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Abstract

:

Under the Positive Energy Districts framework, cities authorities must be informed of the energy demand of districts to design tailor-made policies and strategies to promote the deployment of energy efficiency, sharing and transition actions. However, the diverse data sources and long procedures to collect data because of privacy permissions may result in a slow-down of the development of these roadmaps. To overcome these challenges, this paper is the outcome of the methodology developed under the UP2030 Project designed to estimate the energy demand and energy profile consumptions within urban areas to contribute to the stakeholders involved in decision making processes to inform them about the savings potential related with the use of energy in geographically delimitated areas. The methodology was validated in CIRCE’s headquarters, where the yearly energy estimation consumption is about 98% of the real energy consumed. The main finding of this study is obtaining a model that can estimate the energy usage for occupants’ comfort with minimal data required from the citizens’ side, which will allow stakeholders to consider global energy estimations at the district level in a fast and reliable way to design strategies in a timely manner as required by the energy transition and efficiency standards proposed by the European Union.
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1. Introduction


Urban areas are central to the global energy landscape, accounting for a substantial share of energy consumption and greenhouse gas emissions. In the European Union, buildings alone are responsible for approximately 40% of total final energy consumption [1]. The urgency to reduce this value is underlined by EU Directives 2010/31/EU, 2018/844/EU and 2024/1275/EU, which require significant reductions in energy consumption, the integration of renewable energy sources and the adoption of sustainable building practices. These directives outline a roadmap for decarbonization, establishing critical milestones for 2030 and 2050. The clear objective is to achieve zero net greenhouse gas emissions in urban environments through long-term renovation strategies, mandatory nearly-zero energy buildings for new construction, energy performance certificates for real estate transactions and the inspection of heating and cooling systems [2].



Despite these ambitious targets, recent studies indicate that most cities are poorly equipped digitally to analyze and diagnose their current energy scenarios because urban energy data are scarcely available [3]. While digitalization presents a clear pathway towards improved energy management, its data also raise challenges related to data privacy, security and the digital divide, issues that could undermine the equitable implementation of smart and energy-related city solutions [4]. This highlights a significant gap between policy aspirations and the current capabilities of urban systems, underlining the need for innovative strategies and digital solutions to improve city-wide energy management [5].



This article explores how digital innovation can improve urban energy management. It presents a model for estimating the energy demand of buildings in urban districts using public climate data, building ages and geometric and semantic data, avoiding reliance on historical energy data. The model evaluates retrofitting actions to optimize energy demand in line with EU thermal transmittance limits, aiming to reduce urban environmental impact.



The model’s effectiveness is validated through a specific case study, highlighting the impact of its simplifications and demonstrating its potential to inform urban decarbonization strategies in similar contexts. This work also examines how the methodology supports the EU’s decarbonization targets and provides insights for sustainable urban development. By addressing digital readiness challenges, the study lays the groundwork for future research and practical applications of simplified energy models.




2. State-of-the-Art in Models of Energy Demand in Buildings


This chapter is dedicated to analyzing different models reported in the literature and their relationship to estimating building energy demand under different scenarios at the district level. It discusses the advantages and drawbacks of the existing techniques for estimating energy demand, highlighting the need for novel formulation methods that allow accurate calculation of both the actual and optimal energy demand of buildings.



To conduct this literature review, the methodology proposed in [6] was followed. The search was performed using the Scopus database with the query: TITLE-ABS-KEY (“energy consumption” AND “urban scale” AND “model”). A total of 172 documents were retrieved, of which 69.2% correspond to scientific articles and 30.8% to conference proceedings. Out of this total, 96 have been published since 2020, highlighting the growing interest in recent years in determining the energy consumption of the building sector in the urban context by developing different types of models. Thus, to analyze the relationship between developed models, their purpose, and to identify gaps, a co-occurrence analysis was performed using VOSViewer Software (Version 1.6.20). From the documents, a total of 1058 keywords were identified, which were grouped (minimum threshold of five occurrences) and are presented in Figure 1.



All the research conducted is based on the terms found in the central nodes: “energy utilization”, “building energy model” and “energy consumption”, which serve as connectors between the different research topics.



In this regard, current and future scenarios of energy building performance are simulated using parametric simulations that account for varying climate conditions. These simulations rely on typical meteorological year (TMY) data that are adjusted for future or extreme scenarios [7]. The predictive model uses these simulations to forecast energy demand, incorporating external factors like temperature fluctuations and humidity levels based on thermodynamic modelling considering heat balances to calculate the energy dynamics within a building, focusing on thermal interactions [8].



The techniques used for these predictive models are often classified into three categories: “white-box”, where energy modeling is based on mathematical models and the physical parameters of buildings; “black-box”, which relies on machine learning algorithms where the calculation steps are not explicitly known; and “grey-box”, used when both the physical properties of buildings and extensive historical energy data are available [9].



One of the groups highlighted in the review is the cluster ‘Energy modelling for efficiency policies’, which examines energy consumption in relation to climate models for the development of energy efficiency policies, with a particular emphasis on terms such as “uncertainty analysis”. In this regard, authors in the past year have analyzed the developed models in relation to parameter uncertainty, including aspects such as the thermal properties of construction materials [10], employing alternative methods for the calibration of energy models to address the lack of information on building shapes [11] and evaluating the mix of new and renovated buildings in the same area [12], among other factors.



On the other hand, “Urban planning and architectural design” includes the emergence of the concept of stochastic systems, which is directly related to the complexity of determining occupant behavior in buildings. This involves not only the number of occupants but also decisions such as the type and quantity of electrical equipment, activity patterns and more. Researchers have analyzed the effect of occupancy on urban models, identifying different “possible types of occupancy” [13]; however, its real impact has only been evaluated in historical use cases [14], not in future scenarios, as is required for the design of public energy efficiency policies.



Another relevant topic is the cluster “Residential energy monitoring and smart technologies” which focuses on the relationship between residential characteristics and the use of advanced technologies to monitor the energy performance of buildings, evaluating the actual behavior of the building compared to forecasts. Additionally, it allows for the inclusion of optimization with other distributed resources such as photovoltaic installations [15], vehicles and charging station infrastructure [16] for models developed with specific conditions in the current situation.



For instance, artificial neural networks, which employ a network of layered nodes (neurons) to simulate the learning process, have been extensively studied related to the black-box models. Each neuron receives inputs, processes them through an activation function, and passes the output to the next layer. For energy demand calculations, the input layer consists of various building parameters such as wall types, window sizes, insulation levels and HVAC settings. Hidden Layers considers the thermal comfort levels, and the output is focused on optimizing the prediction of energy needs. The network configuration is adjusted based on the complexity of the input data and the desired accuracy of the output [17]. However, the use of these models is limited to specific cases because their accuracy depends on the data used for training, making them not easily scalable in environments where large datasets are unavailable [18].



On the other hand, tools such as Energy Plus, Modelica, DOE2, TRNSYS, etc. for building energy simulation require detailed physical properties (“White box”). As a result, their application for energy demand calculations at the district level may be computationally intensive [19], and running these simulations would require computing infrastructure; smaller models benefit from faster CPUs, while larger models require more memory and faster storage to optimize performance [20]. Thus, the use of tools of this type is suitable for modeling a single building, where obtaining a high level of detail in the data can be a feasible task, while at the district or city level, it becomes much more complex and exhaustive [21].



Despite the diversity of available models, significant challenges remain. Many existing models focus on residential buildings, leaving out other building types present in urban districts. In addition, the scarcity of data and the absence of digital twins at both building and district level make accurate simulation and informed decision making difficult. There is also a need to overcome the lack of digital infrastructure in many cities to diagnose and analyze detailed energy consumption patterns [22,23].



Therefore, the methodology employed falls within the scope of white-box models, as it considers a simplified version of thermodynamic modelling. This approach involves the parametrization of buildings using minimal physical data, allowing for the generation of demand profiles for different building archetypes that may be situated in an urban environment. This facilitates the energy assessment of buildings at the neighborhood or city level and enables the calculation of energy consumption, which can be customized by changing the boundary conditions according to the behavior of occupants and energy systems. This approach allows decision-makers in a city to evaluate the current energy situation and assess the impact of efficiency measures on the energy consumption of the urban building stock, overcoming the barriers associated with other models related to computational cost and high data requirements. Although all these models are developed to estimate energy consumption (demand profiles), sustainable energy policies require that they can be used, as highlighted in the cluster “Sustainable development in residential buildings”, as decision-making tools to adopt strategies that optimize and reduce cities energy consumption.




3. Methodology


To contribute to the goals proposed by the European Union to achieve climate neutrality, knowledge of the energy demand of buildings in urban areas is crucial when defining energy efficiency policies in a city, because it allows one to determine the energy intensity of a specific geographical area. This methodology addresses the challenges described in the previous sections by developing a model to estimate the energy demand from non-historical and non-energy variables of the building stock at the city scale.



Estimating energy consumption in buildings begins with determining the building’s demand curve, primarily through a thermodynamic model grounded in the physical properties of the construction itself (Section 3.1). Subsequently, parameters are defined that may vary across building typologies due to occupant behavior and existing energy systems (Section 3.2). Finally, a Monte Carlo simulation was employed to analyze the model’s sensitivity to occupant thermal comfort (Section 3.3).



3.1. Energy Demand Modelling


Building thermal demand is estimated based on a global heat balance between surfaces as follows:


    Q   D e m a n d   = U ∗ A ∗ ∆ T  



(1)






  ∆ T =       T   e x t e r n a l   −   T   C o m f o r t      



(2)







Ensuring thermal comfort is achieved by setting the desired internal temperature of the building (TComfort). “A” refers to the building area expressed in m2, and “U” is the global heat transfer coefficient. Thus, “Q” is the heat demand needed for air conditioning inside the building.


  U =    1    ∑        d   i       k   i     + ⋯ + R                 



(3)







The U-value is determined by the construction materials of the envelope of the building and the thickness of each one. “    k   i    ” refers to thermal conductivity of the constructive material. In that sense, R is the resistance presented by each material to conduct heat gains throughout the surface.



Thus, the total demand (    Q   D e m a n d   )   of a typical building is equal to the sum of the heat transfer contributions from all relevant building surfaces (wall, roof and openings such as windows), through which heat could be dissipated as shown in Figure 2. It is important to note that heat exchange through the floor surface is not considered, as the thermal behavior of the ground is generally more stable compared to ambient conditions that may result in a higher heat loss.



For the purposes of this methodology, collecting and calculating these values can be a complex process for local authorities for each building in a district. Therefore, reference values are easily accessible through cadastral records and construction reference manuals (e.g., the Technical Building Code “CTE” in Spain), in accordance with standard building archetypes depending on the building age.



Under the scope of this study, different scenarios could be evaluated, such as a “baseline scenario” considering the building’s thermal properties and construction materials, as well as its construction year. In contrast, the “optimal scenario” aims to meet the performance requirements set forth in European directives, which specify target U-values in national building codes to achieve energy efficiency standards. These U-values vary depending on the building’s climate zone, geographic location and construction year, accounting for improvements in energy efficiency practices over time. However, U-values could be modified by urban planners to evaluate different architectural approaches such as the passive house.



The comfort temperature point must be given by the final user, but for a global perspective, it should comply with national regulations regarding temperature for air conditioning set points (e.g., 19 °C for winter season and 27 °C for summer) in the optimal scenario in the case of Spain. Therefore, all parameters for the thermal demand of buildings are known. An advantage of using this method is that knowing the year of construction, location and surface areas, decision-making agents could easily know the thermal demand reduction by retrofitting and potential energy savings achieved by complying with future European directives.



While thermal demand is calculated for each period defined, the distribution of the energy for air conditioning inside the building is not the same in each period defined previously because of building thermal inertia. Thermal inertia refers to the building’s resistance to rapid temperature changes, which is influenced by factors such as insulation, materials and structure. To consider this effect, the level of the charge of the air conditioning systems by considering the relative percentage difference (RPD) between temperature gradients at time   i   with a timestep of 1 h (See Equations (4) and (5)) is introduced. This approach enables the determination of operating points and the activation of air conditioning systems, such as heat pumps. Building on this framework, the study utilizes a historical record of typical hourly temperatures for the location, obtained from the Solcast API Toolkit.by DNV (Solcast API Toolkit, https://toolkit.solcast.com.au/ (accessed on 4 October 2024))     T   e x t e r n a l     refers to the ambient temperature where the building is located,     T   m a x     is the maximum temperature reached during the year and Act refers to “Activation” considering the working schedule or type of building use explained in the following section.


  %     L o C   H e a t i n g , i   =   A c t ∗ A B S          T   e x t e r n a l   − T   m a x       T   m a x               



(4)






  %     L o C   C o o l i n g , i     =   A c t ∗ ( 1 −        T   m a x   −   T   e x t e r n a l       T   m a x            )      



(5)







Thus, in each time framework defined such as hourly, heating/cooling energy consumption will be calculated as the result of the thermal energy demand needed in the building multiplied by the Level of Charge (% LoC) factor.


  E n e r g y   C o n s u m p t i o n   k W h   = %   L o C   i   ∗   Q   D e m a n d    



(6)







The use of the Level of Charge correction effectively bridges the thermal inertia of the building expressed in the thermal demand (    Q   D e m a n d    ) with the energy performance of the equipment. Buildings with higher thermal inertia will exhibit smoother temperature profiles and lower RPD values, reducing the level of charge and associated energy demands, while buildings with lower thermal inertia will show higher RPD values, reflecting a greater thermal load on the air conditioning systems. Thus, this approach provides a method to assess the thermal behavior and building energy need with external temperature records.




3.2. Boundary Conditions for Energy Consumption Profiling


To profile the energy demand of a building, the following considerations related to occupant behavior are considered.



Constraint 1.

Heating systems activation. Spanish local regulations defined 19 °C as a setpoint during the winter season. (This specification should be modified as an efficiency national standard specifies).






     T   e x t , i   < 19   ° C   



(7)





Constraint 2.

Cooling systems activation. Spanish local regulations defined 27 °C as a setpoint during the summer season. (This specification should be modified as an efficiency national standard specifies).






     T   e x t , i   > 27   ° C   



(8)





Constraint 3.

Real time requirements—Behavior dependent. Depending on the activities conducted within the case study, it will be necessary to include the activation (Act) limitation of the HVAC assets during operating hours as follows:






    i f   8 : 00 > i > 18 : 00 ;    t h e n   A c t   f o r   %   L O   C   i   = 1 ;      e l s e = 0    



(9)





Figure 3 summarizes the framework for energy modelling considering user inputs, occupant behavior constraints and the output of the model.




3.3. Sensitivity Analysis


Monte Carlo analysis was conducted to assess the sensitivity of the model to comfort temperatures, which are typically set by the building’s user/occupant. The selection of “comfort setpoint temperatures” as the variables for the sensitivity analysis is justified by their significant impact on energy consumption. While the building’s thermal properties inherently establish a baseline thermal demand, the final energy consumption is ultimately influenced by user behavior. This makes it the variable with the greatest uncertainty and the highest potential for user-driven adjustments.



Given that the degrees of freedom for the temperature setpoints can be difficult to evaluate manually, temperature ranges were defined for each variable: 19 °C < Th < 23 °C and 23 °C < Tc < 27 °C, with a step of 0.1 °C to cover the energy efficiency temperature range proposed by Spain’s regulations. This results in a total of 2500 possible pairs of comfort temperature setpoints or simulations.



This method allows one to evaluate systematically and generate multiple random simulations by assigning values to each temperature setpoint according to predefined probability distributions. In this analysis a uniform distribution was assumed for each range of temperatures (Th, Tc) considering that the selection of each setpoint is based on human preferences and can vary randomly. This assumption ensures that lower and upper extremes of the temperature ranges are equally likely to be chosen and allows an exploration of the uncertainty in occupant behavior regarding temperature preferences.



As a result for each iteration, the model simulates the corresponding hourly energy demand for a specific set of temperature configurations. These results were then compared with actual monthly energy consumption data from the offices to assess the model’s accuracy. This analysis provided insights into how closely the model aligned with real conditions, ultimately validating its reliability in predicting energy use under realistic temperature setpoints.





4. Office Headquarters: A Case Study


4.1. Modelling Results


After describing the gaps in the urban building energy modelling at a district level and the methodology proposed, in this section, the aim is to validate the methodology developed in the previous section. Therefore, a case study of the central offices is presented.



First and foremost, it is critical to ascertain the precise location of the building under study. The company’s offices are situated in Zaragoza, Aragón, Spain, within Climate Zone D (Table 1). Knowing the climatic area in which the building is located allows us to establish the optimal values of the thermal envelope of buildings according to the Basic Document Energy Savings (DBHE, for its acronym in Spanish: “Documento Básico de Ahorro de Energía”) [24]. This document provides procedures and rules to ensure that buildings meet the minimum energy-saving requirements. These requirements are aligned with the target thermal transmittances by the European Commission’s science and knowledge service [25].



Furthermore, leveraging the Building Information Modelling (BIM) framework that the company has developed for its own office facilities, the areas of the various envelopes for the first floor where offices are located have been determined. In this study, a single floor of the building has been selected to carry out the validation of the proposed methodology, as it corresponds to CIRCE’s offices (Figure 4).



The building is categorized according to its year of construction in models reflecting building typologies, linked to different construction periods, collected in different European countries.



This categorization has been carried out in the context of the European TABULA project in which it is established that the correlation between construction techniques and transmittance values makes it possible to classify residential buildings into different categories, allowing an estimation of the thermal transmittance of each type of building envelope of the selected model according to the year of construction of the building, helping to evaluate refurbishment processes and optimization of energy consumption [26,27]. In this case study, the parameters corresponding to the opaque envelope (U opaque envelope), the adapted roof (U adapted roof), and the openings (U openings), highlighted in bold, have been selected, as they best match the actual conditions of the chosen building. These values provide a more accurate representation of the building’s construction and energy characteristics (Table 2).



Using the data presented in Table 2, coupled with   ∆ T   determined via (See Equation (2)), the thermal energy demand can be estimated (See Equation (1)). This forecast is applicable to both the existing thermal transmittance values of the building’s model (Table 3) and the projected values to be achieved after the renovation work (Table 1).



To evaluate the thermal demand reduction by retrofitting and potential energy savings achieved to comply with future European directives, the proposed methodology outlined in the previous section was followed. This assessment involved several key steps: identifying the building archetype based on construction age (2008) and intended use (commercial/offices), defining specific real-time requirements for office-type buildings (working schedule from 8:00 h to 20:00 h), obtaining surface areas (including the building envelope—opaque walls, roof and window or opening areas) from the cadastral database, retrieving external temperature data (Solcast API toolkit was used), setting temperature comfort setpoints in accordance with Spanish energy efficiency regulations (19 °C and 27 °C, for winter and summer periods) and quantifying the percentage of hourly deviations from the peak annual temperature at the building’s location following the equations (See Equations (4) and (5)). Such a metric provides an index of the temporal distance from the apex of yearly thermal fluctuations. This coefficient is instrumental in refining the estimated thermal energy consumption, allowing for an estimation of hourly heating/cooling requirements that accounts for temperature variability against established indoor comfort parameters. The graphical demand profile illustrates this assessment, showing both the current energy demand of the building (QDemand) and the optimized demand after the proposed improvements (Optimal QDemand) (See Figure 5).



In the following section, a sensitivity analysis is performed to demonstrate the influence of temperature boundary conditions on the calculation of the energy consumption associated with the heating and cooling of a building, as well as the error in the total energy consumption of the model compared to the energy consumption reported in the billing data.




4.2. Montecarlo Analysis Results


Figure 6 shows the variation in energy consumption associated with heating and cooling at CIRCE’s headquarters, as well as the error in the model’s total energy consumption compared to the energy consumption reported in the billing data. A greater variation in energy consumption is observed for heating than for cooling. Additionally, the error variation reaches up to 0.4, with a symmetric and normal distribution. Billing total energy consumption, baseline scenario calculated according to nZEB criteria and Montecarlo simulation results are reported in Table 4.



In the analysis of these three scenarios, a lower thermal comfort threshold (Th = 18 °C) reduces heating demand, as the system is only activated when the temperature drops below 18 °C, allowing for more thermal fluctuation. Conversely, a higher threshold (Th = 21.8 °C) leads to more frequent activations, increasing the heating demand. In the scenario Th = 18 °C and Tc = 23.1 °C, the lower cooling threshold (23.1 °C) helps to stabilize the temperature during the transition seasons, reducing the need for heating, making this scenario the most favorable when heating and cooling are evaluated separately (Figure 7).



For cooling demand, a higher comfort threshold (Tc = 27 °C) reduces consumption by allowing greater thermal variation. Conversely, a lower threshold (Tc = 23.1 °C) requires more frequent activations, increasing cooling demand, especially during warm seasons when thermal stabilization is needed. Thus, if heating and cooling are evaluated separately, the best scenario for cooling is the baseline (Figure 8).



However, if heating and cooling are evaluated together, the Montecarlo simulation with temperature setpoints Th = 21.8 °C, Tc = 23.1 °C is the best fit to the model (Table 4).



The consistency of the energy demand values obtained is reasonable for the case study under evaluation. The energy demand in kWh is moderate, with peaks reaching up to around 100 kWh during the coldest months, which is reasonable for a heating system in a moderate/large-sized building. The coincidence of peaks in the coldest months and troughs in the warmest months reinforces that the results are consistent with the climatic conditions and trigger thresholds (Figure 7).



Figure 8 shows the cooling demand peaking during the hottest months (around mid-year), with a significant demand deviation of up to 80 kWh in certain scenarios. The peaks in cooling demand correspond to the higher ambient temperatures typically seen in the summer, particularly from June to September, when cooling systems are most active. On the other hand, minimal cooling demand is observed from late autumn to early spring, when ambient temperatures remain below the cooling thresholds, and the cooling system is seldom activated.




4.3. Evidence of User-Set Temperatures


The proposed methodology was validated in an office setting using real temperature and energy consumption data obtained from the Building Management System (BMS). This system monitors variables such as temperature, CO2 concentration (ppm), humidity and more.



Figure 9 shows the layout of the case study headquarters and one example of the monitored variables in zone “A2—Sistemas Eléctricos 2” retrieved from the BMS.



To validate the proposed model’s simplifications, temperature records from two significant zones due the relevant surface (Zones “A2—Sistemas Eléctricos” and “G—Industria y Energía”) were analyzed as shown in Figure 10. In this graph, the blue line corresponds to the indoor zone temperature measured by the sensorial equipment, and the green line represents the theorical setpoint applied by the control system to the air handling units (“AHU”).



Once the control system registers the indoor temperature, it compares it to the setpoint. Based on this comparison, the AHU generates conditioning air, achieving thermal modulation that maintains the indoor temperature within the desired range.



However, it is noted that during the summer months, the control system does not operate optimally due to low office occupancy and changes in working hours. As a result, the actuators remain turned “OFF”, causing the room temperature to rise.



In any case, the comfort temperature range varies between 22 °C and 24 °C according weather conditions, which align with those determined through Monte Carlo analysis with a lower error (2%) corresponding to energy consumption with a thermal comfort range between 21.8 °C and 23 °C.





5. Discussion


This study has developed an energy profile for a floor within an office building. As outlined in the methodology, this profile can be readily extrapolated to the entire business park where the building is situated, with adjustments to opening hours. Analysis of the results reveals that the model is sensitive to temperature settings managed by the building’s infrastructure team and that the building’s energy performance falls 30% below the efficiency benchmarks set by Spanish regulations (Figure 5). This shortfall is largely due to the heat transfer inefficiencies inherent in the building’s construction, as reflected in the thermal transmittance values (U-values) of its envelope (Table 3). These values are significantly higher than the limits recommended for energy-efficient buildings, particularly in Climate Zone D, where the building is situated (Table 1).



Additionally, the heating demand for CIRCE’s offices was found to be significantly higher than the cooling demand, largely due to the building’s construction characteristics. The offices have a higher proportion of glazing in their envelope compared to typical residential buildings, leading to higher U-values and thus lower insulation effectiveness. This highlights the need for targeted energy efficiency improvements, specifically in the design and technology of the glazing or cladding materials. Given the higher proportion of U-values from openings compared to residential standards (Table 3), enhancing the building’s envelope could significantly improve energy performance. The current energy demand of CIRCE’s headquarters is based on the building’s existing thermal envelope, which has higher thermal transmittance values than recommended for energy-efficient buildings in Climate Zone D. As a result, there are significant heat losses, which lead to increased heating demand in winter and cooling demand in summer. A renovation to meet nZEB standards would bring the building’s thermal properties in line with EU targets, potentially reducing heating and cooling demands by an estimated 30%, aligning with European sustainability and energy efficiency goals to achieve a lower carbon footprint.



On the other hand, the configuration and shape of the building also play a role in limiting solar gain, as not all surfaces are exposed to sunlight. This means that any consideration of solar influence would require detailed Building Information Modelling (BIM) data for a comprehensive evaluation at a building stock level. Moreover, the variation in heating requirements compared to cooling can be attributed to the model’s lack of accounting for thermal dynamics associated with occupant behaviors and building occupancy levels.



Figure 5 and Figure 6 illustrate a comparison between the actual demand data, obtained from headquarters invoices, and the demand estimated using the method proposed in this study. Heating and cooling demands are distinguished in both actual and estimated terms. It is relevant to note that the estimated demand profiles for heating and cooling agree remarkably well with the actual ones, reflecting an adequate estimation of behaviors. The difference suggests that the temperature boundary conditions, defined according to Spanish regulations, do not fully align with the specific conditions of the case studied in the headquarters offices. Nonetheless, the results are consistent with the climate and set temperature thresholds, demonstrating how adjustments in heating and cooling settings impact annual energy consumption.



Monte Carlo simulation results further support these findings. A mean error of 0.17 and a standard deviation of 0.10 indicate an acceptable accuracy in the model’s predictions. The symmetrical and near-normal distribution of errors implies that most discrepancies are close to the average, indicating that the model provides a balanced estimate of energy consumption. Notably, the scenario with a comfort temperature range between 21.8 °C and 23.1 °C achieved a minimal error of 2%, demonstrating that a relatively simple model can effectively capture the building’s actual energy demand without the need to consider other parameters that require more detail. This low error rate reinforces the model’s reliability for assessing energy demand in this case of study, making it suitable for categorizing similar buildings at the neighborhood or city level and establishing different consumption profiles, thus supporting urban planning decisions aligned with energy efficiency criteria.




6. Conclusions and Future Work


This paper provides a model with a medium level of data detail that allows municipalities to categorize buildings with similar constructive characteristics to those in the case study and quickly assess its energy demand; or even estimate the energy consumption based on considerations such as operating hours and comfort temperature limits. The results demonstrate that the proposed methodology enables the prediction of the actual energy consumption of a commercial building with a complex structural design with a 2% error margin using data available in public databases. These results were validated through the actual monitoring of temperature variables and the building’s utility bills.



This methodology has been developed to support stakeholders involved in the creation of energy efficiency plans for real estate portfolios and to facilitate policies focused on decarbonization and energy transition. The main advantage of this approach lies in its ability to generate different energy demand or consumption profiles, which can be employed to evaluate strategies such as renewable energy sizing, energy storage systems and energy communities, thus contributing to the development of positive energy districts. However, the model’s sensitivity requires a detailed understanding of the building stock to fine-tune parameters for greater accuracy.



Although this model considers the behavior of building occupants regarding operating hours, other factors such as actual occupancy levels are not considered. Future work should focus on testing the model across different building typologies with varying characteristics to demonstrate its broader applicability. This would help refine the methodology and ensure its effectiveness across a wider range of scenarios.



Additionally, future efforts should integrate IoT technology within buildings to evaluate thermal gains that could influence energy consumption. It will also be important to assess the impact of different energy sources on supply, considering the building’s location and the effect of solar radiation on energy demand. Developing an optimization framework for energy use in buildings that interact with distributed energy resources will be essential. The geographical position and intensity of solar radiation significantly influence heating and cooling requirements, which affect overall energy consumption patterns and the effectiveness of energy efficiency strategies.
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Figure 1. Literature map of the SCOPUS search using co-occurrence keywords. 
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Figure 2. Proposed thermal balance in a typical building. Tin refers to indoor temperature and Text to the ambient temperature. Once Text differs to the Tcomfort,setpoints applied, control system should regulate by applying air conditioning. 
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Figure 3. Energy consumption modelling framework. Blue, pink and green lines represent different energy consumption profiles according to the thermal comfort setpoints defined by user. 
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Figure 4. BIM representation of CIRCE headquarters. 






Figure 4. BIM representation of CIRCE headquarters.



[image: Energies 18 00605 g004]







[image: Energies 18 00605 g005] 





Figure 5. Estimated demand profile vs. optimal estimated demand profile. 
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Figure 6. (a) Energy consumption for thermal comfort and (b) error distribution of the model compared to real energy consumption billing from Montecarlo simulations. 
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Figure 7. Heating consumption scenarios in kWh, over time (X-axis), with different threshold temperature pairs for heating (Th) and cooling (Tc). 
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Figure 8. Cooling consumption scenarios in kWh, over time (X-axis), with different threshold temperature pairs for heating (Th) and cooling (Tc). 
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Figure 9. Layout of the headquarters offices case study and monitored zones. 






Figure 9. Layout of the headquarters offices case study and monitored zones.



[image: Energies 18 00605 g009a][image: Energies 18 00605 g009b]







[image: Energies 18 00605 g010a][image: Energies 18 00605 g010b] 





Figure 10. Temperature data records for two zones in the headquarters offices from November 2022 to November 2023. (a) Zone: Sistemas Electricos (Electrical Systems “SELEC”). (b) Zone: Industria y Energia (Industry and Energy “INE”). 
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Table 1. Target thermal transmittances of buildings for each climate zone according to the Joint Research Centre (JRC), the European Commission’s science and knowledge service.
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Country

	
Climatic Zone

	
Uwall (W/m2K)

	
Uroof (W/m2K)

	
Uopenings (W/m2K)






	
Spain

	
alpha

	
0.8

	
0.55

	
3.2




	
A

	
0.7

	
0.5

	
2.7




	
B

	
0.56

	
0.44

	
2.3




	
C

	
0.49

	
0.4

	
2.1




	
D 1

	
0.41

	
0.35

	
1.8




	
E

	
0.37

	
0.33

	
1.8








1 Climatic zone and European target thermal transmittances values corresponding to the location of the Office’s headquarters.













 





Table 2. Transmittance values, according to the different building categories considered, and adaptation to regulatory nZEB criteria.
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Type

	
U

[W/m2K]

	
Prototypes by Building Age (2006–2013): Materials






	
U opaque

envelope 1

	
0.75

	
Cement mortar

15 mm

	
1/2 foot of solid brick 115 mm

	
Plaster

10 mm

	
Non-ventilated air chamber 20 mm

	
Hollow single brick wall 40 mm

	
Projected polyurethane 30 mm




	
U adapted opaque envelope

	
0.27

	
Cement mortar

6 mm

	
ETIS mineral wool

80 mm

	

	

	

	




	
U roof

	
0.46

	
Clay title

15 mm

	
Mortar 30 mm

	
MW insulation 8 mm

	
Air chamber concrete frame 25 mm

	
Ceramic panel

40 mm

	
Plaster 10 mm




	
U adapted roof 1

	
0.22

	
XPS

80 mm

	

	

	

	

	




	
U openings 1

	
3.51

	
Frame without thermal bridge break

	
Double pane glass

4–6–4 mm

	

	

	

	




	
U adapted

openings

	
1.58

	
Aluminum frame

without thermal bridge break > 12 mm

	
Low emissivity double pane glass 4 + 6 + 16 with argon

	

	

	

	








1 The highlighted thermal transmittance values were used for the energy demand calculations.













 





Table 3. Thermal transmittances and areas for the selected case, between adapted and non-adapted surfaces, for Circe Office Headquarters.
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	Case
	U [W/m2K]
	A [m2]





	U opaque envelope
	0.75
	108.9



	U adapted roof
	0.22
	2402



	U openings
	3.51
	980.1










 





Table 4. Energy consumption in CIRCE Headquarters compared to baseline and Montecarlo results.
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	Source
	Q-Energy [kWh]
	Error 1
	RMSE





	Billing
	116,178
	N/A 2
	N/A 2



	Baseline (19–27 °C)
	76,269
	0.34
	426.4



	Montecarlo simulation (21.8–23.1 °C)
	114,072
	0.02
	22.4



	Montecarlo simulation (18–2.1 °C)
	84,880
	0.27
	334.4







1 The error is calculated in comparison to the energy consumption reported on the office invoices. 2 Not applicable.
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