integrated solutions: Current techniques fail to jointly address congestion and
voltage control in distribution networks.

• Slow response times: Traditional approaches cannot dynamically publish operational
boundaries for VPPs quickly enough.

• Computational inefficiency: Dependency on iterative algorithms makes them unsuit-
able for real-time applications

To overcome these challenges, this work proposes a novel co-optimization frame-
work that facilitates dynamic collaboration between DNSPs and VPPs. The framework
ensures secure network operation while preserving the privacy of all stakeholders. In
essence, DNSPs dynamically publish available capacities, allowing VPPs to operate within
safe boundaries, thereby mitigating congestion and voltage instability risks. The unique
contributions of this approach are as follows:

• Dynamic operational boundaries: Unlike conventional congestion mitigation and volt-
age control methods, the proposed co-optimization framework dynamically allocates
operational limits to VPPs, effectively addressing congestion and voltage fluctuations.

• Decentralized data privacy: The framework ensures minimal data exchange, sharing
only permissible operational boundaries set by DNSPs and bids from VPPs, aligning
with emerging regulatory requirements for unbundled electricity grids.

• Technology integration: Advanced features such as power-to-hydrogen systems,
vehicle-to-grid integration, and demand response mechanisms are incorporated, en-
suring the framework’s adaptability to diverse DER technologies.

• Efficient optimization: A convex optimization model is formulated to achieve globally
optimal solutions efficiently using commercial solvers like GUROBI. This framework
provides a robust, scalable, and privacy-preserving solution for integrating VPPs into
modern distribution networks

The remainder of this paper is organized as follows: Section 2 presents the modeling of
VPPs, while Section 3 details the proposed approach for publishing operational boundaries.
Section 4 discusses the results, followed by the conclusion in Section 5.

2. VPP Component Modeling
This section elaborates on the component modeling of VPPs.

2.1. Objective Function

The primary objective of the VPP is to maximize its profit, which is defined as the
revenue generated from power sales to the market minus both internal operational expen-
ditures (IOPEX) and external operational expenditures (EOPEX), as shown in Equation (1).
Revenue, as expressed in Equation (2), is derived from multiple sources, including market
power sales, electric vehicle aggregation (EVA) charging, hydrogen selling to hydrogen fuel
cell vehicles (HFCVs), and power sold to customers. Equation (3) has 6 components, in-
cluding the operation costs of dispatchable generators (DGs), microturbines (MTs), battery
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storage systems (BSSs), and the maintenance costs of electrolyzers, photovoltaic systems,
and wind turbines. The variable costs of other devices, such as electrolyzers, are considered
in the power balance given by Equations (4) and (5). The expression for EOPEX, as ex-
plained in Equation (4), includes the cost of buying power from the market and payments
to EVA owners, represented by the first and second terms, respectively.

OF = max[Revenue − IOPEX − EOPEX] (1)

Revenue = ∑
s∈Ωsen

πs
(

∑
t∈Ωtime

Cs,t
sellP

s,t
sell + ∑

e∈Ωev

∑
t∈Ωtime

Cs,t
sellP

e,s,t
ch,ev

+ ∑
h∈Ωhgn

∑
t∈Ωtime

Ch,s
fcvHh,s,t

fcv + ∑
c∈Ωcmr

∑
t∈Ωtime

Cc
cmrP

c,s,t
cmr

)
(2)

IOPEX = ∑
s∈Ωsen

πs
(

∑
d∈Ωdg

∑
t∈Ωtime

Cd
DGPd,s,t

DG + ∑
h∈Ωhgn

∑
t∈Ωtime

Ch
O&M,MTPh,s,t

MT

+ ∑
b∈Ωbat

∑
t∈Ωtime

Cb
cyc,bat

∣∣∣Bb,s,t
bat − Bb,s,t−1

bat

∣∣∣
+ ∑

h∈Ωhgn

∑
t∈Ωtime

Ch
O&M,elsrH

h,s,t
elsr + ∑

p∈ΩPV

∑
t∈Ωtime

Cp
O&M,PVPp,s,t

PV

+ ∑
ω∈ΩWT

∑
t∈Ωtime

Cω
O&M,WTPω,s,t

WT

)
(3)

EOPEX = ∑
s∈Ωsen

πs

(
∑

t∈Ωtime

Cs,t
buyP

s,t

buy
+ ∑

e∈Ωev

∑
t∈Ωtime

(
Ce

rem + Cs,t
buy

)
Pe,s,t

dis,ev

)
(4)

In Equation (3), the absolute term related to battery cycling is nonlinear and requires
linearization. To achieve this, a binary auxiliary variable, denoted as BCb,s,t

bat , is introduced.
This variable replaces the absolute term. Consequently, the linearized formulation of
the VPP’s bidding strategy is revised, incorporating the new variables into the objective
function, which is subject to the associated constraints as follows.

IOPEX = ∑
s∈Ωsen

πs
(

∑
d∈Ωdg

∑
t∈Ωtime

Cd
DGPd,s,t

DG + ∑
h∈Ωhgn

∑
t∈Ωtime

Ch
O&M,MTPh,s,t

MT

+ ∑
b∈Ωbat

∑
t∈Ωtime

Cb
cyc,batBCb,s,t

bat + ∑
h∈Ωhgn

∑
t∈Ωtime

Ch
O&M,elsrH

h,s,t
elsr

+ ∑
p∈ΩPV

∑
t∈Ωtime

Cp
O&M,PVPp,s,t

PV + ∑
ω∈ΩWT

∑
t∈Ωtime

Cω
O&M,WTPω,s,t

WT

)
(5)

It is notable that this substitution by itself is not enough and the newly introduced
auxiliary variables are also constrained as follows:

BCb,s,t
bat ≥ Bb,s,t

bat − Bb,s,t−1
bat , ∀t > 1 ∈ Ωtime, ∀b ∈ Ωbat, ∀s ∈ Ωsen (6)

BCb,s,t
bat ≥ Bb,s,t−1

bat − B
b,s,t
bat , ∀t > 1 ∈ Ωtime, ∀b ∈ Ωbat, ∀s ∈ Ωsen (7)

2.2. Operational Constraints

Here, the constraints related to the VPPs are provided as follows:

2.2.1. Battery System

The state of charge (SoC) of the battery storage systems (BSSs) at time t = 1 is calculated
using Equation (8). For subsequent time periods where t > 1, the SoC is determined
using Constraint (9). To ensure the SoC of the BSSs is maintained between its capacity
during both charging and discharging, Constraint (10) is deployed. Additionally, the
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charging and discharging processes are constrained by their respective limits, as outlined
in Equations (11) and (12). Furthermore, the initial and final SoC of the BSSs are equal via
constraints specified in Equation (13).

Sb,s,t
bat = Sb,s,initial

bat + ηch, batP
b,s,t
ch,bat∆

t −
(

1
ηdis,bat

)
Pb,s,t

dis,bat∆
t , ∀t = 1,

∀b ∈ Ωbat , ∀s ∈ Ωsen
(8)

Sb,s,t
bat = Sb,s,t−1

bat + ηch,batP
b,s,t
ch,bat∆

t −
(

1
ηdis,bat

)
Pb,s,t

dis,bat∆
t ,

∀t > 1 ∈ Ωtime, ∀b ∈ Ωbat, ∀s ∈ Ωsen
(9)

Sb,min
bat ≤ Sb,s,t

bat ≤ Sb,max
bat , ∀t ∈ Ωtime, ∀b ∈ Ωbat, ∀s ∈ Ωsen (10)

Pb,min
ch,bat ≤ Pb,s,t

ch,bat ≤ Bb,s,t
bat Pb,max

ch,bat , ∀t ∈ Ωtime, ∀b ∈ Ωbat, ∀s ∈ Ωsen (11)

Pb,min
dis,bat ≤ Pb,s,t

dis,bat ≤
(

1 − Bb,s,t
bat

)
Pb,max

dis,bat, ∀t ∈ Ωtime, ∀b ∈ Ωbat, ∀s ∈ Ωsen (12)

Sb,s,tinitial

bat = Sb,s,tfinal

bat , e.g., tinitial = 0, tfinal = 24, ∀b ∈ Ωbat, ∀s ∈ Ωsen (13)

2.2.2. EV System

In the future, the use of electric vehicles, as a cleaner alternative to fossil fuel-based
vehicles will increase [25]. The following constraints enable VPPs to effectively incorporate
electric vehicle aggregation (EVA) into their bidding strategy: Constraints (14) and (15)
specify the state of charge for times t = 1 and t > 1. Constraint (16) ensures the state
of charge remains within their limits, while Constraints (17) and (18) regulate charging
and discharging within permissible ranges. Constraint (19) guarantees that the state of
charge for eth EVA is restored to its initial value at the final time, enabling it for next
day scheduling.

Se,s,t
ev = Se,s,initial

ev + ηch, evPe,s,t
ch,ev∆t −

(
1

ηdis,ev

)
Pe,s,t

dis,ev∆t −
(

1
ηdis,ev

)
Pe,s,t

trip,ev∆t , ∀t = 1,

∀e ∈ Ωev, ∀s ∈ Ωsen
(14)

Se,s,t
ev = Se,s,t−1

ev + ηch,evPe,s,t
ch,ev∆t −

(
1

ηdis,ev

)
Pe,s,t

dis,ev∆t −
(

1
ηdis,ev

)
Pe,s,t

trip,ev∆t,

∀t > 1 ∈ Ωtime , ∀e ∈ Ωev, ∀s ∈ Ωsen
(15)

Se,min
ev ≤ Se,s,t

ev ≤ Se,max
ev , ∀t ∈ Ωtime, ∀e ∈ Ωev, ∀s ∈ Ωsen (16)

Pe,min
ch,ev ≤ Pe,s,t

ch,ev ≤ Be,s,t
ev Pe,max

ch,ev , ∀t ∈ Ωtime, ∀e ∈ Ωev, ∀s ∈ Ωsen (17)

Pe,min
dis,ev ≤ Pe,s,t

dis,ev ≤
(
1 − Be,s,t

ev
)
Pe,max

dis,ev, ∀t ∈ Ωtime, ∀e ∈ Ωev, ∀s ∈ Ωsen (18)

Se,s,tinitial

ev = Se,s,tfinal

ev , e.g., tinitial = 0, tfinal = 24, ∀e ∈ Ωev, ∀s ∈ Ωsen (19)

2.2.3. Power-to-Hydrogen System

The concepts of power-to-hydrogen (P2H) and hydrogen-to-power (H2P) in the con-
text of hydrogen refueling stations are mathematically outlined as follows. The state of
hydrogen in the of hth storage at t = 1 and t > 1 is respectively handled using Constraints (20)
and (21). The P2H concept, represented by the charging of hydrogen storage via electrolyz-
ers, is articulated in Constraint (22). Constraint (23) details the hydrogen discharged to
meet the demands of HFCVs and the consumption by microturbines, representing the H2P
concept. The electrolyzers’ electricity consumption for hydrogen production is captured in
Constraint (24), while Constraint (25) quantifies the hydrogen consumed by microturbines.
Equation (26) is the boundary for power generated by MTs. Ramp rate limitations for mi-
croturbines are managed by Constraint (27). The state of hydrogen is bound by Constraint
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(28) and hydrogen discharge boundaries are defined in Equation (29). Constraints (30)
and (31) ensure that the hydrogen produced and consumed by the electrolyzers and MTs,
respectively, remain within specified limits. Furthermore, Constraint (32) ensures that the
initial hydrogen storage level matches the final level at the end of operations. To ensure
reliable refueling for HFCVs, a reliability constraint is introduced in Equation (33).

Sh,s,t
hgn = Sh,s,initial

hgn + Hh,s,t
ch,hgn∆t − Hh,s,t

dis,hgn∆t , ∀t = 1, ∀h ∈ Ωhgn, ∀s ∈ Ωsen (20)

Sh,s,t
hgn = Sh,s,t−1

hgn + Hh,s,t
ch,hgn∆t − Hh,s,t

dis,hgn∆t , ∀t > 1 ∈ Ωtime, ∀h ∈ Ωhgn, ∀s ∈ Ωsen (21)

Hh,s,t
ch,hgn = Hh,s,t

elsr , ∀t ∈ Ωtime, ∀h ∈ Ωhgn, ∀s ∈ Ωsen (22)

Hh,s,t
dis,hgn = Hh,s,t

FCV +Hh,s,t
MT , ∀t ∈ Ωtime, ∀h ∈ Ωhgn, ∀s ∈ Ωsen (23)

Ph,s,t
elsr =

Ψeih × Hh,s,t
elsr

ηelsr
, ∀t ∈ Ωtime, ∀h ∈ Ωhgn, ∀s ∈ Ωsen (24)

Hh,s,t
MT =

Ph,s,t
MT

ηMT × Ψeih
, ∀t ∈ Ωtime, ∀h ∈ Ωhgn, ∀s ∈ Ωsen (25)

Ph,min
MT ≤ Ph,s,t

MT ≤ Ph,max
MT , ∀t ∈ Ωtime, ∀h ∈ Ωhgn, ∀s ∈ Ωsen (26)

Rh,Down
MT ≤ Ph,s,t

MT −Ph,s,t−1
MT ≤ Rh,Upper

MT , ∀t ∈ Ωtime, ∀h ∈ Ωhgn, ∀s ∈ Ωsen (27)

Sh,min
hgn ≤ Sh,s,t

hgn ≤ Sh,max
hgn , ∀t ∈ Ωtime, ∀h ∈ Ωhgn, ∀s ∈ Ωsen (28)

Hh,min
dis,hgn ≤ Hh,s,t

dis,hgn ≤ Hh,max
dis,hgn, ∀t ∈ Ωtime, ∀h ∈ Ωhgn, ∀s ∈ Ωsen (29)

Hh,min
elsr ≤ Hh,s,t

elsr ≤ Hh,max
elsr , ∀t ∈ Ωtime, ∀h ∈ Ωhgn, ∀s ∈ Ωsen (30)

Hh,min
MT ≤ Hh,s,t

MT ≤ Hh,max
MT , ∀t ∈ Ωtime, ∀h ∈ Ωhgn, ∀s ∈ Ωsen (31)

Sh,s,tinitial

hgn = Sh,s,tfinal

hgn , e.g tinitial = 0, tfinal = 24, ∀h ∈ Ωhgn, ∀s ∈ Ωsen (32)

Sh,s,t
hgn ≥ ∑

t̂∈ΩSRel

Hh,s,t+t̂
FCV , ∀t ∈

{
1, . . . , tfinal − t̂final

}
, ∀h ∈ Ωhgn, ∀s ∈ Ωsen (33)

2.2.4. Demand Response

Demand response programs (DRPs) adjust flexible load demands to enhance system
efficiency [26]. Constraints (34) and (35) set the limits for shifting active loads, while Con-
straints (36) and (37) establish the boundaries for reactive loads. Additionally, Constraints
(38) and (39) ensure that the reductions in active and reactive load demands are balanced
by corresponding increases.

0 ≤ Pl,s,t
L,drpUpper ≤ Pl,max

L,drp, ∀t ∈ Ωtime, ∀l ∈ Ωdrp, ∀s ∈ Ωsen (34)

0 ≤ Pl,s,t
L,drpDown ≤ Pl,max

L,drp, ∀t ∈ Ωtime, ∀l ∈ Ωdrp, ∀s ∈ Ωsen (35)

0 ≤ Ql,s,t
L,drpUpper ≤ Ql,max

L,drp, ∀t ∈ Ωtime, ∀l ∈ Ωdrp, ∀s ∈ Ωsen (36)

0 ≤ Ql,s,t
L,drpDown ≤ Ql,max

L,drp, ∀t ∈ Ωtime, ∀l ∈ Ωdrp, ∀s ∈ Ωsen (37)

∑
l∈ΩDRP

∑
t∈Ωtime

Pl,s,t
L,drpDown = ∑

l∈ΩDRP

∑
t∈Ωtime

Pl,s,t
L,drpUpper, ∀t ∈ Ωtime, ∀l ∈ Ωdrp, ∀s ∈ Ωsen (38)

∑
l∈ΩDRP

∑
t∈Ωtime

Ql,s,t
L,drpDown = ∑

l∈ΩDRP

∑
t∈Ωtime

Ql,s,t
L,drpUpper, ∀t ∈ Ωtime, ∀l ∈ Ωdrp, ∀s ∈ Ωsen (39)
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2.2.5. Dispatchable Generator

Dispatchable generators (DGs) must operate within their specified generation capacity,
as per Constraint (40). Additionally, Constraint (41) imposes a ramp rate limitation to
ensure stable operation and prevent sudden fluctuations in generation.

Pd,min
DG ≤ Pd,s,t

DG ≤ Pd,max
DG , ∀t ∈ Ωtime, ∀d ∈ Ωdg, ∀s ∈ Ωsen (40)

Rd,Down
DG ≤ Pd,s,t

DG − Pd,s,t−1
DG ≤ Rd,Upper

DG , ∀t ∈ Ωtime, ∀d ∈ Ωdg, ∀s ∈ Ωsen (41)

2.2.6. Power Flow

In this subsection, we present the constraints related to the internal network of VPPs
to incorporate the technical aspects of VPPs into consideration. Constraints (42) and (43)
are utilized to determine the active and reactive power flows in the VPP local network,
respectively. The voltage of buses is calculated using Constraint (44). Constraints (45) and
(46) respectively ensure the balance of active and reactive powers within the VPP’s network.
Moreover, Constraint (47) maintains voltage magnitudes within acceptable levels, while
Constraint (48) ensures that the power flowing through each branch does not surpass its
maximum boundary.

Pv,s,t
Vpp = ∑

u∈Ωparv

Puv,s,t
flow,Vpp − ∑

w∈Ωchilv

Pvw,s,t
flow,Vpp, ∀t ∈ Ωtime, ∀v ∈ Ωbus,Vpp, ∀s ∈ Ωsen (42)

Qv,s,t
Vpp = ∑

u∈Ωparv

Quv,s,t
flow,Vpp − ∑

w∈Ωchilv

Qvw,s,t
flow,Vpp, ∀t ∈ Ωtime, ∀v ∈ Ωbus,Vpp, ∀s ∈ Ωsen (43)

Vv,s,t
b,Vpp ≈ Vu,s,t

b,Vpp −
(

Ruv
L,VppPuv,s,t

flow,Vpp+Xuv
L,VppQuv,s,t

flow,Vpp

)
Vs0,Vpp

, ∀t ∈ Ωtime, ∀u, v

∈ Ωbus,VPP, s0 is the VPP root substation , ∀s ∈ Ωsen

(44)

For bus v which is connected with DG d, PV p, WT ω, BSS b, EVA e, hydrogen system
h, and DRP l, d ∈ Ωdg, p ∈ ΩPV,ω ∈ ΩWT, b ∈ Ωbat, e ∈ Ωev, ∀h ∈ Ωhgn and l ∈ Ωdrp

Pv,s,t
Vpp = Pv,s,t

L,Vpp − Pd,s,t
DG − Pp,s,t

PV − Pω,s,t
WT + Pb,s,t

ch,bat − Pb,s,t
dis,bat + Pe,s,t

ch,ev

−Pe,s,t
dis,ev + Ph,s,t

elsr − Ph,s,t
MT + Pl,s,t

L,drpUpper − Pl,s,t
L,drpDown,

∀t ∈ Ωtime, ∀v ∈ Ωbus,Vpp, ∀s ∈ Ωsen

(45)

Qv,s,t
Vpp = Qv,s,t

L,Vpp − Qd,s,t
DG + Ql,s,t

L,drpUpper − Ql,s,t
L,drpDown,

∀t ∈ Ωtime, ∀v ∈ Ωbus,Vpp , ∀s ∈ Ωsen
(46)

(
Vmin

b,Vpp

)
≤ Vv,s,t

b,Vpp ≤
(

Vmax
b,Vpp

)
, ∀t ∈ Ωtime, ∀v ∈ Ωbus,Vpp, ∀s ∈ Ωsen (47)

(
Puv,s,t

flow,Vpp

)2
+
(

Quv,s,t
flow,Vpp

)2
≤
(

Suv,Max
flow,Vpp

)2
, ∀t ∈ Ωtime, ∀u, v ∈ Ωbus,Vpp, ∀s ∈ Ωsen (48)

3. Proposed Co-Optimization Framework
3.1. Concept Description

The growing adoption of rooftop solar panels, batteries, and other DERs presents both
technical and financial opportunities within the power system [8]. This can be enabled
by aggregating these resources into VPPs [9]. However, if these VPPs are not handled
appropriately by various agents of the power systems, mainly the distribution network
service providers, power system infrastructure may run into different technical problems,
such as exceeding branch capacity limitations and voltage instability. It is important to
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note that breaching network security, such as line capacity limits, can lead to significant
financial consequences and reduced societal welfare. Previous studies [5,6] have assumed
to have direct control over managing the behind-the-meter DERs. However, in countries
like Australia [7], DNSPs do not have the authority to access data from behind-the-meter
equipment, in order to preserve the privacy of the different layers within the power system.

Co-optimization, which means optimized collaboration among many entities working
together to achieve a common goal [27], can be deployed for managing the technical
aspects of power layers. In this research, as shown in Figure 1, co-optimization stands for
collaboration between DNSPs and VPPs in such a way that makes the operation of the
system secure. This will be achieved through the development of a novel co-optimization
framework, through which the limits of power trading between such service providers are
effectively computed with a guarantee that power trading of VPPs with the markets will
not violate the technical aspects of distribution networks. Precisely, under a decentralized
framework for preserving the privacy of these mentioned service providers, permissible
boundaries are calculated by DNSPs [28].
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Figure 1. The boundaries issued to the VPPs by DNSPs. 

3.2. Boundary Publishment Development 

Figure 1. The boundaries issued to the VPPs by DNSPs.

3.2. Boundary Publishment Development

DNSPs cannot access VPP data in detail because of legislation regarding privacy and
independence in operation. Nevertheless, for the security and efficiency of the whole
network’s operation, DNSPs should establish and disseminate the operating boundaries of
the VPPs, which also requires a framework that will be fast, reliable, and scalable towards
changes in dynamic network conditions.

To fill this requirement, a sensitivity analysis framework is developed that will enable
DNSPs to calculate and dispatch these boundaries in real-time circumstances. The approach
utilizes the relationship between network constraints and the routes of installed VPPs to
enable DNSPs to compute boundaries without requiring direct access to VPP data.

As an example of the proposed sensitivity analysis, consider a simplified distribution
network integrated with two VPPs, as shown in Figure 2. In this regard, the DNSP is
supposed to interact with both VPPs to ensure secure operation of distribution networks
without violating their operational limitations. The DNSP must also establish a decentral-
ized and privacy-preserving framework capable of addressing the future needs of energy
systems, which increasingly depend on distributed resources, to ensure grid reliability and
stability. To achieve this, the following procedures are followed.
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Figure 2. The sample distribution network, connected to VPPs.

Firstly, the DNSP runs the power flow subject to corresponding constraints without
the penetration VPPs, which means Pv,t

Vpp = 0 and Qv,t
Vpp = 0. To accomplish this, the power

flow equations of the distribution networks are defined as follows.

Pn,s,t
net = ∑

m∈Ωparn

Pmn,s,t
flow,net − ∑

k∈Ωchiln

Pnk,s,t
flow,net, ∀t ∈ Ωtime, ∀n ∈ Ωbus,net, ∀s ∈ Ωsen (49)

Qn,s,t
net = ∑

m∈Ωparn

Qmn,s,t
flow,net − ∑

k∈Ωchiln

Qnk,s,t
flow,net, ∀t ∈ Ωtime, ∀n ∈ Ωbus,net, ∀s ∈ Ωsen (50)

Vn,s,t
b,net ≈ Vm,s,t

b,net −
(Rmn,t

L,netP
mn,s,t
flow,net+Xmn,t

L Qmn,s,t
flow,net)

Vs0,net
, ∀t ∈ Ωtime, ∀n, m

∈ Ωbus,net, s0 is the root substation of Bus n and m.
(51)

For bus n which is connected with VPP v, and v ∈ ΩVPP

Pn,s,t
net = Pn,s,t

L,net + Pv,s,t
Vpp, ∀t ∈ Ωtime, ∀n ∈ Ωbus,net, ∀s ∈ Ωsen (52)

Qn,s,t
net = Qn,s,t

L,net + Qv,s,t
Vpp, ∀t ∈ Ωtime, ∀n ∈ Ωbus,net , ∀s ∈ Ωsen (53)(

Vmin
b,net

)
≤ Vn,s,t

b,net ≤
(

Vmax
b,net

)
, ∀t ∈ Ωtime, ∀n ∈ Ωbus.net, ∀s ∈ Ωsen (54)(

Pmn,s,t
flow,net

)2
+
(

Qmn,s,t
flow,net

)2
≤
(

Smn,Max
flow,net

)2
, ∀t ∈ Ωtime, ∀n, m ∈ Ωbus,net, ∀s ∈ Ωsen (55)

After running the above load flow for the distribution networks and calculating the
power line conditions, the additional line capacity (ALC) is calculated as follows:

ALC =


∆S1,1

DN · · · ∆S1,t
DN

...
. . .

...
∆SBr,1

DN · · · ∆SBr,t
DN


= replicate




S1,Max
flow,net

...
SBr,Max

flow,net

, 1, t

−


S1,1

flow,net · · · P1,t
flow,net

...
. . .

...
PBr,1

flow,net · · · PBr,t
flow,net

, ∀Br

∈ ΩBranch, ∀t ∈ Ωtime

(56)

In the above expression, ALC means the additional line capacity; ∆SBr,t
DN refers to the

available capacity of the branch Br at time t which is calculated through the maximum line
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capacity minus the line power SBr,t
flow,net. It is notable that SBr,t

flow,net is calculated by running
the power flow for the distribution networks without considering the VPPs.

The additional line capacity has been calculated so far without the VPP’s penetrations.
Now, a sensitivity analysis can be formed to model the behavior of VPPs on the distribution
networks. In more detail, a matrix populated with binary numbers (0 and 1) is constructed
based on the structure of the distribution network, starting from the substation (SS) and
extending to the bus where the VPP is installed.

The sensitivity matrix will be constructed based on a binary system expressing the
relationship between branches in the distribution network and VPPs. It will then be
identified as follows:

• A branch on the route from the substation to VPP is marked as 1.
• Otherwise, it is 0.

To understand this context, let us go to the modified sample network that has been
shown in Figure 3 for illustration. The branches that come along the route of VPP to SS are
filled up by 1 and those that do not come under this route are filled by 0. In the example
shown in Figure 3, the lines that are filled up with 1 have been highlighted in blue color for
easy following.
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Figure 3. The lines in the route of VPPs. (a) VPP1 and (b) VPP2.

The highlighted branches, in blue, represent the paths between SS and each VPP.

• In VPP1, branches 1, 2, and 4 give the path.
• In VPP2, flow occurs through branches 1 and 5.

The filled matrix for the mentioned paths is provided as follows.

Vpp1︷︸︸︷
1
1
0

1
0

Vpp2︷︸︸︷
1
0

0
0
1


(57)

• Row i corresponds to branch i.
• Column j corresponds to VPP j.

The above matrix was constructed manually to demonstrate the method. However,
to generalize the process and enable it across different networks, a detailed algorithm is
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provided in Appendix A. This generalized approach systematically identifies the sensitivity
matrix, ensuring adaptability to various networks.

By combining Equations (56) and (57), the relationship between the available bound-
aries of VPPs, the sensitivity analysis matrix, and the additional line capacity can be for-
mulated as a constraint for distribution networks. Specifically, Boundt

Vpp1 and Boundt
Vpp2

are two variables that are optimized to determine the boundaries for VPPs, ensuring that
branch capacities are not exceeded.

Vpp1︷︸︸︷
1
1

0
1
0

Vpp2︷︸︸︷
1
0
0

0
1


[

Boundt
Vpp1

Boundt
Vpp2

]
≤ Real




∆S1,t
DN
...

∆S5,t
DN


, ∀t ∈ Ωtime (58)

In the above, the explanation was provided for the sample network, but its general
form is provided here for different networks.

OFDN = max

 ∑
v∈ΩVpp

∑
∈Ωtime

Boundt
Vppv

, ∀v ∈ ΩVpp, ∀t ∈ Ωtime (59)

Subject to


Route1

Vpp1 · · · Route1
Vppv

...
. . .

...
RouteBr

Vpp1 · · · RouteBr
Vppv




Boundt
Vpp1

...
Boundt

Vppv

 ≤ Real




∆S1,t
DN
...

∆SBr,t
DN


, ∀v ∈ ΩVpp, ∀t ∈ Ωtime. ∀Br ∈ ΩBranch (60)

and constraints (49)–(55).

3.3. Procedure of Dynamic Boundary Publishment to the VPPs

Figure 4 illustrates that the process starts by gathering necessary data about the
distribution network from the DNSPs, such as the information on network branches and
forecasted load demand, among any other relevant operational data. The engine aims at
setting the maximum possible boundary for each VPP in such a way that critical network
constraints are satisfied.

Once the optimization engine is run, it provides the available capacities for each VPP,
indicating the boundary each VPP can be allocated without violating network constraints.
This value is then sent back to the VPPs through a secure data exchange hub. In turn, the
VPPs take the assigned boundary limits to schedule their resources in such a way to achieve
maximum profit within the given boundary.

After scheduling, the VPPs send their bids to the DNSPs. The DNSPs will re-run the
load flow with the inclusion of bids coming from the VPPs to check the technical aspects
of the network are not breached. This makes sure that, in summary, the overall network
constraints remain within the standard limits and keep the grid stable.
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Figure 4. Co-optimization between service providers of distribution networks and VPPs.

The pseudocode of the proposed method is provided in Table 1 below to outline the
steps involved.

Table 1. The pseudocode of the proposed boundary publishment approach.

The Pseudocode of Dynamic Boundary Publishment.

Step 1: Get data related to the distribution networks, such as loads, configuration,
line limitations, etc.

Step 2: Run load flow for the distribution network and calculate the additional
line capacity by Equation (56).

Step 3:
Construct the sensitivity matrix based on the lines that connect the VPPs
to the distribution network based on the algorithm provided in the
Appendix A.

Step 4: Maximize the boundaries of VPPs by Equation (59) subject to the
constraints described in Equation (60).

Step 5: DNSP Publishes the boundaries to the VPPs via data exchange hub.

Step 6: The service providers of VPPs receive the boundaries to schedule their
DERs with the aim of maximizing profit.

Step 7:
DNSPs receive bids from VPPs and perform power flow analyses in the
presence of these bids. This ensures that the system’s technical constraints
are not breached while minimizing voltage deviations or operational costs.

Step 8: End.

4. Results and Discussions
This section presents the simulation results demonstrating the performance of the

proposed voltage and congestion management approach when the DNSP publishes the
operational boundaries to the VPPs. The methodology is applied to the IEEE 33-bus radial
distribution network [29], which is connected to two VPPs, as shown in Figure 5. The
corresponding demands are illustrated in Figure 6.
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Figure 5. The schematic of a 33-bus distribution network connected to two VPPs. Figure 5. The schematic of a 33-bus distribution network connected to two VPPs.

Two VPPs are formed based on a 12-bus IEEE network [30] and each consists of various
resources, including renewable energy sources, hydrogen fuel cell demands, market prices,
and load factors, all of which are presented in Figure 7. Each VPP includes dispatchable
generators (DGs) and microturbines (MTs) with capacities of 200 kW and 100 kW, respec-
tively. Additional details regarding the storage facilities and relevant price coefficients
can be found in Tables 2–5. Two cases are considered to evaluate the effectiveness of the
proposed approach:

• Case 1: No boundaries are set for the VPPs, allowing unrestricted power trading
between the VPPs and the distribution network.

• Case 2: Boundaries are issued by the DNSP, limiting power trading between the VPPs
and the distribution network.
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Table 2. Battery storage system characteristics.

Capacity Pb,max
ch,bat Pb,max

dis,bat ηch,bat ηdis,bat

4 MWh 0.4 MW 0.4 MW 0.95 0.96

Table 3. EVA characteristics.

Capacity Pe,max
ch,ev Pe,max

dis,ev Pe,t
trip,ev ηch,ev ηdis,ev

Trip
Times

2 MWh 0.2 MW 0.2 MW 0.02 MW 0.95 0.96 7, 16, 24

Table 4. Hydrogen system characteristics.

Hydrogen Storage Capacity Hh,max
elsr Hh,max

dis,hgn ηelsr Ψeih

100 kg 10 kg 10 kg 0.8 39kWh/kgH2

Table 5. The cost coefficients for different DERs.

Cd
DG Ch

O&M,MT Cb
cyc,bat Ce

rem Ch
fcv Ch

O&M,elsr Cp
O&M,PV Cω

O&M,WT Cc
cmr

0.06
($/kWh)

0.015
($/kWh)

0.30
($/switching)

0.005
($/kWh) 9 ($/kgH2) 1.50

($/kgH2)
0.005

($/kWh)
0.01

($/kWh)
0.12

($/kWh)

4.1. Results from DNSP

In this section, the voltage levels and power flow through the branches of the distribu-
tion network are analyzed for both Case 1 and Case 2. Specifically, in Case 1, the power
trading of the VPPs is unrestricted within the distribution network. In contrast, Case 2
operates under the boundaries published by the DNSP, based on the proposed method, as
shown in Figure 8 for both VPP1 and VPP2.
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From a voltage management perspective, Figure 9 presents the voltage levels of the
distribution network as box plots for both cases. In Case 1, voltage breaches the standard
limit of 0.95 p.u. from hours 10 to 18 due to unregulated power trading between the DNSP
and VPPs. These voltage fluctuations are severe, risking damage to network infrastructure
and reducing the reliability of the network. However, in Case 2, where the published limits
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set by the DNSP are followed (see Figure 8), voltages remain within the permissible range
of 0.95–1.05 p.u. It is observed that there is greater variation in the voltage between buses
18 and 19, as bus 18 is farther from the substation bus while bus 19 is closer, leading to
more noticeable fluctuations.
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Figure 9. The distribution network voltage in both cases.

In terms of congestion management, Figure 10 shows the power flows in network
branches as box plots for both cases. In Case 1, some branches exceed their capacity
limits due to unconstrained power trading with the VPPs. For example, from branch 6 to
17, the maximum capacity limits are breached, posing significant technical risks such as
overheating and potential equipment damage. This highlights the critical role of congestion
management in preventing such issues. Conversely, in Case 2, where the VPPs adhere to
the boundaries set by the DNSP, no congestion occurs and the power flow stays within
acceptable limits.
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The comparative analysis underscores the importance of a co-optimization approach
between DNSPs and VPPs. Without coordination, the system is vulnerable to voltage
fluctuations and congestion within distribution networks. This approach not only ensures
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reliable power delivery but also aligns with regulatory frameworks designed to maintain
system integrity in increasingly complex and decentralized energy markets.

In addition to technical assessments, this study includes an economic evaluation to
highlight how the profit of VPPs is affected when adhering to the boundaries set by the
DNSP. To illustrate this, Figure 11 presents the profits of VPPs under different cases. As
shown, the profit of VPP1 decreases by approximately 20% when constrained by the DNSP’s
boundaries. In contrast, VPP2 experiences a smaller reduction of about 7%. This disparity
is primarily due to the stricter boundaries imposed on VPP1, as illustrated in Figure 8. In
other words, as shown in Figure 5, VPP1 is connected to bus 18, which is further away from
the substation. This location results in voltage levels closer to the lower limit (0.95 p.u.),
necessitating tighter boundaries to maintain compliance with voltage standards. On the
other hand, VPP2, connected to bus 21, is located closer to the substation. Its higher voltage
levels allow for more permissive boundaries. Overall, the findings indicate that the profits
of VPPs are not significantly impacted when adhering to the DNSP-provided boundaries,
ensuring the safe operation of distribution networks.
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4.2. Results from VPPs

From the VPP perspective, the voltage profiles of internal networks for both VPPs are
shown in Figures 12 and 13, respectively. From these figures, it is observed that the voltage
levels of the VPPs are within the range of acceptability. However, there are noticeable
differences in voltage patterns between the two cases. As can be seen, in Case 1, for intervals
1 to 16, the voltage of the VPPs is less than in Case 2. At hour 17 up to 24, however, the
voltage level of the VPPs is higher in Case 1 than that in Case 2. This is because, in Case 1,
the absence of boundaries for the VPPs enables them to buy power either from the market
or excess generation of renewables for charging their storage facilities at hours 1–16 and
sell between hours 17 and 24, which leads to increased voltage. However, for Case 2, with
dynamic boundaries limiting power trading, the VPPs must rely more on their local DERs.
Because of the storage facilities within the VPPs, they have flexibility in managing their
resources effectively and maintaining the technical aspects of the VPPs.
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Figure 13. The voltage of VPP2 in Cases 1 and 2.

When analyzing the scheduling of the VPPs’ resources, Figures 14 and 15 depict
various patterns. In Case 1, both VPPs purchase significant power from the markets during
hours 2 and 16, while selling during intervals 17 to 24 when market prices are higher to
maximize profit. In contrast, in Case 2, these power trading quantities decrease as they
must comply with the limits imposed by the DNSP, leading to an increased reliance on the
local resources to meet the demand. For example, in Case 2, the DG of VPP1, represented
by the grey bar, plays an important role in load supply. The same happens for VPP2, which
is also constrained to be within the published boundaries by the DNSP for Case 2. Other
resources are used to maintain the power balance for the different periods. The main
difference here is that the boundaries for VPP2 are higher; hence, it can trade more power
with the market and has a higher profit potential.
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If we examine the hydrogen system scheduling in Figures 16 and 17, it becomes evi-
dent that the electrolyzer possesses different generation patterns in the two cases. In Case
1, the electrolyzer generates hydrogen continuously. Conversely, in Case 2, significant
hydrogen generation occurs during intervals with PV generation, while generation dur-
ing other intervals is reduced because of having the boundaries on power trading with
the distribution network. As a result, the VPP schedules its hydrogen system based on
local resources to maximize profit, leveraging power-to-hydrogen to capture surplus PV
generation and supplying the hydrogen fuel cell vehicles.
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4.3. Discussion and Summary

A brief explanation of the assumptions of the mathematical model are presented here
and they are evaluated for their application in a real-world context. Since the complexity
of modern electricity markets is growing, fast methods are needed to for real-time market
applications. One of the most important factors in assessing the proposed methodology is
computational efficiency. The time consumption of the solver was measured on an Intel core
i7 laptop with 16 GB of memory, using GUROBI version 11 as the solver. More importantly,
it only takes 0.5 s to publish the boundaries to the VPPs, illustrating well the merit of relying
on convex programming and serving present electricity market requirements. In particular,
compared to population-based algorithms (such as genetic algorithms), convex program-
ming brings some crucial advantages. First, it is much faster. The genetic algorithms are
iterative and take many iterations for convergence, which is unacceptable for a real-time
market. Genetic algorithms have no guarantees of reaching the global solution and hence
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might end up finding a local solution. In a nutshell, the proposed method outperforms
population-based algorithms in both the time efficiency and accuracy of the solution; hence,
convex optimization is more suitable for real-time electricity market operation.

According to the obtained results, the key findings of this study are outlined in
Table 6, which highlights the significant outcomes of implementing the proposed co-
optimization method.

Table 6. The key findings of the investigation.

Comprehensive VPP Model Integrates various DERs, including hydrogen and electricity, for increased flexibility.

Decentralized operation Ensures privacy and confidentiality of service providers’ data, in line with emerging market
privacy requirements.

Network safety assurance It mitigates the risk of branch congestion by publishing boundaries to VPPs.

Voltage compliance Keeps voltage above 0.95 p.u., guaranteeing compliance with operational standards after the
method is implemented.

Real-time boundary publication Support for real-time boundary publishing allows integration into real-time markets because
of the fast response in just 0.5 s.

5. Conclusions
This paper introduces a co-optimization technique that enables DNSPs to dynamically

set and publish the operational boundaries for VPPs while ensuring effective management
of their interactions, without compromising the integrity of the distribution network. Oper-
ating in a decentralized manner, DNSPs determine these boundaries without disclosing
any private VPP data, thereby maintaining the confidentiality of all service providers. The
proposed approach offers several key advantages:

• The VPP model accommodates a wide range of distributed energy resources, including
hydrogen and electricity, which enhances the flexibility and adaptability of the VPP.

• The decentralized nature of the method ensures that service provider privacy is upheld,
aligning with the emerging regulatory requirements of modern energy markets.

• The co-optimization framework guarantees safe network operation by mitigating risks
such as voltage instability and branch congestion. For example, in the unbounded case
study, the network voltage fell below the minimum acceptable threshold of 0.95 p.u.
However, after implementing the proposed approach, voltage levels were maintained
above 0.95 p.u., ensuring compliance with operational standards.

• The convex nature of the proposed framework improves computational efficiency,
making it compatible with advanced solvers. The non-iterative structure enables
real-time boundary publication, supporting seamless integration into online market
operations. The solver requires only 0.5 s to publish boundaries using a standard
personal laptop.

While this research provides valuable contributions to voltage and congestion man-
agement, it does not address the development of a market-based framework. Specifically, it
does not consider VPPs as price makers in market-clearing processes, which presents an op-
portunity for future research. Additionally, the integration of machine learning techniques
to further enhance the boundary publication process, particularly in dynamic environments
such as rapid load changes, is another promising avenue for future work
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Nomenclature

Sets, Indices
Ωparn

Set of parent buses of bus n in the distribution network
Ωchiln Set of child buses of bus n in the distribution network
Ωparv

Set of parent buses of bus v in the VPP
Ωchilv Set of child buses of bus v in the VPP
Ωsen Set of scenarios
Ωtime Set of times
Ωdg Set of DGs
Ωbat Set of BSSs
Ωev Set of EVAs
Ωhgn Set of hydrogen systems (i.e., electrolyzer, storage, and microturbine)
ΩSRel Set of reliability of hydrogen refueling station
Ωdrp Set of participated loads in demand response programming
Ωbus,net Set of buses of distribution network
Ωbus,Vpp Set of buses of VPP
ΩPV Set of PVs
ΩWT Set of WTs
ΩBranch Set of distribution network branches
ΩVpp Set of VPPs
b Index of BSSs
c Index of customers
d Index of DGs
e Index of EVAs
h Index of hydrogen system (i.e., electrolyzer, storage, and microturbine)
l Index of participated loads in demand response programming
n, m, k Index of distribution network buses
p Index of PVs
s Index of scenarios
t Index of times
t̂ Index of reliability time of hydrogen refueling station
u, v, w Index of VPP buses
ω Index of WTs
Br Index of branches
Parameters
Cs,t

sell Market energy selling price
Cs,t

buy Market energy purchasing price

Cd
DG Cost parameter of DG

Ch
O&M,MT Cost parameter of MT

Cb
cyc,bat BSS cycling cost

Ce
rem Cost coefficient for the remuneration of EVA owners

Ch
fcv Cost coefficient for hydrogen refueling station

Ch
O&M,elsr O&M cost coefficient for electrolyzer

Cp
O&M,PV O&M cost coefficient for PV

Cω
O&M,WT O&M cost coefficient for WT
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Cc
cmr Fixed-rate energy price for customers

Hh,min
dis,hgn Minimum limit of hydrogen storage discharging

Hh,max
dis,hgn Maximum limit of hydrogen storage discharging

Hh,min
elsr Minimum limit of electrolyzer

Hh,max
elsr Maximum limit of electrolyzer

Hh,min
MT Minimum limit of MT hydrogen consumption

Hh,max
MT Maximum limit of MT hydrogen consumption

Pc,s,t
cmr Load demand of the customers

Pb,min
ch,bat Minimum limit of BSS charging

Pb,max
ch,bat Maximum limit of BSS charging

Pb,min
dis,bat Minimum limit of BSS discharging

Pb,max
dis,bat Maximum limit of BSS discharging

Pe,min
ch,ev Minimum limit of EVA charging

Pe,max
ch,ev Maximum limit of EVA charging

Pe,min
dis,ev Minimum limit of EVA discharging

Pe,max
dis,ev Maximum limit of EVA discharging

Ph,min
MT Minimum limit of MT power generation

Ph,max
MT Maximum limit of MT power generation

Pl,max
L,drp Maximum limit for active loads participated in DRP

Pn,s,t
L,net Active load demand of nth bus of distribution network

Pv,s,t
L,Vpp Active load demand of nth bus of VPP

Ql,max
L,drp Maximum limit for reactive load participated in DRP

Qn,s,t
L,net Reactive load demand of nth bus of distribution network

Qv,s,t
L,Vpp Reactive load demand of nth bus of VPP

Rh,Down
MT Down-ramp rate boundary of MT

Rh,Upper
MT Up-ramp rate boundary of MT

Rd,Down
DG Down-ramp rate boundary of DG

Rd,Upper
DG Up-ramp rate boundary of DG

Rmn
L,net Resistance of the line connecting bus m to n of distribution network

Ruv
L,Vpp Resistance of the line connecting bus u to v of VPP

Sb,min
bat Lower boundary for the BSS’s state of charge

Sb,max
bat Maximum limit of BSS’s state of charge

Se,min
ev Minimum limit of the EVA’s state of charge

Se,max
ev Maximum limit of the EVA’s state of charge

Sh,min
hgn Minimum limit of the hydrogen storage’s state of charge

Sh,max
hgn Maximum limit of the hydrogen storage’s state of charge

Smn,Max
flow,net Apparent power boundary of line mn of distribution network

Suv,Max
flow,Vpp Apparent power boundary of line uv of VPP

SBr,t
flow,net Apparent power of branch Br at time t

Vmin
b,net Minimum limit for distribution network’s voltages

Vmin
b,Vpp Minimum limit for VPP’s voltages

Vmax
b,net Maximum limit for distribution network’s voltages

Vmax
b,Vpp Maximum limit for VPP’s voltages

Xmn
L,net Reactance of the line connecting bus m to n of distribution network

Xuv
L,Vpp Reactance of the line connecting bus u to v of VPP

ηch,bat Efficiency of BSS charging
ηdis,bat Efficiency of BSS discharging
ηch,ev Efficiency of EVA charging
ηdis,ev Efficiency of EVA discharging
ηelsr Efficiency of electrolyzer, considered 80 percent
ηMT Efficiency of MT, considered 80 percent
πs Occurrence probability of Sth scenario
∆t Time interval
Ψeih Energy intensity of hydrogen, accounting for 39kWh/kg − hydrogen
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Variables
Bb,s,t

bat Binary variable for declining the simultaneous charging and discharging of BSS
BCb,s,t

bat Binary auxiliary variable for BSS
Hh,s,t

ch,hgn Hydrogen storage charging

Hh,s,t
dis,hgn Hydrogen storage discharging

Hh,s,t
elsr Generated hydrogen by electrolyzer

Hh,s,t
FCV Released hydrogen to hydrogen refueling station

Hh,s,t
MT Released hydrogen to MT

Ph,s,t
elsr Consumed power by electrolyzer

Ps,t
sell Quantity of power sold to the market

Ps,t
buy Quantity of power purchased from the market

Pd,s,t
DG Power output from DG

Ph,s,t
MT Power output from MT

Pb,s,t
ch,bat Charging of BSS

Pb,s,t
dis,bat Discharging of BSS

Pe,s,t
ch,ev Charging of EVA

Pe,s,t
dis,ev Discharging of EVA

Pe,s,t
trip,ev Consumed power by EVA trip

Pl,s,t
L,drpUpper Increment in active load demand participating in DRP

Pl,s,t
L,drpDown Reduction in active load demand participating in DRP

Pd,s,t
DG Generated power by DG

Pmn,s,t
flow,net Active power flow in distribution network branch

Puv,s,t
flow,Vpp Active power flow in VPP branch

Pn,s,t
net Active power at nth bus of distribution network

Pv,s,t
Vpp Active power at nth bus of VPP

Ql,s,t
L,drpUpper Increment in reactive load demand participating in DRP

Ql,s,t
L,drpDown Reduction in reactive load demand participating in DRP

Qmn,s,t
flow,net Reactive power flow in distribution network

Quv,s,t
flow,Vpp Reactive power flow in VPP

Qn,s,t
net Reactive power at nth bus of distribution network

Qv,s,t
Vpp Reactive power at nth bus of VPP

Sb,s,t
bat State of charge of BSS

Sb,s,final
bat State of charge of BSS at tfinal time

Sb,s,initial
bat State of charge of BSS at tinitial time

Sb,s,t
ev State of charge of EVA

Se,s,initial
ev State of charge of EVA at tinitial time

Sb,s,final
ev State of charge of EVA at tfinal time

Sh,s,t
hgn State of hydrogen of hydrogen storage at t > 1 time

Sh,s,initial
hgn State of charge of hydrogen storage at tinitial time

Sh,s,final
hgn State of charge of hydrogen storage at tfinal time

Vn,s,t
b,net Voltage of nth bus of distribution network

Vv,s,t
b,Vpp Voltage of nth bus of VPP

Vs0,net Upstream system’s voltage (substation)
Vs0,Vpp Upstream system’s voltage (distribution network)
∆SBr,t

DN The available capacity of branch Br at time t.
Abbreviation
ALC Additional line capacity
BSS Battery storage systems
BIBC Bus-injection to branch-current
DGs Dispatchable generators
DRP Demand response program
DERs Distributed energy resources
DTR Decision tree regression
EVs Electric vehicles
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EVAs Electric vehicle aggregations
EOPEX External operational expenditures
G2V Grid to vehicle
H2P Hydrogen to power
MINLP Mixed-integer nonlinear programming
MTs Microturbines
OF Objective function
IOPEX Operational expenditure
PV Photovoltaic
P2H Power to hydrogen
RESs Renewable energy sources
V2G Vehicle to grid
VPPs Virtual power plants
WT Wind turbine
HFCVs Hydrogen fuel cell vehicles
T Transpose
SS Substation

Appendix A
Here, the algorithm for sensitivity analysis and finding a VPP’s path on the distribution

networks can be obtained as follows. This is based on the bus-injection to branch-current
(BIBC) approach [31].

• Step 1:

For a distribution system with m branches and n buses, the dimension of the BIBC
matrix is m × (n − 1).

• Step 2:

For each line section connecting bus i (upstream) to bus j (downstream), copy the
values from the column corresponding to bus i to the column for bus j in the BIBC matrix.
Then, set the element at the intersection of row k and column j to +1.

• Step 3:

Repeat Step 2 for every line section until all branches are included in the BIBC matrix.

• Step 4:

Once the matrix is complete, each column in the BIBC matrix represents the sensitivity
matrix, showing the flow path for the ith VPP.

To make it clear, a BIBC matrix is constructed for the simple network shown in Figure 2
as follows:
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are two VPPs located at buses 5 and 6. Therefore, the sensitivity matrix can be derived by
extracting the respective columns corresponding to these buses.

Vpp1︷︸︸︷
1
1
0

1
0

Vpp2︷︸︸︷
1
0
0

0
1


(A2)
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