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Abstract: Yaw errors occur in wind turbines either during the installation stage or because
of the aging of devices. It reduces the wind speed in the rotor axial direction and increases
the structural loads in the lateral direction. Diagnosing yaw error rapidly and accurately
is crucial for avoiding the introduced under-performance. In this review paper, we first
introduce the fundamental concepts and principles of wind turbine yaw control strategies,
and we discuss two types of yaw errors (i.e., the static yaw error and the dynamic yaw
error) with their corresponding causes. Subsequently, we outline the existing yaw error
diagnostic methods, which are based on the LiDAR (light detection and ranging) data, the
SCADA (supervisory control and data acquisition) data, or a combination of the two, and
we discuss the advantages and disadvantages of various methods. At last, we emphasize
that the diagnostic performance can be improved via the combination of the LiDAR data
and the SCADA data, and it benefits from an in-depth understanding of the salient features
and influential factors associated with the yaw error. Meanwhile, the potential of intelligent
clusters and digital twins for detecting yaw errors is discussed.

Keywords: wind turbine; yaw error; diagnostic method

1. Introduction
The development of wind energy is crucial for achieving the goal of sustainable

energy [1,2]. The Global Wind Energy Council (GWEC) reported that the wind power
industry experienced record-high growth in 2023, that the world’s newly installed wind
capacity was 106 GW for onshore and 10.8 GW for offshore, totaling about 117 GW; an
increase of 50% compared to the last year, which raised the global wind installation capacity
to 1021 GW [3]. In the World Energy Transitions Outlook, the International Renewable
Energy Agency (IRENA) forecasted that the cumulative installed capacity of onshore wind
will be 3040 GW and that of offshore wind will be 494 GW, with the total installed capacity
reaching 3534 GW by 2030 [4]. The 2030 wind energy goals require an annual increase in
installed wind capacity from the current 117 GW to at least 320 GW over the course of the
decade [3]. The advent of the wind energy era leads to a rise in operation and maintenance
(O&M) expenditure. Effective diagnosis of the system error is important for lowing the
O&M cost. In this paper, we focus on reviewing the diagnostic methods for errors in the
wind turbine yaw system.

Horizontal axis wind turbines typically employ active yaw control. The yaw system, a
critical component of the wind turbine, aligns the wind turbine with the incoming wind

Energies 2025, 18, 588 https://doi.org/10.3390/en18030588

https://doi.org/10.3390/en18030588
https://doi.org/10.3390/en18030588
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-2606-0672
https://doi.org/10.3390/en18030588
https://www.mdpi.com/article/10.3390/en18030588?type=check_update&version=1


Energies 2025, 18, 588 2 of 17

and maximizes the capture of wind energy. In operational scenarios, the frequent changes
in wind direction relative to the nacelle axis may result in wind turbines operating under
yaw conditions. Yaw error frequently occurs in practice due to external reasons [5]. Studies
have shown that a small yaw error can significantly reduce wind power production [6].
The relationship between the power output and the yaw angle is given by P = P0 cos3 θ [7],
where P is the actual power, P0 represents the power without yaw, and θ denotes the yaw
angle. It is estimated that accomplishing the calibration of yaw errors on wind turbines
globally would improve wind energy production by 1%∼2% [8,9]. It was demonstrated that
the presence of yaw error increases the O&M expenditure in both numerical simulations and
measurements [10–13]. Moreover, the yaw error also affects the effectiveness of yaw-based
active wake control (AWC) strategies [14–16].

The supervisory control and data acquisition (SCADA) system monitors the operation
of wind turbines [17]. The yaw error cannot be directly identified using the SCADA
data because of the complexity of the system, as different signals and malfunctions of
different components are correlated. Therefore, it is crucial to have a baseline reference for
identifying yaw errors using SCADA data. This reference is often taken as the curve of
the maximum power or power coefficient vs. the yaw angle, and it is obtained from the
SCADA data under normal wind turbine operation conditions.

This paper reviews the diagnostic methods for yaw error in horizontal axis wind
turbines. First, Section 2 introduces the fundamental operation principle of the yaw control
system and describes the classification and causes of yaw errors. Then, Section 3 presents
diagnostic methods of different types. Finally, Section 4 summarizes this review and
discusses future research directions.

2. Yaw Control System and Yaw Error
2.1. Yaw Control System

The stochastic nature of wind in its speed and direction necessitates a complex control
system for a wind turbine to operate as designed. Figure 1a presents a model diagram for
a wind turbine control system. The yaw control system, situated between the tower and
the nacelle, is responsible for controlling the rotation of the rotor and the nacelle in the
vertical direction. The wind information is fed to the control unit to execute appropriate
control actions. The mechanical structure of a yaw control system is shown in Figure 1b.
As seen, it is comprised ofa yaw bearing, yaw drive, and yaw brake [18]. A yaw bearing is
the rotatable connection between the nacelle and the tower, ensuring the stable rotation
of the nacelle. A yaw drive, which consists of an electric motor and a gearbox, rotates the
nacelle. A yaw brake serves to stop the yaw movement.

Figure 1. A model diagram for a wind turbine control system and the mechanical structure of a
yaw system. (a) wind turbine control system. (b) yaw system.

Logic control is often employed for wind turbines. Different strategies for yaw control
have been summarized in the literature [19–21]. Figure 2 illustrates the procedure of a logic
control. When a predefined threshold is reached in the measured yaw angle, the yaw brake
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is triggered to perform the corresponding movement. A detailed procedure for the logic
control is summarized as follows:

Figure 2. Schematic of logic yaw control.

1. Temporally filter the input yaw angle for different periods.
2. Decide the need for the rotor rotation by comparing the result of the first step with

the predefined threshold. If yes, compute the information about yaw braking.
3. Rotate the rotor against the wind based on yaw braking information to reduce the

yaw angle.

Ideally, a yaw control system maintains the wind turbine in alignment with the
incoming wind in order to maximize wind energy capture. Considering the operational
lifetime of a wind turbine and the stochasticity of the wind direction, the yaw system does
not require accurate yaw control at small timescales. However, incorrect alignment of
wind vanes or inaccurate wind direction measurements can lead to errors in the input yaw
angles, impacting the yaw movement of a wind turbine and thus reducing its performance.

2.2. Definition and Classification of Yaw Error

The angle between the rotating axis of the rotor and the incoming wind direction is
defined as the yaw angle for a horizontal axis wind turbine:

γ = θ − φ (1)

where θ is the angle of the incoming wind direction and φ denotes the angle of the na-
celle orientation.

During the operation of wind turbines, a number of factors can result in yaw error,
including control strategies, air flow distortion, and wind vane malfunction. Yaw error can
be classified into two categories: dynamic yaw error and static yaw error. Yaw errors occur
in both the wind vane and the sonic anemometer for a modern wind turbine. Considering
that the wind vane is more widely utilized, it is the focus of this review. A schematic of
wind turbine yaw error is shown in Figure 3.

The dynamic yaw error is primarily attributed to the error in sensing the incoming wind
direction using the wind vane [22,23]. The yaw control system is activated [19–21] when the
yaw angle computed using θ, which is measured at wind vane, exceeds a predefined threshold
value within a specified time interval. As seen in Figure 3, the wind vane is placed downstream
of the rotor. The incoming wind of the wind vane is distorted by the rotating blades, and
the measured wind direction can be different from the actual value, causing errors in the
estimation of yaw angle. The differences between the measured wind direction and the
real one vary in time because of the fluctuating nature of the flow distortion induced by
the rotating blades. The magnitude of the dynamic yaw error is correlated with the wind
direction and wind speed [24]. Normally, when the wind speed and direction are stable,
the dynamic yaw error is distributed as a Gaussian distribution ∆θ ∼ N(µ, σ), where µ is
generally non-zero, and µ and σ are functions of the incoming wind speed and direction.
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Figure 3. Schematic of wind turbine yaw error.

The static yaw error can be categorized into two types: the yaw motion error (YME) [25]
and the zero-point shifting error (ZPSE) [25–28]. The yaw motion error is attributed to
factors including local meteorology and flow distortion of the blades [25]. Typically, the
yaw angle error due to the wind vane is close to the Gaussian distribution with zero mean,
i.e., µ = 0. However, there are exceptions, possibly due to the local meteorology, that the
time-averaged value is not zero, resulting in the yaw motion error, a systematic error of the
yaw control strategy under specific conditions. To guarantee the accurate measurement of
the yaw angle, it is essential that the zero point of the wind vane and its sensor are aligned
with the center of the nacelle. However, there is misalignment of the wind vane observed in
the field, which can be due to the installation defect, its inadequate manufacturing accuracy,
or the gradual deterioration over time. Such error is defined as the zero-point shifting error.
As illustrated in Figure 3, when there is a zero-point shifting error, i.e., there is a shift in
angle between the actual zero point of the wind vane and the theoretical zero point, the
relationship between the zero-point shifting error, the measured yaw angle, and the actual
yaw angle is as follows:

γ′ = θM − φ′

γ = γ′ + ∆γ + ∆θ
(2)

where γ′ is the measured yaw angle, θM denotes the wind direction measured by the
wind vane, φ′ denotes the actual point of the wind vane, ∆γ is the zero-point shifting
error, ∆θ represents the dynamic yaw error, and γ stands for the actual yaw angle of the
wind turbine.

3. Diagnostic Methods for Yaw Error
With the increasing scale of wind energy, there is an urgent demand for the devel-

opment of advanced yaw error diagnostic techniques with the capability to identify the
causes of errors. The existing methods for yaw error diagnosis can be classified based on
the data employed, i.e., LiDAR (light detection and ranging) data-based methods, SCADA
data-based methods, and hybrid data-based methods, or based on the capability of the
methods, either for static error or dynamic error. A comprehensive categorization of these
methods is presented in Table 1. Procedure of the literature review is outlined in the
Appendix A.
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Table 1. Comparison of diagnostic methods for yaw error.

Diagnostic Methods Method Description Type of Error Advantages and
Disadvantages

Based on LiDAR data

Time-averaged yaw
error [19,29–33] Static yaw error Designed for static

yaw error.

Yaw error table [24] Yaw error
Accurate for static yaw
error; insufficient for
dynamic yaw error.

Based on SCADA data

Analysis of power
curves [23,25,26,34–37] Zero-point shifting error

Widely applicable with
straightforward principles
and accuracy depending
on the quality and quantity
of monitoring data.

Analysis of power
coefficients [27,28,38] Zero-point shifting error

Low data requirements,
while susceptible to
environmental factors.

Prediction of yaw angle
utilizing wind speed and
direction [9,20,36,39–42]

Dynamic yaw error
Accurate diagnosis of
dynamic yaw error, with
high data requirements.

Dynamic response
model [43] Yaw error

Accurate diagnosis of static
and dynamic yaw error but
troublesome modelling.

Based on both LiDAR and
SCADA data

Yaw error model based on
machine learning [44] Yaw error

Accurate diagnosis of yaw
error, requires analysis of
historical data.

3.1. Diagnostic Methods Based on LiDAR Data

The LiDAR-based method employs the exact information of the incoming wind to
identify yaw errors [19,31,45]. For a ground-based LiDAR, the method employs the mea-
sured wind directions at different heights and the nacelle position data for yaw error
diagnosis. For a nacelle-based LiDAR, on the other hand, the yaw error can be computed
directly. Detailed yaw error diagnosis can then be carried out by analyzing the temporal
evolution of the residuals of the contemporaneous wind vane measurement data [46]. A
variety of LiDAR-based yaw error diagnostic methods is listed in Table 1.

Two methodologies exist for the calibration of yaw error using LiDAR measurements.
The first is static alignment, where the deviations between the yaw angle measured using
LiDAR and the yaw angle measured by the wind vane are averaged for an extended
sampling period, and the average of the deviations is recognized to be the static yaw
error. The yaw control system then compensates for this static yaw error. The second
methodology is the dynamic alignment, which continuously compares the yaw angle
measured by the LiDAR and the wind vane. the yaw system is calibrated frequently to
keep the wind turbine aligned with the wind as accurately as possible.

In some earlier studies [19,29–33], researchers employed data averaged over multiple
time periods (hours or more) for yaw error diagnosis. However, the diagnosis of yaw error
with averaged data can only detect the zero-point shifting error. It has been shown in the
literature [23,24,34] that there are differences in the yaw error at certain wind speeds even
after yaw alignment. Figure 4 compares the yaw errors before (green scatter and black line)
and after alignment (blue scatter and red line) using the averaged data. It is seen that yaw
errors persist at low wind speeds, even though the yaw errors have been compensated to a
certain extent. This implies that the averaged data cannot compensate for the yaw error
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accurately, which will result in a reduction in power efficiency. One explanation is that
the disturbances introduced by the rotating blades to the inflow of the wind vane can be
significantly different for different incoming wind speeds because of the different blade
pitch control algorithms. With the vigorous development of wind energy in complex terrain
and the development of floating offshore wind turbines, wind turbines are confronted with
increasingly complex operational conditions and environments [47,48]. There is an urgent
demand for the development of advanced diagnostic methods of yaw error.

Figure 4. Relationship between yaw error and wind speed [24].

A recent study took into account the contribution of blade turbulence and azimuth on
yaw error. Zhang et al. [24] proposed a charting method based on LiDAR measurement
data to calibrate the yaw deviation. Firstly, the LiDAR measurement data, wind vane
measurement data, and active power for a period of time were collected. Subsequently, the
data were analyzed to create a yaw error table correlated with the active power (wind speed)
and azimuth. The error table was plotted as a rose diagram, as displayed in Figure 5a.
The entire azimuth range (360 degrees) is divided into 12 sectors, where each solid line
represents the active power at different wind speeds. It can be observed that the yaw
error exhibits variability with power within the same sector and also differs across sectors
at the same power level. Finally, the yaw error table is combined into the yaw control
system in Figure 5b, where the dashed box contains the yaw error calibration model. The
current yaw error ∆ϕ is derived from the calculated yaw value, yaw azimuth sector, and the
corresponding active power lookup error table, then combined with the yaw angle ϕ as the
final yaw angle reference value ϕ′ to govern the movement of the yaw system. The power
performance of the two wind turbines before and after the application of the strategy is
illustrated in Figure 6. A significant improvement in the performance of the wind turbines
(especially #2) is apparent. This method optimizes yaw error diagnosis by utilizing power
and azimuth partitioning. However, the method is constrained by the resolution of the
power and azimuth partitioning.
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Figure 5. Model based on yaw error table [24]. (a) Yaw error corresponding to different power
segments and azimuthal sectors (b) Flowchart of yaw control.

Figure 6. Comparison of power curves of wind turbines before and after yaw error calibration using
a diagnostic method based on LiDAR data [24].

The diagnostic method based on LiDAR data can accurately identify the yaw error.
However, the high cost of LiDAR represents a significant limitation for its large-scale
application in wind turbines, despite the fact that the literature [24,44] indicates that the
cyclic application of LiDAR can effectively reduce the cost. Moreover, LiDAR devices are
not as stable as wind vanes and may fail due to factors such as terrain, weather, and marine
environments [44].

3.2. Diagnostic Methods Based on SCADA Data

It is acknowledged that yaw error cannot be directly identified based on the difference
between the wind direction measured at the wind vane and the nacelle orientation from
the SCADA data. The performance of a wind turbine exhibits multivariate dependence
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on environmental conditions and operating parameters [49] with repeating statistical
features [46]. The performance of a wind turbine is inevitably compromised when it
experiences a yaw error, resulting in a variation of the characteristics, including power
and rotational speed, etc. The diagnostic method based on SCADA data is to detect the
yaw error by utilizing the correlation between yaw and other characteristic quantities. This
approach is based on the mechanism of yaw error and characteristic quantities, employs
data mining technology to investigate the mapping relationship, and finally obtains the
potential yaw error and its evolution. The acquisition of wind data can be achieved through
the deployment of either a wind vane, which possesses an accuracy of ±2° [25,26], or
a sonic anemometer, which has a superior degree of accuracy. However, it should be
noted that both devices are subject to the influence of the nacelle boundary layer, which
invariably introduces a certain degree of inaccuracy. The advantages of the data-driven
method are low cost, short research and development cycle, and high application value [46].
Based on the differences in feature selection and diagnostic principles, the classification of
data-driven methods based on SCADA data is presented in Table 1.

One widely employed diagnostic method is based on the power curve [23,25,26,34–37].
It is a method based on the binning of power output for different yaw angles. In the
method, the binning of SCADA data for various yaw angles is completed first, followed
by the analysis of power performance in different bins, and finally the diagnosis of yaw
error. The methods include three key components: (1) data preprocessing, during which
the raw data collected by the SCADA system are preprocessed and divided based on
different yaw angles; (2) power curve modeling, in which the power curve is modeled
based on the divided data set; (3) yaw error identification, which establishes an evaluation
indicator of the power curve performance, evaluates it under different yaw angles, and
finally analyzes the indicator to derive the yaw error. Figure 7 displays the fundamental
framework of the diagnostic method based on the power curve. The differences between
different methods are found in the above three components. An overview of the various
power curve modeling approaches and evaluation indicators is given later.

Figure 7. Framework for yaw error diagnosis based on the analysis of power curves.

In the study by Bao et al. [34], the least-squares B-spline curve was utilized to
model the power curve, with the equivalent operating time as the evaluation indicator.
Pei et al. [26] performed the diagnosis of yaw error by comparing the average power
magnitude between different yaw bins. However, it should be noted that both methods
require a substantial amount of input data to ensure their stability. To address this issue,
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Jing et al. [25] employed a cubic polynomial to fit the power curves of each sub-dataset and
the integral of the power curves over wind speeds as a criterion. Moreover, they analyzed
the coupling of yaw motion error and the zero-point shifting error. The performance of
two wind turbines before and after yaw error calibration by applying Jing et al.’s method
is illustrated in Figure 8. The blue and red lines show the power curve before and after
calibration, respectively. As seen, yaw error calibration increases the power output of
the wind turbine. Approaches similar to those discussed above can be found in other
studies [35–37].

Figure 8. The power curves of the wind turbines with and without yaw error calibration based on
power curve analysis of SCADA data [25].

The diagnostic method based on the analysis of power curves is straightforward,
widely applicable, and capable of diagnosing the static yaw error of wind turbines. How-
ever, the method relies on the poor performance of wind turbines to establish a statistical
model when yaw error exists. There are many factors (other systematic errors [50], environ-
mental factors [51–53], etc.) that may induce the poor performance. Moreover, methods
based on power curves are also constrained by the quality and quantity of monitoring data,
which may be of low accuracy and poor stability. The approach is constrained by the bin
size of the yaw partition. Based on the power curve analysis, the yaw angle is partitioned
with a size of 2°, and the accuracy is tested to be within ±1° [54].

In light of the numerous factors that impact active power, several studies have sought
to diagnose yaw error by examining phenomena that are specific to yaw error. The lit-
erature [27,28,38] utilized the relationship between yaw error and power coefficient to
diagnose the yaw error. The definition of the power coefficient is as follows:

Cp =
P

0.5ρAu3 cos3 θ
(3)

where Cp is the actual power coefficient of the wind turbine, P stands for the active power,
ρ represents the air density, A is the swept area of the wind turbine, u stands for the wind
speed perpendicular to the rotor plane, and θ is the actual measured yaw angle.

The idea of the power coefficient method is to model the power coefficients at different
speed bins and observe the discrepancy between the actual yaw value, where the maximum
power coefficient occurs in the monitoring data, and the theoretical yaw value (generally
zero) to detect the yaw error of the wind turbine. Figure 9 depicts the basic framework of
the power coefficient approach. Astolfi et al. [28] derived the power coefficient curve from
the average power coefficients of the speed bins. This method is widely applicable, while
the accuracy is limited by the binning resolution. Yang et al. [27] improved the method by
modeling the power coefficient curves with the nonparametric sparse Gaussian process
regression algorithm. The anomaly values were processed by applying the quartile method
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for different speed bins. However, the model does not take into account the effects of
turbulence intensity and ambient temperature.

Figure 9. Framework for yaw error diagnosis based on power coefficients.

In comparison to the power curve method, the power coefficient method is more
accurate and requires a smaller amount of data. This increased accuracy is attributed to
the selection of the power coefficient Cp rather than the active power P as the feature for
analyzing. Cp is relatively less dependent on the wind speed compared to P, which provides
for a more reliable connection between power coefficients and yaw errors. The accuracy is
tested within ±0.3° for the method based on power coefficient analysis [54]. Nevertheless,
the generalization of the power coefficient method remains to be investigated. The methods
based on the power curves or the power coefficients are designed for diagnosing the
zero-point shifting error.

The majority of approaches to the study of the dynamic error using the SCADA data
are primarily based on the relationship between the operational parameters (wind speed,
wind direction, etc.) and the yaw angle [9,20,36,39–42]. Models can be constructed on the
basis of historical data to predict future changes in yaw angle. The measured yaw angles
are then compared with the predicted values to determine the dynamic error.

In contrast to the data-driven approach based on SCADA data mentioned above,
Solomin et al. [43] simulated the aerodynamic flow of the wind turbine using computa-
tional fluid dynamics (CFD) analysis. This analysis was designed to model the dynamic
response between wind speed, rotational speed, and yaw angle. Subsequently, the response
model was applied to complete the yaw error diagnosis by incorporating the wind speed
and rotational speed data recorded by the SCADA system. This method is capable of
predicting the static yaw error more accurately through numerical simulation, but further
improvements in accuracy are required. Additionally, it requires the parameters of wind
turbine blade shape to complete the modeling, and the process of establishing the dynamic
response model is complicated and time-consuming.

3.3. Diagnostic Methods Based on the LiDAR and SCADA Data

Diagnostic methods based on LiDAR data are generally capable of accurately diag-
nosing two main errors. Firstly, the zero-point shifting error is determined by the mean of
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the difference between the wind directions measured by the LiDAR and by the wind vane
over a long sample period. Secondly, dynamic yaw error is determined by the dynamic
alignment of LiDAR and wind vane measurements [24]. However, the relatively high cost
of LiDAR is the major limitation of its widespread application. Lower-cost methods based
on SCADA data to fulfill the diagnosis of yaw error are possible, although the accuracy and
generalization of these methods are yet to be demonstrated. Hybrid methods using both
LiDAR and SCADA data, leveraging the strength of the two methods, have the potential
to yield promising results in the diagnosis of yaw error. The advantages of the hybrid
approach are twofold. Firstly, it has the potential to reduce the amount of the LiDAR data
required, resulting in cost savings. Secondly, it facilitates the calibration of wind vane data
through the utilization of the LiDAR data, thereby improving the accuracy and reliability
of the results.

Currently, there are only a few studies that have developed diagnostic methods based
on both LiDAR and SCADA data. In 2024, Chen et al. [44] proposed a yaw error calibration
model based on machine learning methods. The model framework is shown in Figure 10.
The model employs LiDAR data as a benchmark and selects the SCADA measurement
features that had high correlations with the LiDAR data. The model was trained using the
selected data and the LiDAR data. Initially, calibration models were developed based on
four different machine learning approaches. Subsequently, performance metrics related to
errors were evaluated and analyzed for these models. Figure 11 illustrates the comparison
results of wind direction during the field test. It is apparent that the wind direction
estimation results that are very close to the valid LiDAR data are from the XGBoost
model, while the wind vane is unable to accurately measure the wind direction. This
outcome indicates that the model is more capable of identifying the dynamic yaw error. The
experimental results show that the minimum MAE for predicting dynamic yaw error is 3.148°.
This work demonstrates the ability of machine learning methods to utilize data to accomplish
continuous detection of yaw errors by learning the influences implicit in the data.

Figure 10. Diagnostic model based on machine learning methods using both LiDAR data and SCADA
data [44].
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Figure 11. Evaluation of the XGBoost model for wind direction prediction using field data [44].

4. Summary of the Review
The existence of yaw error reduces the rotor alignment accuracy, an important factor

affecting the performance of yaw-based wind turbine control strategies. With the increase in
the total installed capacity of wind energy, the importance of rapid and accurate yaw error
diagnostic methods for improving the performance of wind turbines is becoming evident.
The intricate structure of the wind turbine system presents a challenge in diagnosing
malfunctions: malfunction in a single component can result in variations in multiple
operational parameters, and malfunctions in different components may affect the same
operational parameters. The art of diagnostic methods leverages the comprehensive set
of monitored data of diverse features, integrates it with the yaw control strategy, and
considers the intricate operational environment to uncover the cause of yaw errors and
improve the effectiveness and efficiency of rotor alignment.

This paper reviews the available methods for diagnosing yaw errors in horizontal
axis wind turbines. The principles of the diagnostic methods and their advantages and
disadvantages, the causes of yaw errors, and the classification of the diagnostic methods
based on the data employed for diagnosis are discussed. The utilization of LiDAR provides
accurate information regarding the incoming wind, which can be directly employed to
detect the yaw error. However, the cost of employing LiDAR-based diagnostic methods in
large-scale wind farms is high [24,44]. One solution is to employ the SCADA data together
with the LiDAR data, taking advantage of the temporal and spatial correlations of the
flows to enable yaw error diagnosis for groups of wind turbines. For instance, in some
works [55,56], the correlation was employed to construct the wind speed and direction
model based on so-called group intelligence.

Because of the complexity of the atmospheric environment and the wind turbine
system, identifying the cause and solving the problem effectively using conventional
statistical methods is difficult. In the literature, the data-driven approach has shown
promising results. For instance, it was employed to investigate the causality between
power output and yaw error [49], leveraging the principles of system operation to mine the
features that are uniquely correlated with yaw error, which cannot be identified using the
simple relationship of the power for yawed wind turbines, i.e., P = P0 cos3 θ, where P0 is
for zero yaw angle and θ is the yaw angle. A significant challenge confronting data-driven
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methodologies is their generalizability, which can be improved by integrating knowledge
into the model learning process. Moreover, the digital twin (DT) technology provides a
novel concept for identifying and predicting errors by facilitating seamless integration
and real-time mapping between analogue and physical spaces. The development of twin
carriers within information technology platforms has the potential to facilitate the data
interaction and service integration with physical entities. The preliminary fault detection
algorithms by Dinh et al. [57] have yielded promising results. In addition to LiDAR data,
data from numerical simulations at various scales (e.g., wind turbines, wind plants, and
mesoscale meteorology) can be employed to improve the range of temporal and spatial
scales and the spatiotemporal resolutions of the atmospheric environment. Moreover, a
digital twin of different wind energy system components is necessary for a comprehensive
description of the status of the system operation together with the SCADA data.

Funding: This work was supported by NSFC Basic Science Center Program for “Multiscale Problems
in Nonlinear Mechanics” (no. 11988102), the Strategic Priority Research Program of Chinese Academy
of Sciences (CAS, No. XDB0620102), National Natural Science Foundation of China (No. 12172360),
and CAS Project for Young Scientists in Basic Research (YSBR-087).

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: Authors Qian Li and Hangbing Lin were employed by the company Huaneng
Clean Energy Research Institute, Huaneng Group Ltd. The remaining authors declare that the
research was conducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Appendix A. Procedure of the Literature Review

This section describes the procedure implemented for the literature review. As shown
in Figure A1, it is divided into three phases, i.e., paper identification, paper selection, and
full paper review.

Figure A1. Schematic of the procedure of the literature review.

The first phase involves the determination of the databases to be searched and the key-
words used for the search queries. In this paper, we used two well-known databases, Web
of Science (WOS) and Scopus. Both databases provide access to a range of information,
including journals, abstracts, and books. The key words used for the search are listed in
Table A1.
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Table A1. Keywords and queries employed in WoS and Sopus.

Keywords Web of Science Scopus

wind turbine, wind turbines, yaw
error, yaw misalignment, detection,

detecting, diagnosis, diagnostic

TS = (wind turbine OR wind
turbines) AND TS = (yaw error OR

yaw misalignment AND TS =
(detection OR detecting OR diagnosis

OR diagnostic)

(TITLE-ABS-KEY(“wind turbine”)
OR TITLE-ABS-KEY(“wind

turbines”) AND
TITLE-ABS-KEY(“yaw error”) OR

TITLE-ABS-KEY(“yaw
misalignment”) AND

TITLE-ABS-KEY(“detection”) OR
TITLE-ABS-KEY(“detecting”) OR
TITLE-ABS-KEY(“diagnosis”) OR

TITLE-ABS-KEY(“diagnostic”)

The second phase consists of reading abstracts and selecting articles. The final phase
involves systematic research and analysis of the selected articles. In this phase, other
relevant papers may be selected from the references of the selected articles. The literature
study focuses on the following four aspects:

1. The source of the data (e.g., SCADA, LiDAR, etc.) used for diagnosis.
2. The methods employed for diagnosis.
3. The types of errors that can be identified.
4. The merits and demerits of the employed diagnostic methods.

For the present study, the query in the Scopus and WoS databases identified 370 articles
in total (257 in Scopus and 113 in WoS). After removing the articles that were not related to
any of the above four aspects, 37 articles were selected for the literature review. Figure A2
shows the numbers of publications over the past 13 years in terms of the data employed for
error diagnosis.

Figure A2. Numbers of articles published in recent years.

Specialized software (e.g., Bibliometri 4.3.1) was not employed in this work, which
is mainly because of the small number of articles in this specific research field. Moreover,
the present review focuses on the technical aspect of the field, which largely depends
on the expert’s knowledge. It is difficult to obtain useful information from the statistics
of the literature.
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