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Abstract: To address the power oscillation problem due to the introduction of inertia and
damping, this paper proposes a new deep reinforcement learning algorithm based on the
SD3 (Softmax Deep Double Deterministic policy gradients) algorithm for grid configuration
inverter control strategy to compensate for the loss of inertia and damping in the grid.
Virtual synchronous generator control, as a typical grid configuration technique, inevitably
brings stability problems while providing inertia and damping support to the grid. In this
paper, we first analyze the nonlinear relationship between inertia and angular velocity,
and find the key parameters to maintain the power stability; then, we migrate the deep
reinforcement learning strategy, and design the control strategy applicable to the virtual
synchronous generator; finally, through the adaption of the key parameters, we combine
the control strategy with the grid-connected inverter, and solve the problem of the excessive
grid-connected power oscillation of the inverter. The effectiveness and accuracy of the
control method compared with other algorithms are verified by building a simulation
model in MATLAB/Simulink, which realizes the purpose of reducing power oscillation.

Keywords: deep reinforcement learning; virtual synchronous generator; power oscillations;
inverter control

1. Introduction
Since the twenty-first century, the global energy crisis has taken a new turn, and in

order to cope with the growing shortage of energy, people have had to choose to develop
new and renewable sources of energy. The development of renewable energy sources,
such as wind, solar, geothermal, and tidal energy, has therefore received attention from
various countries. With the development of renewable energy, the global energy structure
has also changed, and distributed power generation has been widely used [1,2]. However,
low inertia and poor frequency stability of the power system when renewable energy
sources are connected to the grid can cause problems, and in order to solve these problems,
virtual synchronous generators are proposed. By simulating the mathematical model of
the synchronous generator, the virtual synchronous generator makes the inverter have the
rotational inertia and damping characteristics of the synchronous generator, which reduces
the frequency fluctuation while the oscillation of the system is effectively suppressed [3–5].

However, when the grid frequency or input power fluctuates greatly, the shock in the
transient process may lead to damage to the device or even affect the stability of system
operation. In order to suppress the fluctuation of VSG frequency and power, the solution
of adjusting the rotational inertia and damping coefficient is proposed [6], in which the
bang-bang algorithm of discrete variation of J (moment of inertia) and Dp (damping factor)
to achieve system control is the simplest control strategy, but due to the limitation of
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the discrete variation, the fault tolerance and stability of the system can fail to meet the
demand of the actual working conditions, and the accuracy of control is also relatively
low. In [7,8], in order to solve the problems of discontinuous parameter changes and
excessive power oscillations caused by the control of the bang-bang algorithm, adaptive
rotational inertia and damping coefficients are proposed, and the linear relationship be-
tween them and frequency changes is established. However, the laws of the overly complex
coefficient values in the strategy can have a great impact on the control effect. Refs. [9,10]
proposed a nonlinear relationship between rotational inertia, damping coefficient, and
angular frequency. In order to solve the problem of large fluctuation of electromagnetic
power, Ref. [11] proposed an adaptive control algorithm based on RBF network (Radial
Basis Function network). However, the algorithm only provides adaptive control of the
rotational inertia, which makes it difficult to meet the control performance requirements in
complex working conditions.

Deep reinforcement learning as a new control strategy began to be gradually applied
to the field of power electronics. The deep reinforcement learning strategy observes the
dynamic behavior changes of the system by continuously interacting with the system
environment, and is able to adaptively optimize the VSG (Virtual Synchronous Generator)
control parameters and suppress power oscillations to achieve stable operation of the
power grid [12]. Ref. [13] provides a detailed analysis of deep reinforcement learning
applied to grid stability control. At the same time, deep reinforcement learning based on
model-free learning does not need to learn the environment model, which is relatively
easier to implement and train, reduces the need for accurate mathematical models, and
overcomes the problem of inaccurate environment fitting. Therefore, the model-free deep
reinforcement learning-based strategy can be used as a superior control strategy to suppress
the fluctuation of VSG frequency and power. In Ref. [14], a DQN (Deep Q-Network)-based
control strategy is proposed for solving the unstable oscillations generated when VSGs
are connected to the grid, but due to the limitations of the DQN algorithm, it can only
obtain better operation results under specific operating conditions. Ref. [15] proposed a
DDPG (Deep Deterministic Policy Gradient)-based VSG control strategy to achieve stable
operation of the system by controlling parameter changes in real time. However, the
overestimation problem may affect the stability of the algorithm, resulting in the inability
to find the most suitable parameters to improve the stability of the system as much as
possible. In order to solve this problem, some scholars have proposed that the TD3 (Twin
Delayed Deep Deterministic policy gradient) algorithm, which is one of the model-free deep
reinforcement learning algorithms, can be used [16]. However, although the TD3 algorithm
improves the performance by reducing overestimation on the basis of DDPG, it will affect
the performance by introducing underestimation bias. Therefore, a new algorithm, SD3, is
considered to be introduced. The SD3 algorithm introduces a softmax factor based on the
TD3 algorithm, which is capable of smoothing the optimization space to better improve the
performance of the system.

In this paper, the SD3 algorithm is combined with VSG grid control under complex
operating conditions to suppress the fluctuation of VSG frequency and power, so as to
improve the stability of grid operation. The SD3 algorithm inherits the ability to solve
the overestimation problem in the TD3 algorithm, which reduces the requirement for
accurate mathematical models, and the algorithm outperforms the traditional reinforcement
learning algorithm.

The rest of the paper will be arranged as follows. In Section 2, the basic structure of the
virtual synchronous generator, the control principle, and the range of values of the rotational
inertia and damping coefficient are presented. Section 3 analyzes the basic principle and
implementation of the SD3 algorithm and determines the relevant dynamic variables such
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as action and state. Section 4 gives the results of the study to verify the effectiveness and
stability of the proposed control strategy. Section 5 concludes the full paper.

2. VSG Control Principle and Parameter Determination
The VSG control scheme, shown in Figure 1, adds a deep reinforcement learning

algorithm component to its conventional VSG grid-connected system, which is used to
adaptively control the VSG as a way to improve the overall performance of the VSG
grid-connected system and reduce power oscillations.

Energies 2025, 18, x FOR PEER REVIEW 3 of 18 
 

 

rotational inertia and damping coefficient are presented. Section 3 analyzes the basic prin-

ciple and implementation of the SD3 algorithm and determines the relevant dynamic var-

iables such as action and state. Section 4 gives the results of the study to verify the effec-

tiveness and stability of the proposed control strategy. Section 5 concludes the full paper. 

2. VSG Control Principle and Parameter Determination 

The VSG control scheme, shown in Figure 1, adds a deep reinforcement learning al-

gorithm component to its conventional VSG grid-connected system, which is used to 

adaptively control the VSG as a way to improve the overall performance of the VSG grid-

connected system and reduce power oscillations. 

 

Figure 1. Overall control block diagram of improved VSG. 

  

Figure 1. Overall control block diagram of improved VSG.



Energies 2025, 18, 597 4 of 18

2.1. Principle of VSG Control

The VSG control algorithm primarily encompasses two main components: active and
reactive control loops. The active loop is primarily comprised of the rotor equation and the
virtual governor, while the reactive loop predominantly features the virtual exciter.{

J dω
dt = T0 − Te − DP(ω−ω0)

dθ
dt = ω

(1)

The reactive power part is illustrated in Figure 2b, which primarily emulates the
excitation part of the synchronous generator, and its representation is shown in (2), where E
is the internal potential output from the VSG, K is the voltage regulation coefficient, Q0 and
Qe are reactive power value reference and output reactive power, respectively, Dq is the
reactive power-voltage sag control coefficient, U and U0 are the rated voltage and output
voltage, respectively:

K
d(E)

dt
= Q0 −Qe − Dq(U −U0) (2)
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Figure 2. VSG control loop structure.

2.2. Impact on Active Power Output Characteristics

Small-signal modelling of the VSG is carried out as in Figure 3, and the transfer
function of the active loop can be obtained by approximate decoupling of the active and
reactive loop parts of the figure as:

Gc =
KP

Jω0s2 + DPω0s + KP
(3)
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Figure 3. VSG small signal model.

In this equation, Kp ≈ 3E0U0/X. Consider the intrinsic angular frequency ωn and the
damping ratio ξ of the above equation to be:ξ = DP

2

√
ω0
JKP

ωn =
√

KP
Jω0

(4)

In general, in control engineering, with the exception of more specialized systems that
do not support oscillation, control systems tend to be relatively moderately damped and at
the same time can respond in a relatively short period of time. Hence, the resulting system
is usually engineered as an underdamped system, with the damping ratio ξ falling within
the range of (0, 1).

Then, based on the stabilization margin corresponding to the active control loop, the
magnitude margin h and phase margin γ associated in the second-order link are obtained as:

h = +∞

γ = arctan

(
2ξ
√

1√
4ξ2−1−2ξ2

)
(5)

Based on (5), it can be seen that the amplitude margin tends to exceed 0. Typically for
the system, the phase margin γ needs to be kept within the range of 30◦ ∼ 80◦. Assuming
here that γ > 60◦, then ξ > 0.612.

Re(si) = −ωnξ = −DP
2J
≤ −10 (6)

Then, based on the cutoff frequency fcp, the scope of the damping coefficient DP can
be determined. As illustrated in Figure 3, the open-loop transfer function of the active
power loop can be designed as below:

Gpo =
3UEo

Xωo
· 1

s(Js + DP)
(7)
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∣∣Gpo
(

j2π fcp
)∣∣ = 1 (8)

From (8) and (9) can be obtained the following:

J =
DP

2π fcp

√(
3UEo

2π fcpωnXDP

)2
− 1 (9)

To ensure the validity of the equation, the expression within the square root must
consistently exceed 0. The maximum cutoff frequency is usually chosen to be within 10% of
the supply frequency, in which case the impact of the power loop is significantly reduced
on the voltage loop. In this study, the maximum value for fcpmax is established at 10 Hz.
Consequently, the lower bound for the damping coefficient can be deduced as follows:

fcp ≤
3UnEn

2πωnXDP
≜ fcpmax (10)

DP ≥
3UnEn

2πωnX fcpmax
= 11.5 (11)

According to the EN50438 standard, the VSGs in this paper have a frequency variation
equal to 1 Hz during the FM period, while the active power output from the inverter
fluctuates in the interval of the rated capacity 40% ∼ 100%.

DP =
△P
△ωmax

(12)

where△ωmax = 2π, then DP obtained from (12) ranges as in (13), assuming that inverter
power rating is 50 KVA.

10.2 ≤ DP ≤ 25.4 (13)

By counting, it can be obtained that the rotational inertia J is in the range of [0.25, 2.9]
and the damping coefficient DP is in the range of [10.1, 25.3].

For a given active power of 10 KVA and reactive power of 5 KVA, the active power
dynamic performance of the system is completely determined by the moment of inertia
J and damping coefficient DP. The active power dynamic response trajectory of the VSG
can be plotted for a known range of different moment of inertia and damping coefficients,
as shown in Figure 4. The analysis of Figure 4a shows that, assuming that the damping
coefficient DP is kept constant, the rotational inertia J is inversely proportional to the
damping ratio ξ and positively proportional to the overshooting amount σ. The larger J is,
the smaller ξ is, the larger σ is, and the longer the regulation time ts is; from Figure 4b, it can
be deduced that, assuming that J is kept constant, a positive proportionality relationship
between DP and ξ also exists and an inverse relationship with σ. The larger DP is, the larger
ξ is, the smaller the overshooting amount σ is and the regulation time ts is also smaller. It
can be concluded that the moment of inertia determines the oscillation frequency during
the dynamic response of the VSG active power, and the damping coefficient determines the
decay rate of the dynamic response of the VSG active power; therefore, the adaptive control
of the moment of inertia and damping coefficient can make system operation become more
stable, and also make the system more robust.
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2.3. Impact on Corner Frequency Output Characteristics

In order to analyze the effect of damping coefficient and rotational inertia on the
output characteristics of the system, the amount of overshooting of the angular frequency
is observed for a given active power of 15 KW and reactive power of 10 KWA.

From Figure 5, it can be seen that increasing the rotational inertia and damping
coefficient at the same time can reduce the amount of overshooting of the angular frequency,
and the smaller the rotational inertia, the smaller the regulation time; however, because
the damping coefficient is too small the system will produce a larger overshooting, and
small damping can not be quickly adjusted to the overshooting fluctuations; therefore, an
appropriate increase in the damping can reduce the regulation time, but with the increase in
the damping coefficient, the regulation time will be increased due to the system’s response
speed to the slow-downs and increases. Therefore, the larger the moment of inertia is,
the smaller the angular frequency fluctuation is, the more stable the system is, but if it is
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too large, it will lead to poor system performance. Under the premise that T0 − Te − J dω
dt

is constant, the larger the damping coefficient is, the smaller the overshoot of angular
frequency is, but too large a damping will lead to slower response of the system.
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3. Reinforcement Learning
With no precise model and uncertain environments, model-free techniques have

proven to be very efficient and beneficial. Reinforcement learning (RL) is a clever strategy
that is unaffected by model parameters or the surrounding environment. The learning
process in RL is comparable to human learning tendencies [16,17]. Through activities, the
individual (agent) interacts with the environment, gaining experience and becoming an
expert on the individual task over time. Actions that can enhance outcomes are emphasized
in reinforcement learning. Every action taken by the agent creates a new state. The agent’s
reward for a particular action is determined by the likelihood of the following state being
favorable. Figure 6 depicts the RL building blocks.
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3.1. SD3 Algorithm Logical Framework

The SD3 algorithm chosen in this paper is an improvement of the Deep Deterministic
Policy Gradient algorithm, and a diagram of the basic principle of the algorithm is as
Figure 7.
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Figure 7. Basic flow of the SD3 algorithm.

The SD3 algorithm follows the truncated double Q-value learning strategy of the TD3
algorithm, and updates the cubic network in a similar way to double Q-learning by learning
two Q-value functions [18]. The max operation in deep Q-network algorithms leads to
the problem of overestimation of Q-values. This problem also exists in deep deterministic
policy gradient algorithms, because Q(s, a) in deep deterministic policy gradient algorithms
is updated in the same way as in deep Q-network algorithms, whereas there is an error
in the estimation of Q-values when using a tool such as neural network as a function
approximator to deal with a complex problem:

Qappox(s′, â) = Qtarget(s′, â) + Y â
s′ (14)

where Y â
s′ is zero-mean noise, but the use of the max operation leads to an error between

Qappox and Qtarget. Denoting the error as Zs, we can derive:

Zs
de f

γ(max
â

Qapprox(s′, â)−max
â

Qtarget(s′, â)) (15)

Consider that in the noise term, some Q-values may be small while others may be
large. The max operation always chooses the largest Q-value for each state, which causes
the algorithm to be unusually sensitive to the corresponding Q-value of the overestimated
action. In this case, it will result in creating an overestimation problem.

The TD3 algorithm introduces double Q-learning into the deep deterministic policy
gradient algorithm by building a network of two Q-values to estimate the value of the
next state:

Qθ′1
(s′, a′) = Qθ′1

(s′, πϕ1(s
′)) (16)

Qθ′2
(s′, a′) = Qθ′2

(s′, πϕ1(s
′)) (17)

In the TD3 algorithm, the Bellman equation is computed using the smaller of the two
Q values:

Y1 = r + γmin
i=1,2

Qθ′i
(s′, πϕi (s

′)) (18)

Using truncated dual Q-learning, the valuation of the target network does not intro-
duce excessive estimation error to the Q-learning objective. However, this updating pattern
may lead to underestimation, so Ref. [19] investigated the relationship between underesti-
mation and the target value in the TD3 algorithm, and in order to solve the underestimation
problem, a softmax factor is considered to be introduced in the target value:

Y1 = r + γso f tmaxβQ′θ
Q′θ = min

i=1,2
Qθ′i

(s′, πϕi (s
′)) (19)
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Delayed policy update: During the update process, the policy network is updated less
frequently than the Q-value network. The SD3 algorithm reduces the frequency of updating
the policy network, which is updated only after the value network has been updated d
times. This type of policy updating allows the estimation of the Q-value function to have a
smaller variance, resulting in higher-quality policy updates [20].

Target strategy smoothing: Noise is added to the output action of the target strategy
as a way of smoothing the estimation of the Q function to avoid overfitting [21].

One problem with deterministic strategies is the potential overfitting of this class of
methods for narrow peak estimates in the value space [20]. In the SD3 algorithm, similar
actions should have similar value estimates, so it is reasonable to fuzzy fit the values of a
small region around the target action:

y = r + Eε[Qθ′(s
′, πϕ′(s

′) + ε)] (20)

Overfitting is avoided by adding truncated normally distributed noise as regular-
ization in each action to smooth the calculation of Q-values. The corrected update is
as follows:

y = r + γso f tmaxβQθ′(s
′, πϕ′(s

′) + ε), ε ∼ clip(N(0, σ),−c, c) (21)

Algorithm 1 is shown as follows:

Algorithm 1: SD3

Initialize critic networks Qθ1 , Qθ2 , and actor network πΦ with random parameters θ1,
θ2, Φ

Initialize target networks θ′1 ← θ1 , θ′2 ← θ2 , Φ′ ← Φ

Initialize replay buffer D
for t = 1 to T do

Select action with exploration noise At ∼ πΦ(St) + ϵ , ϵ ∼ N(0, σ)

Accept reward Rt and new state St=1

Store transition tuple (St, At, Rt, Dt, St+1) in D
for i = 1, 2 do

Sample mini-batch of N transitions (St, At, Rt, Dt, St+1) from D
∼
a t+1 ← πΦ′(St+1) + ϵ, ϵ ∼ clip

(
N
(

0,
∼
σ,−c, c

))
Q̂
(

s′, â′
)
← mini=1,2Qθ′i

(
St+1,

∼
a t+1

)
so f tmaxβQ′θ ← Eâ′∼p

[
exp(βQ̂(s′ ,a′)Q̂(s′ ,a′))

p(â′)

]
/Eâ′∼p

[
exp(βQ̂(s′ ,a′))

p(â′)

]
y← r + γ(1− d)so f tmaxβQ′θ
Update Critic network θi ← argminθi

N−1∑
(
y−Qθi (St, At)

)2

Update Φ by the deterministic policy gradient:
∇Φ J(Φ) = N−1∑∇aQθi (St, At)|At=πΦ(St)

∇ΦπΦ(St)

Update target networks:
θ̂i ← ρθi + (1− ρ)θ̂i

Φ̂← ρΦ + (1− ρ)Φ̂

end if
end if
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3.2. Algorithmic Tasking

In a reinforcement learning task, there are three key elements that need to be defined
for it, namely: observation states, actions, and rewards. The observation set selected in this
paper is as follows:

St ∈
{

∆ω, ∆P, ∆Q,
dω

dt

}
(22)

where ∆ω = ω0 − ω, ∆P = P0 − Pe, and ∆Q = Q0 − Qe, denote the difference be-
tween the angular frequency, active power, and reactive power, respectively, and their
reference values.

In this paper, the rotational inertia J and the damping coefficient Dp are chosen as its
actions. The set of actions is thus set as:

At ∈
{

J, Dp
}

(23)

where J ∈ [Jmin, Jmax],Dp ∈
[
Dpmin, Dpmax

]
. The initial values for the actions are set to be

J0 and Dp0.
rt = −lωC(ωt)− lPC(Pt)− lQ(Qt) (24)

where T is the total time and lω , lP, and lQ are weighting factors greater than 0. The values
of the reward function are all negative in order to better ensure the stability and security of
the system.

The specific design for (24) is as follows:

C(ωt) =

{
φωαw αw ≤ αmax

ω

ρw αω > αmax
ω

(25)

αw = |ω0 −ω| (26)

where φω is a small penalty coefficient and ρw is a large penalty coefficient. Observing (25)
and (26), a small penalty term is designed at αw ≤ αmax

ω to make the difference between ω0

and ω as small as possible, while when αω > αmax
ω , it can be assumed that the results of

this round of training do not meet expectations, so a large penalty term is designed and the
round is terminated.

C(Pt) = φP|P0 − Pe| (27)

C(Qt) = φQ|Q0 −Qe| (28)

For (27) and (28), φP and φQ are the penalty coefficients for active and reactive power,
respectively. Since the dynamic performance does not depend on one moment of penalty
alone, and the accumulation of penalties over a long period of time can give the system
better stability, a discount factor β is introduced, and the final reward function of the system
is as follows:

R =
T

∑
n=t

βn−trn (29)

where T is the total time. For the design of each coefficient of the reward function, see
Table 1.
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Table 1. Reward function coefficients.

Symbol Value

lp 0.25
lω 0.25
lq 0.25

αmax
ω 2π × 0.6
φω 10
ρω 300
β 0.9

4. Results
The paper adopts the actor-critic structure of the SD3 algorithm, as illustrated in

Figure 8. The critic network encompasses state pathways, action pathways, and a shared
pathway. In the case of the actor network, it receives observations as inputs and produces
corresponding actions as outputs. Notably, within this framework, “ReLU” and “Tanh”
serve as standard activation functions for neurons, well-established in the design of deep
neural networks. The scaling layer plays a pivotal role in vector scaling, while the fully
connected layer performs matrix multiplication on the input, subsequently adding a bias
vector. A comprehensive breakdown of the SD3 algorithm’s parameters can be found in
Table 2.
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As an efficient power generation technology, the application of fuel cells in the field of
grid-connection power generation has gradually increased in recent years. The cell voltage
Vcell of a fuel cell can be given by the following equation:

Vcell = En −Vact −Vohm −Vcon (30)

where En is the thermodynamic electric potential; Vact is the activation polarization overpo-
tential; Vohm is the ohmic polarization overpotential; and Vcon is the concentration polariza-
tion overpotential. Since the output voltage of a single fuel cell is relatively low, this paper
uses multiple cells to form a fuel cell stack to increase its output voltage.
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Table 2. RL training parameter.

Symbol Value

Simulation time 4
Sample time 0.005

Discount factor 0.995
Mini-Batch size 256

Reply buffer size 100,000
Learning rate for actor 0.0001
Learning rate for critic 0.0001

Training episodes 500
Target smooth factor 0.005

Target update frequency 10

In this section, a VSG-PEM grid-connection system is proposed based on fuel cells, in
which the SD3 algorithm is compared with RBF neural network and traditional adaptive
control for grid-connected performance, and the VSG model is developed in this paper in
the MATLAB/Simulink 2023a platform for simulation. In this case, the parameters of the
fuel cell are shown in Table 3.

Table 3. Fuel cell simulation model parameter settings.

Parameters Symbol Value

Number of batteries - 700
Proton exchange membrane thickness µm 0.0178

Anode hydrogen partial pressure MPa 1
Cathode oxygen partial pressure MPa 0.2

Reference temperature K 333
Effective activation area of single cell cm2 64

Figure 9 shows the voltage and current curves of the fuel cell, from which it can
be analyzed that the volt-ampere characteristics of the fuel cell stack show a negative
correlation, i.e., as the output current of the stack increases, the output voltage of the stack
gradually decreases.

In case of supply–demand imbalance, if the active power command is increased from
100 kW to 150 kW within 0.6 s of the initial run, then the reactive power command is
increased from 5 kvar to 10 kvar within 1.1 s. Figure 10 shows the training results of
rotational moment of inertia and damping coefficients when the SD3 algorithm is used.

Figure 11 shows the variation of active power when the initial operating active load is
increased from 100 kW to 150 kW in 0.6 s. In this case, the overshoot of active power is 5.3%
for the SD3 algorithm and 7.3% and 8% for the TD3 algorithm and the DDPG algorithm,
respectively. It can also be seen from the figure that compared with the TD3 algorithm and
the DDPG algorithm, the SD3 algorithm has faster response speed, shorter adjustment time,
and the stability of the system has been improved more.

As can be seen from Figure 12, compared with the other two control strategies, the SD3
algorithm performs better than the TD3 algorithm and the DDPG algorithm in suppressing
the angular frequency fluctuation caused by the sudden change in active power or the
angular frequency fluctuation caused by the sudden change in reactive power. Among
them, when the reactive power mutation occurs, the fluctuation of the corner frequency
under the SD3 algorithm is smaller, and the recovery time of the corner frequency is about
0.05 s, which is also better than the TD3 algorithm and the DDPG algorithm.
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5. Conclusions
In order to overcome the problems of inertia and damping loss in the power grid, this

paper proposes a control strategy based on the SD3 algorithm, which is firstly applied to
solve the problem of compensating for the rotational inertia and damping coefficients of
VSGs under complex working conditions. The control strategy can effectively suppress
the frequency and power fluctuations. The main work and conclusions of this paper are
as follows:

(1) According to the four aspects of VSG stability margin, frequency regulation time,
power circuit cutoff frequency, and grid-connected standard, the reasonable value
ranges of virtual inertia and damping coefficient are determined to ensure the stability
of the system.

(2) The control mechanism of the SD3 algorithm in deep reinforcement learning is deeply
analyzed, and an artificial intelligence VSG control strategy based on the SD3 algo-
rithm is proposed. Simulation results show that the strategy overcomes the shortcom-
ings of the traditional VSG. It can suppress the frequency overshoot and improve the
response speed.

(3) The excellent performance of the SD3 algorithm in dealing with continuous control
tasks is verified, but its problems such as more complicated computation and more
difficult adjustment of hyperparameters need to be solved by subsequent continu-
ous research.
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