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Abstract: The accurate prediction of heat demand in retrofitted residential buildings is 
crucial for optimizing energy consumption, minimizing unnecessary losses, and ensuring 
the efficient operation of heating systems, thereby contributing to significant energy sav-
ings and sustainability. Within the framework of this article, the dependence of the energy 
consumption of a thermo-modernized building on a chosen set of climatic factors has been 
meticulously analyzed. Polynomial fitting functions were derived to describe these de-
pendencies. Subsequent analyses focused on predicting heating demand using artificial 
neural networks (ANN) were adopted by incorporating a comprehensive set of climatic 
data such as outdoor temperature; humidity and enthalpy of outdoor air; wind speed, 
gusts, and direction; direct, diffuse, and total radiation; the amount of precipitation, the 
height of the boundary layer, and weather forecasts up to 6 h ahead. Two types of net-
works were analyzed: with and without temperature forecast. The study highlights the 
strong influence of outdoor air temperature and enthalpy on heating energy demand, ef-
fectively modeled by third-degree polynomial functions with R2 values of 0.7443 and 
0.6711. Insolation (0–800 W/m2) and wind speeds (0–40 km/h) significantly impact energy 
demand, while wind direction is statistically insignificant. ANN demonstrates high accu-
racy in predicting heat demand for retrofitted buildings, with R2 values of 0.8967 (without 
temperature forecasts) and 0.8968 (with forecasts), indicating minimal performance gain 
from the forecasted data. Sensitivity analysis reveals outdoor temperature, solar radiation, 
and enthalpy of outdoor air as critical inputs. 
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1. Introduction 
Shaping the modern housing environment should occur under the conditions of sus-

tainable development [1]. According to the hierarchy of basic human needs, after satisfy-
ing essential physiological requirements, we aim to secure adequate safety, housing, and 
energy production [2]. 

The authors of this article seek to identify the relationships among various factors 
influencing energy demand in modernized buildings, ultimately developing an algorithm 
to determine the required amount of thermal energy drawn from district heating net-
works. The research scope was defined according to technical criteria reflecting sustaina-
ble urban development (SUD) [3]. Consequently, managing Demand-Side Management 
(DSM) in urban areas becomes vital in the context of future SUD and a climate-neutral 
energy economy [4,5]. 
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Predicting energy demand has been an important field of research for many years. 
These processes use complex algorithms, also using artificial neural networks (ANNs) to 
develop a model of effective energy consumption. Thanks to new computational technol-
ogies using multiple ANN models, the results become more precise and more effective in 
the implementation process [6]. 

Climatic conditions, such as insolation, wind speed and direction, temperature, and 
humidity, have a significant impact on the heat demand of buildings both before and after 
thermal upgrading. Retrofitting, which includes increasing wall insulation and replacing 
windows, changes the way a building responds to these factors. Increasing wall insulation 
reduces heat loss by infiltration, which reduces heating demand during colder periods. 
However, better insulation can reduce passive solar heat gain, as less solar energy pene-
trates a well-insulated envelope. As a result, additional heating may be needed during 
transitional periods to maintain thermal comfort [7]. Outdoor air temperature and humid-
ity affect heat loss through the envelope and the efficiency of heating and ventilation sys-
tems. Thermal retrofitting improves the thermal insulation of a building, which reduces 
the impact of varying outdoor conditions on indoor comfort [8]. 

2. Advanced Method of Energy Consumption Assessment in Buildings 
Aligning building energy requirements with the principles of sustainable urban de-

velopment (SUD) necessitates the adoption of appropriate technologies by users, manag-
ers, and designers. Reducing carbon emissions while optimizing household energy con-
sumption in residential buildings has emerged as a global imperative. 

The application of energy demand management, particularly in retrofitted buildings, 
involves a complex interplay of socio-economic and technical factors. Within the frame-
work of Demand-Side Management (DSM), these measures aim to achieve tangible en-
ergy savings, thereby improving living conditions while supporting SUD objectives [9]. 

A gradual and systematic approach to implementing energy optimization is a policy 
goal for many countries. For example, in China, long-term economic planning and legis-
lative provisions focus on introducing new technologies, monitoring implementation, and 
achieving measurable energy savings [10]. 

However, optimizing energy use in buildings is not solely about improving economic 
efficiency. Equally significant is the need to manage energy flow, enhance data integra-
tion, and enable sustainable forecasting. These efforts support intelligent, controlled en-
ergy consumption tailored to various building types. Studies evaluating building energy 
consumption often emphasize savings achieved through energy distribution and manage-
ment processes. This issue is particularly relevant in countries with shorter heating sea-
sons, such as those in Southern Europe, where energy use aligns with scheduled delivery 
periods. These actions have demonstrated significant reductions in primary energy con-
sumption—66%, 74%, and 65% in continuously heated residential buildings in Greece, 
Portugal, and Spain, respectively [11]. 

The non-energy benefits of retrofitting are frequently overlooked. Beyond reducing 
carbon footprints, retrofits can lower the atmospheric emissions of greenhouse gases, such 
as SOx, NOx, and benzopyrene. Complex retrofitting processes, often referred to as deep 
thermo-modernization, have shown variable success in improving energy and environ-
mental performance. For instance, results indicate that deep retrofitting benefits educa-
tional buildings not in all conditions. Without financial subsidies, the complexity and cost 
of these processes may render them unfeasible [12]. 

The global trend of constructing energy-efficient buildings necessitates constant com-
parison with reference buildings of similar types to evaluate the achieved energy out-
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comes. Combining home control systems with energy-saving measures can enhance en-
ergy efficiency by reducing demand and improving monitoring and management pro-
cesses—especially in smart technologies [13,14]. 

The search for the relationship between the economic efficiency of the thermo-mod-
ernization solutions used in relation to the energy effects achieved has become the pri-
mary determinant of the implementation of appropriate technical solutions. In many 
cases, it is easier to apply costly technologies with the use of renewable energy sources in 
public utility buildings, such as educational, administrative, or health care facilities, due 
to the participation and involvement of public and private capital in the processes [15]. 

The growing demand for energy efficiency in buildings has led to the development 
of advanced artificial intelligence (AI) techniques for predicting heat power demand, es-
pecially in heating, ventilation, and air conditioning (HVAC) systems. The adoption of 
advanced technologies, such as artificial neural networks (ANNs), has shifted from being 
a challenge to becoming a necessity. ANNs provide an alternative method for solving 
complex problems by learning from historical data rather than traditional programming 
techniques [16]. 

It turns out that ongoing research [17] in this area must distinguish between energy 
demand and energy consumption forecasting, which, given the vast amount of output 
data, should be conducted using ANNs. Therefore, it was crucial to examine how ANNs 
were implemented and on which models. Additionally, the results achieved with these 
models and the emerging trends were assessed. Understanding these principles aimed to 
eliminate the increasingly common phenomena of repetitive applications and methods 
used in developing action models to optimize the performance of machine learning (ML) 
techniques. 

Predictive systems use data on atmospheric conditions (e.g., outdoor temperature, 
insolation, and wind speed), building characteristics, and occupancy patterns. On this ba-
sis, it is possible to forecast variable thermal energy demand. For example, during periods 
of intense sunshine, the control system can reduce heating to take advantage of natural 
heat gains, while during periods of high winds, it takes into account additional losses 
through ventilation or thermal bridges. The prediction of heat demand in thermally up-
graded buildings is crucial to fully realize the potential of energy efficiency. By accurately 
predicting energy demand, it is possible to implement intelligent control systems that dy-
namically adjust heat supply to the actual needs of the building, minimizing energy losses. 

The process of modeling and forecasting energy consumption in multi-family resi-
dential buildings still appears to be underdeveloped. Such research can yield reliable and 
simultaneously optimal solutions for creating energy consumption simulations. Compu-
tational models based on the Levenberg–Marquardt and OWO–Newton algorithms 
achieved noteworthy determination coefficients in the range of 0.87–0.91, which is a strong 
result and comparable to findings reported in other publications [18]. 

The work and analyses aimed at finding appropriate methods and algorithms for 
forecasting energy consumption in residential buildings based on ANNs must be contin-
uously corrected and improved. Energy consumption and the prediction of hourly load 
profiles enabled the evaluation of variable relevance as well as the determination of the 
number of free parameters required to construct the output model [19]. The obtained re-
sults demonstrated that statistical analysis, as a significant component of neural models, 
can serve as a valuable tool for developing simple and, most importantly, highly efficient 
neural models specifically applicable in the field of building energy management. 

One of the methods to optimize the results obtained is their multi-source extraction 
and comparison. Another study [20] used three new methods of intelligent grasshopper 
optimization algorithm (GOA), wind-driven optimization (WDO), and biogeography-
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based optimization (BBO), which influenced the optimized prediction of heating loads 
and cooling loads of buildings. 

The necessary factors to consider in forecasting energy consumption (including elec-
tricity) took into account demand and ambient temperature from the perspective of 
hourly or seasonal variation. This makes it difficult to match energy consumption during 
periods of long-term and short-term demand in the same time frame. Another study on 
office buildings was to compare the forecasting results obtained by the traditional method 
and the ANN method [21]. The proposed approach divides energy demand data into fixed 
time periods that include operating hours to reduce the impact of human activity. Once a 
suitable weather variable is found to match the energy demand during working hours, 
the building’s energy constant can be predicted here. The second proposed approach uses 
an ANN to match hourly load, peak load, and occupancy rate with multiple variables. In 
this approach, data for energy demand is divided into shorter time ranges, hours with no 
occupancy, hours of full occupancy, and fuzzy hours in between, where occupancy rates 
vary with time and weather variables. The proposed approaches are validated by case 
study data. Simulation results show, comparing the traditional method with the ANN 
method, that both proposed approaches have less root-mean-square error (RMSE) in pre-
dicting building electricity demand. 

In another article [22], researchers compare the prediction capabilities of five differ-
ent intelligent system techniques for predicting electricity consumption in administrative 
buildings in the UK. These five techniques are multiple regression (MR), genetic program-
ming (GP), artificial neural network (ANN), deep neural network (DNN), and support 
vector machine (SVM). The models are developed based on five years of observed data of 
five different output parameters, such as solar radiation, temperature, wind speed, hu-
midity, and weekday index. The weekday index is an important parameter for distin-
guishing between working days and days off. The results show that ANN performs better 
than all the other four techniques with a percentage error (MAPE) of 6%, while MR, GP, 
SVM, and DNN have 8.5%, 8.7%, 9%, and 11%, respectively. The authors also emphasize 
that this type of research can also cover other categories of buildings and will help opti-
mize energy consumption forecasting for different types of buildings in the future. 

A recent study from 2024 using ANNs is the reverse of the previous post [23]. All 
scholars have used a bottom-up model, i.e., extensive simulations and calculations of en-
ergy consumption of buildings, but here we are dealing with a model for predicting 
hourly heat demand at the national level. This approach significantly reduces the time 
and complexity of the prediction by reducing the number of model input types through 
feature selection (making the model more realistic). Such a model can be adapted using 
less meteorological data, while accurately predicting hourly heat demand throughout the 
year. The model provides a framework for obtaining accurate heat demand forecasts for 
large-scale areas, which in turn can be used as a reference for making appropriate deci-
sions. 

Another study [24] in this area addresses the issues of using ANN to predict the heat 
demand associated with air conditioning in non-residential buildings. The reliable pre-
liminary prediction of the thermal energy demand of a building is performed with the 
help of detailed dynamic simulation software, which also requires knowledge of the heat 
balance and several output data. The authors’ research goal was to identify the best ANN 
topology, developing a tool for determining both fast and simple thermal energy demand 
of a non-residential building with only 12 well-known thermophysical parameters with-
out using thermal balance data. The authors describe how to train a network to develop 
an accurate thermal energy database to form the basis of specific ANNs. Another ap-
proach to the study involves considering an ensemble of neural networks [25]. Various 
ANNs are used to predict thermal energy consumption on a university campus: forward 
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neural network (FFNN), radial basis function network (RBFN), and adaptive neuro-fuzzy 
interference system (ANFIS). For each type of neural network, three models are analyzed 
(using different initial parameters). In order to achieve accuracy in predicting energy con-
sumption, not just individual networks but the entire ensemble of neural networks is stud-
ied. Three different combinations of results are then analyzed. The study shows that all 
the proposed neural networks can predict heat consumption with high accuracy. Using 
the whole ensemble of networks gives even more precise results. ANN, due to their ca-
pacity for capturing complex, nonlinear relationships between various factors like 
weather conditions and occupancy rates, have shown substantial promise in reducing pre-
diction errors [26]. Moreover, multi-objective optimization methods, such as those em-
ploying the Artificial Bee Colony (ABC) algorithm, effectively balance energy efficiency 
with indoor thermal comfort [27]. 

Research also emphasizes the application of artificial intelligence in district heating 
systems, where machine learning models and ensemble techniques improve the accuracy 
of heat demand forecasts [28,29]. Unsupervised learning algorithms, such as K-means 
clustering, have been applied to enhance the performance of HVAC systems by creating 
zone-specific heating management strategies [30]. Additionally, advanced pre-processing 
techniques like wavelet transforms, coupled with tree-based ensemble models, further 
improve forecasting accuracy by accounting for temporal variability in heating loads [31]. 
Collectively, these AI-driven approaches contribute to enhanced energy management, 
lower operational costs, and better thermal comfort in buildings. 

In this study, we classified ANN into two distinct groups: those incorporating tem-
perature forecasts several hours ahead and those operating without temperature fore-
casts. This methodological division represents a novel contribution to the field, addressing 
a significant gap in the existing research. Few scientific studies have conducted such com-
parative analyses in the context of predicting heat demand for buildings, particularly after 
thermal retrofitting—a critical area of investigation as retrofitting significantly alters ther-
mal dynamics. By comparing these two network types, we aim to elucidate the role of 
outdoor temperature forecasts in enhancing model accuracy and robustness, offering 
deeper insights into their relative advantages and limitations. The integration of outdoor 
temperature forecasts accounts for future climatic variability, potentially improving de-
mand prediction precision. Conversely, networks without forecasts represent a more gen-
eralized approach, applicable where forecast data are unavailable or unreliable. This com-
parison provides a comprehensive framework for optimizing ANN applications in real-
world energy management scenarios, setting a precedent for future research. 

3. Materials and Methods 
3.1. General Description 

Within the scope of this paper, the comparative results of the measured actual ther-
mal energy demand for heating a multi-family residential building to the predicted ther-
mal energy demand determined from general meteorological data are presented. Demand 
prediction was performed using ANN, and the following variables were used as input 
data: outdoor air temperature text (°C), outdoor air enthalpy hext (kJ/kg), wind speed ws 
(km/h), wind direction wd (°), wind gust wg (km/h), boundary layer height hbl (m), direct 
radiation idir (W/m2), diffuse radiation idif (W/m2), total radiation itot (W/m2), and general 
information like month and hour.  

Air enthalpy is the total energy content of air, comprising both sensible heat (due to 
its temperature) and latent heat (due to moisture content or phase changes in water va-
por). The air boundary layer height is the vertical distance from the surface to the level 
where turbulent fluxes of momentum, heat, or mass diminish significantly, typically 
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marking the transition from surface-driven turbulence to free atmospheric conditions. Di-
rect radiation refers to solar radiation that travels in a straight line from the sun to a sur-
face without being scattered, diffuse radiation is solar radiation that has been scattered by 
atmospheric particles and arrives at a surface from multiple directions, and total radiation 
is the sum of both direct and diffuse radiation received by a surface. 

In addition, neural networks were also determined for which additional variables 
related to the predicted weather from the weather service were taken into account pre-
dicted temperature (°C) from 1 to 6 h ahead: t+1h, t+2h, t+3h, t+4h, t+5h, t+6h. A flowchart illustrat-
ing the conducted analysis is shown in Figure 1. 

A correct estimation of the instantaneous heating energy demand allows for the op-
timal control of the heat or heat carrier supply. By taking all the meteorological factors 
into account, it is possible to make fuller use of heat gains or compensate for excessive 
heat losses. By knowing the dynamics of demand changes and the inertia of the heating 
system and the heated object, control can be intelligently implemented in advance. 

 

Figure 1. Diagram of the conducted analysis presented in this article. 

In the beginning, the relationship between heating energy demand and individual 
climatic variables, including outdoor temperature, air enthalpy, total solar radiation, wind 
speed, and wind direction, was analyzed. Polynomial fitting functions were derived to 
model these dependencies. The statistical significance of the fitted models was evaluated 
using the ANOVA test, with results confirming significance at the 0.05 significance level. 
This analysis provides robust evidence of the influence of these climatic factors on energy 
demand, validating the relevance of the selected variables in energy modeling. 

Subsequent analyses focused on predicting heating demand using ANN by incorpo-
rating a comprehensive set of climatic data. This approach aimed to leverage the full range 
of meteorological variables. By utilizing the available climate data, the ANN models were 
designed to capture complex interactions and nonlinear relationships between environ-
mental factors and energy requirements, ensuring a more holistic and precise forecasting 
framework. 

The prediction of energy demand for heating is, therefore, extremely important in 
terms of emulating the equivalent outdoor temperature. The heat demand can be deter-
mined according to the following formula: 



Energies 2025, 18, 679 7 of 27 
 

 

𝑄ሶ 𝐻 = 𝐻 ∙ ሺ𝑡𝑖 − 𝑡𝑒ሻ 

where 𝑄ሶ 𝐻—heat energy flux (kW), H—building heat loss coefficient (W/K), ti—design in-
door temperature (°C), and te—outdoor temperature (°C). Thus, from the transformation 
of the modified formula, 𝑄ሶ 𝐻,𝑝𝑟𝑒𝑑 = 𝐻 ∙ ൫𝑡𝑖 − 𝑡𝑒,𝑒𝑞൯ 

where 𝑄ሶ 𝐻,𝑝𝑟𝑒𝑑—predicted heat energy flux (kW) and te,eq—equivalent outdoor tempera-
ture (°C), and the equivalent temperature can be determined as follows: 𝑡𝑒,𝑒𝑞 = 𝑡𝑖 − 𝑄ሶ 𝑝𝑟𝑒𝑑𝐻   

The equivalent outdoor temperature is emulated by the forecast controller for the 
weather control system. 

It was decided to predict the heat demand since heat consumption is a directly meas-
urable value. An approved heat meter that complies with the current technical require-
ments is used for the heat measurements. The predicted demand is very easy to compare 
to the current one. Another approach would be to directly determine the equivalent out-
door temperature based on climatic conditions, but verifying that value would be difficult. 

In this research, the article does not present the results of the outdoor temperature 
text,eq emulation but instead focuses on estimating thermal energy consumption under the 
given conditions. 

3.2. Measurement System 

A typical control system for a heating system is weather control. Figure 2a shows a 
schematic diagram of the heat exchanger in the building, connected to the district heating 
network (elements marked in black). The exchanger is designed for the heating system, 
without a hot water heating circuit. The controller measures the outdoor temperature te 
and controls the supply temperature of the heating system through the three-way valve. 
From the measurement of the supply and return temperatures of the medium, as well as 
the mass flow, the consumed thermal energy (kW) is determined. 

 

 

(a) (b) 

Figure 2. Forecasting controller: (a) schema of connection forecasting controller installed on existing 
heat exchanger room; (b) view of forecast controller mounted on tested installation. 

A modification in the system is a forecast controller connected via the Internet to the 
chief information system (CIS) server (polish acronym: NSI). This system is highlighted 
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in red on the schema. The CIS additionally retrieves the current meteorological infor-
mation from the API Meteo application for the geographic location specific to the instal-
lation site indicated in the settings. Then, the CIS determines the equivalent outdoor tem-
perature. A data packet with the current external equivalent temperature settings for sev-
eral hours ahead is sent hourly from the server to the forecast controller. The forecast con-
troller emulates the outdoor temperature to the weather controller by adjusting the re-
sistance value depending on the type of resistive outdoor temperature sensor. In addition, 
via the M-Bus interface, the forecast controller reads parameters from the weather con-
troller that are related to thermal energy measurement and then sends them to the CIS. 
Measurements that were read by the forecast controller modules were outdoor tempera-
ture, supply temperature, return temperature, heating medium flow, delivered power, 
and heat consumption with an interval of every 10 min [32,33]. 

In weather mode, the forecast controller sends an unchanged temperature value to 
the weather controller, while in forecast mode, the equivalent temperature could be emu-
lated depending on the estimated heat power demand Qpred. The system works ideally 
with weather controllers in heat exchangers connected to the municipal heat network. 

3.3. Characteristics of the Studied Building with Their Heating Systems 

The subject of the study (Figure 3) was a multi-family building located in eastern 
Poland. The city is located in the III climatic zone, where the design temperature is −20 °C 
and the average outdoor temperature is +7.6 °C. 

 

Figure 3. The location of the analyzed multi-family residential building in relation to its surround-
ings (on the basis of polska.geoportal2.pl (accessed on 10 December 2024) [34]). 

The object under study is a multi-family building built in the 1980s ÷ 1990s. The build-
ing is 5-story, with a basement, with a floor area of 5430 m2 and a volume of 14,661 m3. 
The building is in an area of multi-family housing, while there are numerous wooded 
areas between the buildings. The estimated number of residents in 75 apartments is 225 
residents. The average design indoor temperature is +20 °C. 

The building underwent thermal modernization. The external walls were insulated 
with expanded polystyrene (EPS) and finished with a mineral plaster coating. The heating 
system is made in the traditional way as water heating, with convection heaters. Distribu-
tion pipes (bottom distribution) are installed in the basement, to which numerous risers 
are connected. Radiators connected to the risers are equipped with thermostatic valves. 
The building is supplied with thermal energy from the high-parameter municipal district 
heating network through a heat exchanger room located on the ground floor of the build-
ing. 
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Additionally, windows in the stairwells and the main entrance doors were replaced 
to improve energy efficiency. In residential units, windows were gradually replaced by 
unit owners during periodic renovations as needed. Minor improvements were also made 
to the heating system, including replacing the outdated heat exchanger room with modern 
plate heat exchangers, equipping the risers with automatic balancing valves, and insulat-
ing the basement piping. The ventilation system remained unchanged and continued to 
operate as a natural (gravitational) system. 

3.4. Data for ANN Analysis 

Measurement data covers the range from 26 January 2021 to 13 October 2024. Read-
ings were exported from CIS to a comma-separated data text file (*.csv). 

The software tool utilized for the analysis was Statistica TIBCO Software Inc., version 
14.0.0.15, employing the automatic ANN module. Within this framework, feed-forward 
regression neural networks were constructed. Each network consisted of a single hidden 
layer, containing between 25 and 35 neurons. The maximum number of hidden neurons 
was determined based on the formula 2𝑛 + 1, where 𝑛 represents the number of input 
variables. This limitation on the number of hidden neurons was intentionally applied to 
mitigate the risk of overfitting, thereby enhancing the network’s generalization ability. 

For activation functions, a diverse range was employed, including identity, logistic, 
hyperbolic tangent (tanh), and exponential functions, applied to both the hidden and out-
put neurons. The networks were configured with input features corresponding to either 
11 variables (without temperature predictions) or 17 variables (with temperature predic-
tions). The specific inputs included outdoor temperature (°C), exterior air enthalpy 
(kJ/kg), wind speed (km/h), wind direction (°), wind gust (km/h), boundary layer height 
(m), direct solar radiation (W/m2), diffuse solar radiation (W/m2), total solar radiation 
(W/m2), temperatures forecast for future intervals (t+1h through t+6h), and other qualitative 
variables as with month and hour. 

Each network generated a single output, representing the predicted heat demand. 
The dataset used comprised 18,184 valid records, which were randomly divided into 
training (70%), testing (15%), and validation (15%) subsets. 

We used MLP (multi-layer perceptron) neural network in the format “MLP X-Y-Z”, 
where X represents the number of input nodes, Y the hidden neurons, and Z the output 
node. The networks without temperature forecasts have 11 input nodes, reflecting the 
basic meteorological parameters, while those with temperature forecasts include 17 input 
nodes to account for the additional predictive temperature data. The networks utilize the 
BFGS (Broyden–Fletcher–Goldfarb–Shanno) training algorithm, a popular choice for op-
timization in neural networks due to its efficiency in handling nonlinear problems. The 
error function SOS (sum of squares) is uniformly applied across all the models, ensuring 
consistency in optimization. 

A total of 100 neural networks were trained, and from these, the five models demon-
strating the highest validation accuracy were selected for further analysis. This rigorous 
approach ensured a robust evaluation and optimized the models’ predictive performance 
while preserving their generalizability to new data. 

4. Results 
4.1. Summary of Meteorological Factor 

The study, conducted over nearly four years, examined the impact of various climatic 
factors on thermal energy demand for building heating, focusing primarily on outdoor air 
temperature, along with wind parameters, external air enthalpy, and solar radiation. 
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4.1.1. Outdoor Temperature and Humidity 

Outdoor air temperature significantly influences building heating demand. The most 
frequently observed temperature ranges are 0–2 °C (8.2%) and 14–18 °C (7.3% each). Fig-
ure 4 presents measurements from the entire monitoring period, not just the heating sea-
son. Lower frequencies are noted in the 2–14° C range (6.5–7.2%). Extreme temperatures 
below–14 °C occurred in less than 0.1% of the measurements. 

(a) 

 

(b) 

 

(c) 

 

Figure 4. Histogram illustrating the frequency of measured parameters within specified ranges: (a) 
temperature, (b) air enthalpy, and (c) relative humidity. 

The most frequently observed relative humidity range is 90–95%. Because relative 
humidity can be converted to absolute humidity only in relation to the corresponding air 
temperature, enthalpy—derived from temperature and humidity measurements—pro-
vides a more precise indication of thermal properties. While absolute humidity has mini-
mal impact on enthalpy in winter due to low moisture content, in summer it becomes a 
critical factor because of the air’s higher moisture capacity. About 11% of the measured 
data fall within the 10–15 kJ/kg enthalpy range. 

4.1.2. Solar Radiation 

Total solar radiation, a critical factor for heat gains through glazing, is presented in 
100 W/m2 intervals (Figure 5a). Insolation in the 100–900 W/m2 range decreases progres-
sively. The 100–200 W/m2 interval occurs 9% of the time, whereas higher intervals—such 
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as 800–900 W/m2—represent only 1%. Nighttime radiation (0 W/m2) accounts for the larg-
est share at 65%. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 5. Summary of meteorological data during measurement periods: (a) total radiation, (b) rain-
fall, (c) wind direction, and (d) wind speed. 

4.1.3. Rainfall 

Rainfall (Figure 5b) is predominantly minimal, with 98.19% of the observations in the 
0–1 mm range, encompassing both rainy and non-rainy periods. Heavier rainfall is rare, 
with amounts above 1 mm accounting for just over 1% of observations. This significantly 
affects air humidity and temperature. 

4.1.4. Wind 

At the studied location, winds predominantly originated from the W–SW (225–270°) 
and W–NW (270–315°) directions, accounting for 19% and 18% of the total measurement 
time, respectively. In contrast, the least frequent winds were from the N–NE (0–45°) and 
NE–E (45–90°) directions, occurring 7% and 9% of the time. The building’s exposure var-
ies: it is sheltered by trees and neighboring buildings on the N–NE side, while on the S–
SW side, it faces a narrow greenbelt and a city road. 

Wind speeds were mainly low to moderate: the most common ranges were 5–10 km/h 
(33%, Beaufort scale 2, weak breeze) and 10–15 km/h (31%, Beaufort scale 3, gentle breeze). 
Air stillness or very low winds (0–5 km/h) were infrequent (7%), as were high speeds ex-
ceeding 25 km/h (3%). 

Wind direction and strength are key determinants in forecasting thermal energy de-
mand, particularly in Central Europe, where air masses from the east and northeast bring 
colder conditions, while those from the south and southwest result in warmer tempera-
tures. General west-to-east circulation patterns dominate, but regional topography and 
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land cover further influence wind flow and temperature distribution. Terrain roughness 
and obstacles like buildings or forests create localized variations, complicating predic-
tions. 

The graph in Figure 6 shows the dependence of mean outdoor temperature on wind 
direction by month for the location of the analyzed building. In the months November–
March, noticeably lower average temperatures occurred for directions between NW and 
NE, while the warmest temperatures occurred for directions close to S-SW. However, this 
is not a clear phenomenon and is not similar for each location. The temperature fitting 
functions for wind directions by month, along with the statistics from the ANOVA test, 
are shown in Table 1. The p-value is less than the accepted significance level of 0.05, indi-
cating that the differences in wind direction are statistically significant, and so have an 
impact on the temperature in each month. 

 

Figure 6. Dependence of the mean outdoor temperature on wind direction by month for the given 
location. 

Table 1. Outdoor temperature fitting functions for wind directions by month and statistics accord-
ing to the ANOVA test. 

Month Temperature t (°C) Statistics 
1, 2 t = −9.9172 + 3.3813·wd − 0.2128·wd2 − 0.0068·wd3 F(7;2968) = 36.486; p = 0.0000; 
3 t = 3.5954 − 3.4682·wd + 1.0353·wd2 − 0.0748·wd3 F(7;5680) = 86.4379; p = 0.0000; 
4 t = −5.9922 + 6.9825·wd − 0.8973·wd2 + 0.0301·wd3 F(7;2872) = 95.9659; p = 0.0000; 
5 t = −1.5251 + 7.9374·wd − 1.2263·wd2 + 0.0583·wd3 F(7;2968) = 26.4546; p = 0.0000; 
6 t = 4.3393 + 7.7112·wd − 1.1681·wd2 + 0.0533·wd3 F(7;2872) = 36.5684; p = 0.0000; 
7 t = 4.9144 + 10.1994·wd − 1.8118·wd2 + 0.0963·wd3 F(7;2968) = 38.2703; p = 0.0000; 
8 t = 7.062 + 7.9079·wd − 1.3798·wd2 + 0.0721·wd3 F(7;2968) = 23.4976; p = 0.0000; 
9 t = 9.9154 + 3.1014·wd − 0.4083·wd2 + 0.0112·wd3 F(7;2872) = 45.6166; p = 0.0000; 

10 t = 18.0339 − 6.1343·wd + 1.3155·wd2 − 0.082·wd3 F(7;2536) = 27.7323; p = 0.0000; 
11 t = 0.4001 − 1.1533·wd + 0.6436·wd2 − 0.0535·wd3 F(7;2152) = 42.3006; p = 0.0000; 
12 t = 15.801 − 12.0189·wd + 2.3888·wd2 − 0.139·wd3 F(7;2224) = 73.9223; p = 0.0000; 

Note: wd—wind direction. 
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4.2. Energy Characteristics of Building Depending on External Factors 

The analysis of energy consumption for heating the building reveals distinct patterns 
influenced by seasonal and operational factors. Figure 7 presents monthly energy con-
sumption statistics, including median, interquartile range, and extremes. During summer 
(June–August), recorded energy consumption is zero, as the measurement system ex-
cludes energy supplied for domestic hot water. 

(a) 

 

(b) 

 

Figure 7. Results of measurements: (a) heat energy demand; (b) outdoor temperature. 

4.2.1. Air Temperature and Enthalpy 

In Poland, district heating typically commences when the average daily outdoor tem-
perature remains below 12 °C for three consecutive days. The heating season usually starts 
in October, although in some cases, it may begin in late September. Similarly, the heating 
season ends in April or May when temperatures exceed 12 °C for three consecutive days. 
Decisions regarding heating schedules involve coordination between heating operators 
and building administrators, with flexibility to adapt to regional and climatic variations. 
Climate change has increasingly influenced the duration of heating seasons, necessitating 
adjustments to traditional schedules. 

Energy demand is highest at the onset of the heating season, with instantaneous 
peaks reaching 300–350 kW, significantly exceeding the average demand of 92.75 kW by 
approximately 377%. This peak occurs during the start-up phase, when the heating me-
dium temperature rises from room temperature (~20 °C) to the operational temperatures 
of 60–80 °C. December and January exhibit the highest average energy consumption, cor-
relating with the coldest outdoor temperatures during these months. These observations 
underscore the critical relationship between outdoor temperature fluctuations, opera-
tional heating demands, and the need for dynamic energy management strategies. 
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Figure 8 illustrates the relationship between energy consumption for heating and two 
key variables: outdoor temperature and enthalpy, encompassing the entire measurement 
period. As anticipated, a robust correlation exists between these parameters. Notably, 
within the temperature range of −10 °C to 10 °C, the relationship is approximately linear, 
indicating that as outdoor temperatures decrease, heating energy demand increases pro-
portionally. However, when outdoor temperatures drop below −15 °C, this proportional-
ity diminishes, suggesting that additional factors may influence energy consumption in 
more extreme cold conditions. Conversely, at temperatures exceeding 10 °C, there is a 
gradual decline in heating demand, reflecting reduced necessity for space heating. 

  
(a) (b) 

Figure 8. Dependence of energy consumption for heating on (a) outdoor air temperature and (b) 
enthalpy of outdoor air. 

The fitting functions of heat energy consumption on temperature and enthalpy are 
as follows: Qሶ =  162.5626 + 34.5157 ∙ t − 10.2408 ∙ tଶ + 0.5179 ∙ tଷ  Qሶ = 220.2905 − 3.3448 ∙ h − 2.1198 ∙ hଶ + 0.0905 ∙ hଷ 

The parameters of ANOVA test, respectively, F(10;29,147) = 12,627.2645, p = 0.0000 
and F(16;29,185) = 7567.0628, p = 0.0000 indicate that the measurement results are statisti-
cally significant. The determination coefficient R2 of the above relations equal 0.7443 and 
0.6711, respectively. 

This observed pattern aligns with established findings in building energy perfor-
mance studies. For instance, research by Lee et al. [35] emphasizes the significance of de-
termining accurate base temperatures for heating degree days to effectively estimate 
building heating energy consumption, underscoring the linear relationship between out-
door temperature and energy demand within specific temperature intervals. Further-
more, a study by Lin et al. [36] highlights that outdoor temperature accounts for a sub-
stantial portion of the variance in building energy consumption, reinforcing the critical 
role of ambient conditions in heating requirements. 

The nonlinear function of heating energy demand described above offers advantages 
over traditional linear methods by providing a more accurate representation of energy 
consumption dynamics across a wide range of outdoor conditions. Understanding these 
dynamics is crucial for optimizing heating systems and enhancing energy efficiency. By 
incorporating higher-order functions (quadratic and cubic), the model captures the com-
plex relationships between enthalpy and energy demand, including variations that linear 
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methods fail to account for. This increased accuracy facilitates improved forecasting and 
optimization of energy systems, particularly under variable climatic conditions [37]. 

4.2.2. Wind and Solar Radiation 

Wind significantly influences heating energy demand in the analyzed building by 
increasing heat loss through enhanced infiltration. To separate wind effects from solar 
radiation effects, the relationship between heating demand and wind speed was assessed 
across discrete solar radiation ranges (0–900 W/m2, in 100 W/m2 increments) (Figure 9). 
The ANOVA tests (Table 2) revealed statistically significant relationships for insolation 
levels between 0 and 800 W/m2, indicating that heat demand increases proportionally with 
wind speed under these conditions, as confirmed by regression analysis. However, for 
insolation levels above 800 W/m2, no significant relationship was observed, as solar gains 
offset wind-induced heat losses. These findings emphasize wind’s role in building heat 
loss, particularly during periods of low solar radiation, consistent with prior research on 
wind-driven aeration effects [38]. 

 

Figure 9. Dependence of heating energy consumption on wind speed determined for each total in-
solation category. 

Table 2. Heat power demand fitting functions for wind speed on particular insolation category and 
statistics according to the ANOVA test. 

Total Radiation (W/m2) Heat Power Demand (kW) Statistics 
≤100 Q = 68.4317 − 12.8936·ws + 4.3066·ws2 − 0.2844·ws3 F(7;19,146) = 190.3894; p = 0.0000; 

(100;200] Q = 190.1537 − 118.5374·ws + 27.4408·ws2 − 1.7877·ws3 F(7;2548) = 35.6084; p = 0.0000; 
(200;300] Q = 13.1072 + 0.0362·ws + 2.3132·ws2 − 0.1581·ws3 F(9;1797) = 16.9779; p = 0.0000; 
(300;400] Q = −44.0105 + 41.8804·ws − 7.5847·ws2 + 0.4697·ws3 F(7;1509) = 8.0167; p = 0.00000; 
(400;500] Q = −28.0644 + 27.6231·ws − 4.3854·ws2 + 0.2417·ws3 F(7;1216) = 5.96; p = 0.00000; 
(500;600] Q = −23.8124 + 21.7412·ws − 3.8935·ws2 + 0.2523·ws3 F(7;1091) = 6.5308; p = 0.00000 
(600;700] Q = 108.0846 − 70.4099·ws + 14.9704·ws2 − 0.9354·ws3 F(6;1001) = 8.7824; p = 0.00000; 
(700;800] Q = 26.7597 − 12.9366·ws + 1.9848·ws2 − 0.0342·ws3 F(5;606) = 7.5585; p = 0.00000; 
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>800 Q = 69.8891 − 46.6696·ws + 10.5115·ws2 − 0.7535·ws3 F(4;176) = 0.5805; p = 0.6771; 
Note: wS—wind speed (km/h). 

Figure 10 illustrates an inverse relationship between the total insolation and heating 
energy demand, analyzed across wind speed categories ranging from 0 to 50 km/h in 5 
km/h intervals. The ANOVA test statistics (Table 3) confirm the statistical significance of 
this relationship for wind speeds up to 35–40 km/h. Above 40 km/h, insufficient data pre-
cluded reliable analysis.  

 

Figure 10. Dependence of heating energy consumption on total insolation determined for each wind 
speed category. 

The observed inverse correlation aligns with the existing literature. Xie et al. [39] 
identified outdoor temperature, wind speed, and solar radiation as the key determinants 
of heating demand in district heating systems, noting that increased solar radiation re-
duces heating requirements. Similarly, a study by Song et al. [40] emphasized the impact 
of solar radiation and wind speed on building heating demand. 

Wind speed’s influence on heating demand is multifactorial. Elevated wind speeds 
can enhance convective heat loss from building surfaces, increasing heating demand. 
However, high insolation can offset this effect by providing solar gains that reduce the 
need for additional heating. This relation was explored by Al-Homoud [38], who demon-
strated that solar gains could compensate for heat losses due to wind-induced convection. 

Our analysis indicates that at wind speeds above 35–40 km/h, the inverse relationship 
between insolation and heating demand diminishes. However, due to limited data at 
higher wind speeds, further research is necessary to substantiate this hypothesis. 

Research underscores the complex interplay between wind speed and solar radiation 
in determining building heating demand. Understanding these dynamics is crucial for 
optimizing energy consumption and enhancing building energy efficiency. 
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Table 3. Temperature fitting functions for wind directions by month and statistics according to the 
ANOVA test. 

Wind Speed Range (km/h) Heat Power Demand Fitting Function Statistics 
(0;5] Q = 73.2458 − 14.3344·it + 1.2206·it2 − 0.037·it3 F(15;1931) = 25.0244; p = 0.0000; 

(5;10] Q = 61.1676 − 6.5885·it + 0.2556·it2 − 0.0047·it3 F(15;9339) = 49.604; p = 0.0000; 
(10;15] Q = 83.1169 − 10.1643·it + 0.458·it2 − 0.0082·it3 F(15;9024) = 124.6993; p = 0.0000; 
(15;20] Q = 103.9029 − 15.1052·it + 1.0567·it2 − 0.0309·it3 F(15;5483) = 101.2037; p = 0.0000; 
(20;25] Q = 111.1267 − 10.6034·it + 0.3092·it2 − 0.0029·it3 F(15;2357) = 59.0748; p = 0.0000; 
(25;30] Q = 108.2153 − 7.9038·it − 0.4837·it2 + 0.0467·it3 F(13;717) = 17.1428; p = 0.0000; 
(30;35] Q = 76.0934 + 13.1959·it − 3.1656·it2 + 0.1376·it3 F(12;163) = 7.3227; p = 0.0000; 
(35;40] Q = 205.4494 − 108.7657·it + 22.0999·it2 − 1.2544·it3 F(5;25) = 8.7091; p = 0.00007; 
(40;45] Fit not drawn because of invalid range of values - 
(45;50] Fit not drawn because of invalid range of values - 

Note: it—total insolation (W/m2). 

Figure 11 illustrates the relationship between heating energy consumption and wind 
direction across the determined wind speed categories. Table 4 provides the correspond-
ing heat power demand fitting functions and ANOVA test statistics. The analysis reveals 
that wind direction does not exhibit a significant impact on heating demand. However, at 
wind speeds exceeding 15 km/h, a slight reduction in heating demand is observed for 
south wind directions. The ANOVA test results include the F-statistic and p-values for 
each wind speed category. For instance, in the 15–20 km/h range, the F-statistic is 29.1478 
with a p-value of 0.0000, indicating a statistically significant relationship between wind 
direction and heating demand. Conversely, for wind speeds above 30 km/h, the p-values 
exceed the typical significance threshold of 0.05, suggesting that any observed variations 
in heating demand across wind directions are not statistically significant in these higher 
wind speed categories. 

Table 4. Heat power demand fitting functions for wind directions according to the determined wind 
speed category and statistics according to the ANOVA test. 

Range Fitting Statistics 
≤5 3.1295 + 29.3556·wd − 5.6688·wd2 + 0.317·wd3 F(7;1839) = 2.1315; p = 0.0376; 

(5;10] 71.2418 − 16.8751·wd + 3.1059·wd2 − 0.1698·wd3 F(7;9447) = 7.018; p = 0.00000; 
(10;15] 125.3444 − 40.83·wd + 7.4966·wd2 − 0.423·wd3 F(7;9032) = 16.0297; p = 0.0000; 
(15;20] 257.4965 − 104.2522·wd + 17.1112·wd2 − 0.8653·wd3 F(7;5491) = 29.1478; p = 0.0000; 
(20;25] 237.2269 − 96.6766·wd + 16.2979·wd2 − 0.8263·wd3 F(7;2365) = 23.6511; p = 0.0000; 
(25;30] −154.0297 + 136.3884·wd − 24.7527·wd2 + 1.4088·wd3 F(7;723) = 5.7929; p = 0.00000; 
(30;35] Fit not drawn because of invalid range of values F(2;173) = 0.0332; p = 0.9673; 
(35;40] Fit not drawn because of invalid range of values F(2;28) = 0.1572; p = 0.8552; 
(40;45] Fit not drawn because of invalid range of values - 

>45 Fit not drawn because of invalid range of values - 
Note: wd—wind direction.  
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Figure 11. Dependence of heating energy demand on wind directions according to speed category. 

These findings align with the existing literature on the impact of wind direction and 
speed on building heat energy consumption. Al-Homoud [38] emphasizes that wind can 
enhance convective heat loss from building surfaces, thereby increasing heating demand. 
However, the effect of wind direction is complex and influenced by building orientation 
and surrounding topography. Similarly, Xie et al. [39] identified wind speed as a signifi-
cant factor affecting heating demand in district heating systems. 

The observed reduction in heating demand for south winds at higher wind speeds 
may be attributed to the relatively warmer air masses from the south, which can mitigate 
heat loss. This phenomenon is supported by studies such as those by Taesler [41], who 
noted that wind direction should be included during building energy management, par-
ticularly in regions where southerly winds are warmer. 

4.3. Prediction of Heat Demand Using ANN 

Table 5 specifies the architecture and learning details of each determined ANN. Per-
formance is evaluated using training, test, and validation accuracy, where values closer to 
one indicate better predictive accuracy. For networks without temperature forecasts, the 
highest test accuracy (R2 = 0.900470) is achieved by MLP 11-30-1, suggesting a well-gener-
alized model. Among networks with temperature forecasts, MLP 17-33-1 exhibits a 
slightly lower test performance (R2 = 0.899107), which is interesting given the inclusion of 
more predictive data. 

Table 5. Summary of basic parameters of designated networks for prediction of thermal energy 
demand using standard meteorological parameters and additionally with weather forecasts. 

ID Net. Name Training Accu-
racy (R2) 

Testing Accu-
racy (R2) 

Validation Accu-
racy (R2) 

Training Algo-
rithm 

Error Func-
tion 

Hidden Acti-
vation 

Output Acti-
vation 

Networks without temperature forecast 
1 MLP 11-30-1 0.912142 0.900470 0.900538 BFGS 559 SOS Logistic Logistic 
2 MLP 11-26-1 0.907722 0.897209 0.895392 BFGS 312 SOS Tanh Logistic 
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3 MLP 11-34-1 0.909786 0.896842 0.895216 BFGS 418 SOS Logistic Tanh 
4 MLP 11-25-1 0.906600 0.895441 0.895890 BFGS 412 SOS Logistic Identity 
5 MLP 11-35-1 0.910546 0.899098 0.896857 BFGS 339 SOS Logistic Logistic 

Networks with temperature forecast 
1 MLP 17-31-1 0.906588 0.895309 0.894706 BFGS 189 SOS Logistic Logistic 
2 MLP 17-33-1 0.912256 0.898753 0.896136 BFGS 328 SOS Logistic Exponential 
3 MLP 17-26-1 0.914544 0.898596 0.899251 BFGS 304 SOS Tanh Logistic 
4 MLP 17-30-1 0.909190 0.897348 0.896592 BFGS 290 SOS Logistic Identity 
5 MLP 17-33-1 0.910105 0.899107 0.897361 BFGS 267 SOS Logistic Tanh 

The differences in performance between networks with and without temperature 
forecasts are subtle. The highest training performance among all the networks is observed 
in MLP 17-26-1 (R2 = 0.914544). This suggests that while temperature forecasts improve 
training performance by potentially introducing additional predictive features, they do 
not necessarily translate to significantly better test or validation performance. 

The determined ANN described in Table 5 differs in activation functions. For hidden 
layers, logistic and tanh functions are predominant, while output layers use logistic, tanh, 
identity, or exponential functions. These choices significantly influence the networks’ abil-
ity to model nonlinear relationships. Networks like MLP 11-35-1 (logistic-logistic) and 
MLP 17-33-1 (logistic-exponential) highlight the role of combining activation functions in 
enhancing performance. 

The inclusion of temperature forecasts improves training performance, but the gains 
in test and validation accuracy are marginal. This is probably due to the correlation of 
some input variables to the forecasted temperatures. This redundancy highlights the need 
for the optimization of activation functions, training algorithms, and the application of 
advanced techniques, such as ensemble learning, to enhance model robustness and miti-
gate overfitting in networks with higher input dimensions [42]. 

The diagrams in Figure 12 present the relationship between the thermal energy de-
mand estimated by neural networks and the actual demand, offering a visual representa-
tion of the models’ performance. The upper graph illustrates the results from networks 
trained using standard meteorological parameters, while the lower graph presents the 
outcomes from networks that incorporated additional weather forecasts from 1 to 6 h 
ahead. Importantly, these graphs are based solely on validation data, ensuring an unbi-
ased assessment of the networks’ predictive capabilities on data not involved in the train-
ing process. 
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Figure 12. Comparison of estimated vs. actual demand: top graph uses typical meteorological pa-
rameters, and bottom graph includes 1–6 h weather forecasts. 

The graphical analysis corroborates the performance coefficients outlined in the pre-
vious table. Specifically, the average validation determination coefficient (R2) for networks 
without temperature forecasts is 0.8967, while for networks utilizing forecast data, it mar-
ginally increases to 0.8968. This minor difference suggests that while adding the fore-
casted temperature data slightly improves model performance, the improvement is neg-
ligible. 

The close fit observed in both graphs highlights the models’ ability to effectively cap-
ture the underlying patterns of thermal energy demand. The marginal advantage of in-
cluding forecast data suggests that future work might focus on refining the integration of 
predictive variables, for example, by prioritizing forecasts with the highest impact on ther-
mal demand dynamics. This refinement could help unlock the full potential of forecasted 
meteorological inputs in predictive modeling. 

Table 6 presents a sensitivity analysis of the ANNs used for energy demand predic-
tion, focusing on the importance of various meteorological inputs. The sensitivity values 
indicate each input’s influence on the network’s output, with higher values denoting 
greater impact. Sensitivity is determined by varying one input variable while keeping the 
others constant and observing changes in the output. The sensitivity unit does not match 
the units of the original variables because the software standardizes the variables during 
training. This ensures comparability across inputs with different scales or units. 

Table 6. Sensitivity analysis of particular inputs of neural networks. 
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Diffuse radiation (W/m2) 1.897 1.181 1.208 1.193 1.458 1.387 2.745 4.125 5.046 2.705 2.484 3.421 
Wind speed ws (km/h) 1.060 1.098 1.152 1.088 1.063 1.092 1.189 1.196 1.274 1.179 1.184 1.204 
Wind gust wg (km/h) 1.214 1.264 1.262 1.148 1.155 1.209 1.347 1.228 1.396 1.316 1.189 1.295 
Wind direction wd (°) 1.026 1.010 1.043 1.038 1.022 1.028 1.067 1.029 1.037 1.019 1.063 1.043 

Boundary layer height (m) 1.045 1.046 1.065 1.052 1.041 1.050 1.083 1.027 1.044 1.039 1.055 1.050 
Month 2.734 5.033 1.422 3.794 8.856 4.368 1.552 1.912 2.851 1.538 4.601 2.491 
Hour 1.452 1.296 1.283 1.407 1.444 1.376 1.398 1.288 1.518 1.209 1.446 1.372 

Temp. forecast (°C): t+1h 1.650 2.186 2.439 2.679 2.492 2.289       

Temp. forecast (°C): t+2h 2.033 2.159 1.435 1.526 1.421 1.715       

Temp. forecast (°C): t+3h 1.600 2.681 1.912 3.111 1.364 2.133       

Temp. forecast (°C): t+4h 1.679 1.893 1.587 2.347 3.546 2.210       

Temp. forecast (°C): t+5h 1.248 1.793 1.531 1.498 1.098 1.434       

Temp. forecast (°C): t+6h 1.762 1.384 1.209 2.232 1.585 1.634       

For networks including temperature forecasts, the biggest impact appeared to be for 
the month code, namely 4.368. The outdoor temperature exhibits a moderate average sen-
sitivity of 2.350, indicating its significant role in forecasting models. Exterior air enthalpy 
and total radiation follow, with the average sensitivities of 2.026 and 1.977, respectively. 
Among the forecasted temperatures, t+1h has the highest sensitivity 2.289, with a gradual 
decline observed in longer-term forecasts, reaching 1.934 for t+6h. This trend suggests that 
immediate temperature forecasts are more influential in predicting energy demand. 

For networks excluding temperature forecasts, the outdoor temperature shows a 
higher average sensitivity of 3.462, underscoring its critical role when predictive data are 
absent. Total radiation exhibits a markedly high average sensitivity of 15.759, indicating 
a substantial reliance on this parameter. Direct radiation also shows significant sensitivity 
at 17.209, reflecting the network’s dependence on radiative inputs for accurate forecasting. 

Incorporating meteorological inputs into ANN is crucial for accurately forecasting 
building energy demand. Recent studies emphasize the significance of variables such as 
outdoor temperature, enthalpy, and solar radiation. Lee et al. demonstrated that utilizing 
high-frequency temperature data enhances daily forecasting performance in neural net-
works [43]. Kumar and Elumalai identified air temperature and related parameters as 
dominant predictors in ANN models for temperature estimation [44]. Benavides Cesar et 
al. highlighted the importance of meteorological variables, including solar radiation, in 
improving ANN-based solar forecasting models [45]. 

5. Discussion 
Meteorological parameters, including outdoor temperature, wind speed, solar radi-

ation, and air enthalpy, have an important role in determining the thermal energy require-
ments of buildings. Among these, outdoor temperature is commonly acknowledged as 
the dominant factor influencing heating demand [35]. The data analyzed in this research 
corroborates this finding, showing a strong correlation between outdoor temperature fluc-
tuations and heating energy consumption, especially within the range of −10 °C to 10 °C. 

Wind speed and direction also significantly influence heat demand by affecting con-
vective heat losses from building surfaces. The findings presented align with prior studies 
[38], which emphasize wind’s role in increasing energy loss, particularly under low-inso-
lation conditions. Solar radiation, on the other hand, introduces a compensatory mecha-
nism by providing passive heat gains that reduce the need for heating. 

This finding is consistent with studies in urban contexts, such as Kittaka and Miya-
zaki, who reported that wind direction significantly influenced temperature distributions 
across different zones in Osaka [46]. Similarly, Lototzis et al. found a strong correlation 
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between hourly wind directions and air temperature in Mediterranean climates, though 
their results suggest this relationship may diminish at broader time scales [47]. 

The impact of wind direction on temperature in this study further emphasizes the 
importance of understanding localized wind flow dynamics. Mizukoshi highlighted the 
role of advection in altering temperature distribution patterns in urban areas, which is 
also relevant to the regional conditions examined here [48]. The presence of obstacles such 
as buildings and forests, as noted in the study, can create localized variations in wind 
speed and direction, further modulating temperature. This is consistent with the findings 
by Hong-wei, who described complex interactions between wind direction and tempera-
ture over marine environments, suggesting that landforms and development may have 
an impact on meteorological parameters [49]. 

Furthermore, the study’s temperature fitting functions for each month provide valu-
able predictive insights, offering a means to model the effects of wind direction on tem-
perature. These models can be utilized to optimize heating systems, allowing energy pro-
viders to respond dynamically to forecasted temperature variations. The application of 
artificial intelligence algorithms could enhance the accuracy of these predictions by iden-
tifying subtle, location-specific relationships that may not be plain. 

ANNs have emerged as a powerful tool for predicting heat power demand due to 
their ability to model complex, nonlinear relationships inherent in meteorological and en-
ergy consumption data. In this study, multiple ANN architectures were tested, including 
configurations with and without predictive temperature data. 

Despite the quite simple architecture of ANN, the accuracy is comparable to other 
research that utilizes a hybrid or ensemble analysis. Hybrid approaches presented by Dasi 
et al. show that integrated machine learning models with metaheuristic algorithms, such 
as the Satin Bowerbird Optimizer combined with extreme gradient boosting, have shown 
high coefficients of determination (0.938048) for heating load predictions, indicating su-
perior performance with minimal error values [50]. 

A self-organizing map neural network was utilized by Dinmohammadi for feature 
dimensionality reduction, followed by an ensemble stacking classification model for en-
ergy consumption prediction. The stacking model achieved superior performance with an 
accuracy of 95.4% [51]. 

This study by Gong et al. employed a feedforward neural network (FFNN) optimized 
using a multi-tracker optimization algorithm (MTOA) to predict the annual thermal en-
ergy demand and weighted average discomfort degree hours in residential buildings. The 
proposed model achieved excellent accuracy, with a Pearson correlation coefficient ex-
ceeding 0.96, outperforming traditional methods and similar algorithms in both training 
and testing phases [52]. 

In research presented by Yamannage, a Neural Network Multi-Layer Perceptron 
(NN-MLP) achieved a high accuracy of 99.57% [53]. But, the target variable in this study, 
the heating load class, was not treated as a continuous variable like in our research, but 
was instead classified into three discrete categories: low, medium, and high. These find-
ings underscore the effectiveness of machine learning algorithms, particularly ANNs, in 
accurately classifying heating load classes, contributing to improved energy efficiency in 
residential buildings. 

The prediction of heat power demand using meteorological data and ANNs repre-
sents a significant advancement in energy forecasting. This research highlights the critical 
role of parameters such as temperature, wind speed, and solar radiation in determining 
thermal energy requirements, while also underscoring the potential of ANNs to model 
complex, nonlinear relationships. However, the findings also point to several areas where 
further refinement is needed, particularly in terms of feature selection, model regulariza-
tion, and the integration of predictive data. By addressing these challenges, future studies 
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can unlock the full potential of ANN-based forecasting systems, paving the way for more 
efficient and sustainable energy management practices. 

ANN models are inherently specific to the datasets and conditions under which they 
are trained, limiting their applicability to the object or system of origin. Geographic and 
topographic variability introduces significant shifts in climatic conditions, such as tem-
perature ranges, wind patterns, solar radiation intensity, and humidity levels, which in-
fluence energy dynamics. Furthermore, buildings exhibit unique thermal behaviors, gov-
erned by diverse heat loss/gain coefficients, material properties, insulation standards, and 
dynamic thermal response characteristics. These differences highlight the challenge of 
generalizing ANN models across varying contexts. 

Future research should focus on identifying and standardizing critical climatic and 
building-specific factors that significantly influence thermal performance. By establishing 
universal indicators—such as normalized heat transfer coefficients or dimensionless per-
formance metrics—it may be possible to develop generalized ANN frameworks. Such ad-
vancements could enable the cross-regional application of ANN models, improving scala-
bility while maintaining predictive accuracy across diverse environmental and architec-
tural frames. 

Good results should also be obtained by taking into account internal factors that di-
rectly or indirectly affect the consumption of thermal energy, especially quantitative var-
iables such as a representative internal temperature, or qualitative variables such as the 
characteristics of the residents (age and nature of the daily schedule). 

6. Conclusions 
The study analyzed four years of meteorological data to assess the impact of external 

factors on building thermal energy demand. Key variables included outdoor temperature, 
humidity, wind, and solar radiation. 

The analysis of the relationships between energy consumption and energy demand 
for heating confirmed a strong influence of outdoor air temperature and enthalpy. These 
relationships are effectively described by third-degree polynomial functions, with deter-
mination coefficients (R2) of 0.7443 and 0.6711, respectively. Insolation in the range of 0–
800 W/m2, within specified wind speed ranges, was also found to have a significant im-
pact. Furthermore, average wind speeds in the range of 0–40 km/h, within defined insola-
tion ranges, were identified as influential. However, wind direction was determined to be 
statistically insignificant. 

Neural networks are suitable for predicting the heat demand of retrofitted buildings. 
The average fit coefficient (R2) for networks without temperature forecasts is 0.8967, while 
for networks utilizing forecast data, it marginally increases to 0.8968. In thermally retro-
fitted buildings, the relationships between heat demand and individual meteorological 
factors are less distinct, with reduced wind impact due to improved building airtightness. 
Reduced solar radiation transmittance through windows decreases the risk of interior 
overheating in summer, lowering cooling demands, but on the other hand may also limit 
passive heat gains in winter, potentially increasing heating costs in some cases. 

The sensitivity analysis highlights exterior temperature and solar radiation as critical 
inputs for ANNs in energy demand forecasting. For networks using temperature fore-
casts, the month index, current outdoor temperature, and 1–4 h forecasts are the most 
influential variables, with enthalpy also being significant. Direct and total radiation have 
slightly lower influences. For networks without forecasts, direct and total radiation dom-
inate, followed by the current outdoor temperature and diffuse radiation, indicating var-
ying input relevance based on forecast availability. 
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Nomenclature 
AI artificial intelligence 
ANFIS adaptive neuro-fuzzy interference system 
ANN artificial neural network 
BBO biogeography-based optimization 
DNN deep neural network 
DSE demand site management 
FFNN forward neural network 
GOA grasshopper optimization algorithm 
GP genetic programming 
hbl boundary layer height (m) 
he exterior air enthalpy (kJ/kg) 
HVAC heating, ventilation, and air conditioning 
idif diffuse radiation (W/m2), 
idir direct radiation (W/m2) 
itot total radiation (W/m2) 
ML  machine learning 
MR multiple regression Qሶ ு,ௗ predicted heat power demand for space heating (kW) Qሶ ு heat power demand for space heating (kW) 
RBFN radial basis function network 
SUD sustainable urban development 
SVM support vector machine 
t+1h … t+6h temperature forecast from 1 to 6 h ahead (°C) 
te,eq equivalent outdoor air temperature (°C) 
text outdoor air temperature (°C) 
U heat transfer coefficient (W/m2K) 
wd wind direction (°) 
WDO wind-driven optimization 
wg wind gust (km/h) 
ws wind speed (km/h) 𝑛 number of input variables 
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