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Abstract: With the development of the EV industry, the number of EVs is increasing, and
the random charging and discharging causes a great burden on the power grid. Meanwhile,
the increasing electricity bills reduce user satisfaction. This article proposes an algorithm
that considers user satisfaction to solve the charging and discharging scheduling problem
of EVs. This article adds an objective function to quantify user satisfaction and addresses
the issues of premature local optima and insufficient diversity in the MOPSO algorithm.
Based on the performance of different particles, the algorithm assigns elite particle, general
particle, and learning particle roles to the particles and assigns strategies for maintaining
search, developing search, and learning search, respectively. In order to avoid falling
into local optima, chaotic sequence perturbations are added during each iteration process
avoiding premature falling into local optima. Finally, case studies are implemented and the
comparison analysis is performed in terms of the use and benefit of each design feature of
the algorithm. The results show that the proposed algorithm is capable of achieving up to
23% microgrid load reduction and up to 20% improvement in convergence speed compared
to other algorithms. It is superior to other algorithms in solving the problem of orderly
charging and discharging of electric vehicles and has strong usability and feasibility.

Keywords: electric vehicles; orderly charging and discharging; tent chaotic sequence
perturbation; particle swarm optimization algorithm; multi-objective optimization

1. Introduction
Electric vehicles (EVs) are a new type of environmentally friendly transportation that

utilizes clean energy, significantly reducing carbon emissions and energy waste. EVs not
only serve as a means of transportation but also function as temporary energy storage
devices [1]. Against the backdrop of rapid EV development, this paper aims to reduce the
dependence on fossil fuels in the energy system [2–4]. EVs are connected to microgrids
to establish a fundamental vehicle-to-grid (V2G) network. In this manner, EVs serve as
decentralized power sources for supplying charging demand [5]. In the meantime, there
exist distributed energy sources that are integrated with buildings, homes, and EVs, among
others [6–9]. At present, rooftop photovoltaic power generation represents an important
means of the requirements of V2G [10,11].
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Furthermore, the model construction incorporates users’ satisfaction as one of the
objective functions. For users, the primary influencing factors are the economic viability
and convenience of accessing microgrids [12,13]. The economic satisfaction can typically be
gauged by the profitability that users derive from their use of EVs, while convenience satis-
faction can be measured by the inconvenience that users experience when implementing
scheduling measures for their travels [14–16].

To address the nonlinear and multi-objective optimization problem arising from the
integration of EVs into the network, numerous classical optimization algorithms have been
proposed [17–29], including particle swarm optimization [17–19], genetic algorithm [20–22],
artificial bee colony algorithm [23,24], ant colony algorithm [25,26] and simulated annealing
algorithm [27–29]. Salman proposed an improved PSO algorithm to obtain the economic
dispatch compared with the traditional genetic algorithm (GA) output for a microgrid,
EVs are considered one of the dispatchable energy sources [30]. Wang proposed a dual-
population-based co-evolutionary algorithm (DPCA) to optimize the charging decisions
of EVs and the routing strategies of EVs at the same time [31]. Luo proposed a two-stage
heuristic algorithm driven by a dynamic programming process to minimize the travel and
total recharging costs of EVs in microgrids [32]. Although the above algorithms are easy
to operate, it has been reported that these algorithms exhibit limited search capabilities,
suboptimal convergence performance, and a tendency to become trapped in local optima.
To address the aforementioned issues, a plethora of enhanced algorithms targeting these
heuristic algorithms have emerged. Eltamaly proposed a NESTPSO algorithm, which used
two nested PSO searching loops, the inner one contained the original objective function,
and the outer one used the inner PSO as a fitness function. The control parameters and
the swarm size acted as the optimization variables for the outer loop with regard to the
limited search capability and suboptimal results of the GA [33]. Kanpur et al. proposed an
improved algorithm called NSGA2 [34,35]. Unlike NSGA, which utilizes an elite strategy
to select the optimal solution, NSGA2 expands the dimensionality of the objective space
and adds multiple objectives. This algorithm employs a non-dominated sorting approach,
which involves an initial sorting of the candidate solutions followed by the selection
of winners based on a crowding strategy. This strategy yields a set of non-dominated
solutions compared to the elite strategy. Additionally, NSGA2 enhances the crowding
strategy by incorporating neighborhood factors to evaluate and select solutions based on
population sparsity and uniformity, resulting in improved convergence and efficiency. Due
to the introduction of EVs, numerous nonlinear constraints arise, making the optimization
results of traditional particle swarm algorithms unsatisfactory. Furthermore, the stochastic
nature of EV users’ travel patterns poses challenges in modeling. To address these issues,
Zhang et al. proposed the utilization of Monte Carlo simulation to model user travels and
construct the required models [36]. Alatas et al. proposed a method of incorporating chaotic
perturbations into the particle swarm algorithm [37,38], which can improve the quality of
initial solutions, enhance population diversity, and improve the search and exploration
performance of the algorithm, thus avoiding local optima.

As intelligent algorithms are more advantageous in solving complex nonlinear prob-
lems, an increasing amount of research is focused on utilizing evolutionary algorithms and
swarm intelligence algorithms to address the orderly charging and discharging problems
of EVs. Examples of these algorithms include differential evolution (DE) [39,40], Grey Wolf
Optimization (GWO) [41,42], and sparrow search algorithms [43], etc.

Although the aforementioned intelligent algorithms have made progress in addressing
the issue of ordered charging and discharging of EVs, there still exist challenges such as
insufficient population diversity and local optima. To tackle these challenges, the concept
of multi-role and multi-strategy is proposed, where particles are categorized and assigned
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different search strategies to effectively explore the solution space and enhance population
diversity. However, there is room for further improvement in terms of addressing local
optima for these algorithms. For instance, Xu et al. proposed dividing particles into
multiple subgroups to execute different search strategies and evaluated the performance of
each subgroup using the DE algorithm to obtain the best-diversified search strategy [44].
Li et al. divided the population into four groups and allocated the best strategies to the
top-ranked groups based on a ranking scheme [45]. Ali et al. automatically divided
the population of the solution space into cells of cellular automata units, with each unit
maintaining a certain number of particles, and utilized the exploring capability of quantum
particles to find local optima [46].

However, despite the significant improvements achieved by the aforementioned multi-
role and multi-strategy algorithms through grouping particles and executing different
search strategies, there is still a need to enhance the quality of initial solutions and ac-
celerate convergence speed. To address this issue, an improved multi-objective strategy
diversity chaotic particle swarm optimization (IMSDC-PSO) is proposed, which makes two
contributions compared to existing studies:

(1) Multi-role multi-strategy optimization mechanism: The particles are first sorted using
the non-dominated sorting method to obtain their hierarchy. Then, different search
strategies are applied to particles based on their hierarchy and density. Specifically,
particles with great diversity and convergence are categorized as elite particles, which
are closest to the global optimum. They are assigned intermediate values of the
learning factor and inertia weight. General particles have slightly lower performance
but still need to converge towards the global optimum at a faster rate. They are
assigned larger global learning factors, while their personal learning factors and
inertia weights are set to intermediate values. Poor-performing particles adopt the
maximum global learning factor smaller personal learning factors and inertia weights
to improve their search capability;

(2) Tent chaotic sequence perturbation: To improve the quality of the initial solutions, Tent
chaotic sequence perturbation is introduced during the population initialization stage
in the algorithm. In each iteration, Tent chaotic sequence perturbation is executed to
update the population particles and maintain their diversity throughout the algorithm
iteration process.

The paper is structured as follows: Section 2 provides a detailed description of the
multi-objective, multi-role, and multi-strategy chaotic perturbation algorithm with an
optimal model, its main advantages, control strategy, and evaluation methods. This
section is subdivided into related subsections. In Section 3, case studies are presented that
analyze the impact of load on different EVs connected to microgrids. Furthermore, test
case comparisons are carried out, results are analyzed, and conclusions are drawn. The
contributions of the paper are outlined in Section 4, followed by the references.

2. Microgrid Modeling and Control Algorithm
As illustrated in Figure 1, it presents a simplified V2G network where EVs have the

capability to acquire power resources from the microgrid and trade electricity with the
microgrid for financial gain. The specific focus of this research is urban residents; hence, the
typical trajectory of EVs tends to be residential to commercial and back to residential areas.
To address the economic and convenience considerations of this user group, satisfaction is
integrated as the objective function during the model development process.
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At the algorithmic level, the particle swarm optimization algorithm is a collective
evolutionary algorithm inspired by the collective behavior of social animals [47]. The
multi-objective particle swarm algorithm utilizes the non-dominated solution set within the
particle swarm as the search direction to approximate the optimal values along the Pareto
boundary [48]. However, traditional particle swarm optimization algorithms suffer from
limitations such as premature convergence, lack of population diversity, and a decrease
in particle generalization ability due to the adoption of a single search pattern for all
particles [49]. In this paper, we propose an improved algorithm that considers the variations
in particle density and hierarchy, enhancing the search mode.

2.1. Microgrid Modeling

When addressing the issue of ordered charging and discharging, it becomes imperative
to meet a set of equation and inequality constraints. In this paper, the minimum fluctuation
of power grid load and user satisfaction are chosen as multiple optimization objectives. The
capacity, charging and discharging rates, balance, and operational range of EV batteries are
governed by their consumption relationship [50,51].

(1) For each EV balance between consumed electric charge during driving and the
remaining electricity of the EV,

SOCt,i = SOCt−1,i −
Di

Dmax
(1)

where SOCt,i is the battery status at t, Di is the distance traveled by the i-th vehicle, Dmax is
the farthest distance a vehicle can travel in one go.

(2) For each battery capacity balance after charging and discharging,

SOCt,i = (SOCt−1,iθT(Chrate/Dchrate)) (2)

where θT is the unit time period length, Chrate and Dchrate are the charge and discharge
rates of EVs.

(3) For each EV′s total electricity consumption when connected to the power grid,

Eagg,i =
T

∑
i=1

Ci∂t,iSOCt,i (3)

where Ci is the battery capacity of the i-th EV, ∂t,i indicates whether the car is connected to
the microgrid during time t. If it is 1, it indicates that it has been connected to the microgrid;
if it is 0, it indicates that there is no access to the microgrid.
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(4) For each EV battery status, charging and discharging rate,

SOCmin ≤ SOCi ≤ 1 (4)

Chmin,rate ≤ Chrate ≤ Chmax,rate (5)

Dchmin,rate ≤ Dchrate ≤ Dchmax,rate (6)

where SOCmin is the minimum amount of electricity that ensures that users can return
home from the company; in residential parking lots, this parameter is limited by the
minimum electricity consumption for the next day. Chmin,rate and Dchmin,rate are minimum
charging and discharging rates of EVs; Chmax,rate and Dchmax,rate are maximum charging
and discharging of EVs.

One of the objectives of this article is to minimize the fluctuation of microgrid load,
with the variance of the daily load curve as the manifestation of the objective function:

J = var(Loads) =
T

∑
t=1

1
T
(Loads(T)− Mean(Loads)2 (7)

where T is 24 h one day, J is the daily load variance, Loads is the load at a certain time,
Mean is the calculated mean function, and var is the variance of the load.

This article takes the economic satisfaction and convenience satisfaction of users as
quantitative goals, and the economic satisfaction is as follows:

U1,i = 1 − e
cex,i

c (8)

where U1,i is the economic satisfaction of the i-th user, cex,i is the expected electricity price
of the i-th user, and c is the electricity price per time period after adopting orderly charging
and discharging.

The convenience satisfaction is as follows:

U2,i = 1 −
∑kaT
(k−1)aT

∣∣Lsch,t,i − Lt,i
∣∣

∑Tall
1 Lt,i

(9)

where U2,i is the convenience satisfaction for the i-th user, Lsch,t,i is the load value of the
i-th vehicle during t after implementing scheduling, Lt,i is the i-th user’s load value per
time period before implementing scheduling, and Tall is the time periods in one day.

By using Formula (10), combine the two satisfaction indicators to form the objective
function. The comprehensive satisfaction is as follows:

Ui =
1

αU1,i + (1 − α)U2,i
(10)

where α represents the user’s preference coefficient for two types of satisfaction. Take the
reciprocal of the satisfaction value, convert the maximum value to the minimum value, and
optimize the solution.

In order to overcome the challenge posed by the significant difference in scale between
the two objectives, this article employs a normalization technique and transforms multi-
objective functions into a single-objective function simulation. This approach allows for
avoiding drawing the Pareto boundary.
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2.2. Tent Chaotic Perturbation Sequence

Conventional particle swarm optimization algorithms are susceptible to local optima
due to their high sensitivity to initial solutions. In order to enhance the quality of the
initialization method, this study incorporates the Tent chaotic sequence. By introducing
perturbations to the position of the original solution, the diversity of the solution set is
increased, thereby facilitating the algorithm’s ability to escape local optima and enhance
the global search capability [52]. Ultimately, this approach improves the quality of the
initial solution and enhances the effectiveness of the algorithm. The mapping expression
for Tent chaotic perturbation is as follows:

Xi+1 =

{
2Xi, Xi ∈ [0, 0.5]
2(1 − Xi), Xi ∈ [0.5, 1]

(11)

The initialization formula is as follows:

Xnew =
(
X + X′)/2 (12)

where X is the initialization of the population, X′ is the amount of disturbance generated,
Xnew is the individual after chaotic disturbance.

The carrier formula for movement is as follows:

Xnew = Dmin + (Dmax − Dmin)Xd (13)

where Dmin, Dmax are minimum and maximum values of each dimension.
According to Equation (11), the chaotic variable Xd is obtained. Equation (13) is

employed to map the carrying Xd to the solution space, ensuring that the perturbation
variables are confined within the range of [−0.4, 0.99]. Finally, by substituting Equation
(12), the particles go through perturbation, leading to solution fluctuation within the
neighborhood of [−0.36, 0.3], consequently enhancing the global search capability. The
algorithm logic is shown in Algorithm 1. From Figure 2, it can be concluded that the
distribution of points in the Tent chaotic sequence is very uniform, resulting in better
performance.

Algorithm 1 Tent chaotic sequence algorithm

Input: particle.position
Output: adjusted particle.position
procedure Tent
1. Input
2. Initialize x,N
3. for i = 1:N
4. If xi < 0.5
5. xi = 2 × i
6. else
7. xi = 2 × (1 − i)
8. end if
9. end for
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2.3. Multi-Role and Multi-Strategy Optimization

In order to mitigate the limitations of traditional PSO, where all particles follow one
single search strategy [53], the article proposes a novel approach that involves dividing the
particles into three distinct groups, namely, elite particles, general particles, and learning
particles. The criteria for categorizing particles comprise density and hierarchy, while the
comprehensive indicator is employed to evaluate the performance of particles:

(1) The quality index is calculated using Formula (15), which incorporates the Eu-
clidean distance between the two closest particles of the particle, along with hierarchical
measurement and a non-dominated sorting method;

(2) The density index is determined by the sparsity of particles in the vicinity of the
particle, as computed by Formula (16);

(3) The comprehensive index is evaluated using Formula (17). A smaller numerical
value is assigned to elite particles with better particle diversity. The number of elite particles
constitutes 20% of the population, while the other 60% are designated as general particles.
The remaining particles are allocated to learning factors.

For the partitioning of particles, this article employs a diverse search strategy:
(1) The elite particle refers to the particle that best fits the optimal value and is closest

to the global optimal value. The next step is likely to yield a non-dominated solution, and
changes should be minimized. Therefore, an intermediate value should be chosen for the
parameters;

(2) General particles are second to elite particles, with a certain distance from the
non-dominated solution set and poor diversity. To approach the global optimal value,
select the maximum value of the global learning factor and choose the intermediate value
for the inertia weight and individual learning factor;

(3) Learning particles have poor convergence and require adjustments to smaller
inertia weights, individual learning factors, and larger global learning factors to ensure
convergence towards the global optimal value.

In addition to the aforementioned diversity strategy, this article is also inspired
by reference [54] and incorporates the concept of outliers to identify whether a parti-
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cle is an extreme solution. This is achieved by calculating the outlier factor using the
following formula:

ρi =
2

d1
i + d2

i
(14)

OLi =
ρ1

j

/
ρi + ρ2

j

/
ρi

2
(15)

where d1
i , d2

i refers to the nearest and second nearest Euclidean space distances to the
i-th particle, ρi is the local reachable density of the i-th particle, ρ1

j , ρ2
j represent the local

reachable density of the two particles closest to and next to the i-th particle. If outlier
OLi ≤ 1, it indicates that the particle deviates from other particles. If outlier OLi > 1, it
indicates that the particle lies in the same cluster. If the OLi is smaller, it indicates a higher
probability of the particle being an extreme solution.

The non-dominated sorting method is a widely used approach for evaluating the
quality of particles in academic research [55]. This method sorts and assigns different levels
to all particles based on their solutions [56], where particles with lower levels are closer
to optimal values. Nevertheless, there may be instances where extreme solutions with
poor convergence arise during the application of the non-dominated sorting method [54].
To address this issue, introducing an outlier factor can effectively tackle the problem. By
considering both the number of layers and outlier factors of the solutions, the quality index
can be derived as follows:

EQi =

{
CLi + 1, OLi ≤ 1
CLi, OLi > 1

(16)

Maintaining population diversity during the evolution process is crucial, and it can be
achieved by ensuring that particles are located in sparse regions of the target space [54].
The density index formula used for this purpose is as follows:

SDi =
1

d2
i + 2

(17)

where SDi reflects the sparsity of the region where particles are located. If SDi is smaller,
density index would indicate a sparser neighborhood of the particle, while a larger value
implies a denser one. Particles located in sparse regions play a crucial role in expanding
the exploration space. Extreme solutions may be sparse in this layer and can be located
in dense or sparse regions within the population. However, solely relying on quality
indicators may overlook the potential benefits of extreme solutions. Therefore, it is essential
to combine density indicators as well. In this regard, two indicators are integrated to form
a comprehensive indicator, and the calculation procedure is as follows:

Ri = EQ
√

N
i + SD

√
N

i (18)

where N denotes the population size. A smaller indicator indicates better particle diver-
sity, which in turn implies that the particle is closer to the optimal value. Conversely, a
larger indicator denotes poorer particle diversity, implying that the particle is far from the
optimal value.

The particles are sorted in ascending order based on the value, and their rankings
are determined using non-dominated sorting. The particles are then classified into three
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categories: elite particles, general particles, and learning particles. The classification
indicators RO for these three types of particles are defined as follows:

RO =


1, RKi ∈ [0, 0.2N]

2, RKi ∈ [0.2N, 0.8N]

3, RKi ∈ [0.8N, N]

(19)

where 1 is the elite particle, 2 is the general particle, and 3 is the learning particle.
In the particle swarm optimization algorithm, different strategies are employed for

the three types of particles to achieve a more comprehensive search of the solution space.
(1) For elite particles, their inherent advantages are maintained and then continue to

explore the solution space based on their current positions;
(2) For general particles, the focus is exploring the target space in proximity to the elite

particles. This helps facilitate a more thorough search in the neighboring regions;
(3) As learning particles are relatively distant from the optimal solution, a maximum

global learning factor is applied to guide them towards approaching the optimal solution.
By appropriately adjusting three parameters for each type of particle, their search

strategies can be modified, resulting in a more comprehensive exploration of the spatial
search. The basic process of the algorithm is shown in Algorithm 2.

Algorithm 2 Non-dominated particles sorting algorithm

Input: position,N,obj1,obj2,di1,di2
Output: adjusted sorting
procedure MMMO
1. Input
2. for i = 1:N
3. midu(i) = 2/(di1 + di2)
4. lfi = (midu(j1)/midu(i) + midu(j2)/midu(i)) + 2
5. Di = 1/(di2 + 2)
6. end for
7. frontvalue = non-dominated(position,obj1,obj2)
8. for i = 1:N
9. if lf(i) > 1
10. frontvalue(i) = frontvalue(i) + 1
11. end if
12. adjusted sorting = power(frontvalue(i,1)) + power(Di,1)
13. end for
14. adjustedsorting = sortrows(adjusted sorting,1);

2.4. Control Strategy

To address the challenge of achieving both load balance and user satisfaction in the
charging and discharging scheduling problem of EVs, it is essential to adopt multi-objective
algorithms for optimization. Unlike single-objective algorithms optimizing one single-
objective function, multi-objective algorithms can optimize multiple objective functions and
generate a set of non-dominated solutions. Furthermore, they display the results of non-
dominated solution sets by drawing Pareto curves. However, the algorithm circumvents the
need for drawing Pareto boundary curves by normalizing the values of the two objective
functions and combining them into a single-objective function for optimization. Linear
normalization (min-max normalization method), which is a common normalization method
used in data processing, assuming that the original data are x, whose maximum value is
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xmax and minimum value is xmin, and the normalized data are xnorm, the normalization
formula is as follows:

xnorm =
x − xmin

xmax − xmin

Thus, the original data are mapped to the interval [0, 1]. After normalizing the magnitude
of both optimization objectives to [0, 1], we use the common linear weighting method to
transform the two optimization objectives into one optimization objective, i.e., assigning
a weight to each optimization objective after normalization; then, the new optimization
objective is as follows:

F(x) = ω1f(x1) +ω2f(x2)

The selection of the weight determines the importance of each optimization objective, and
in the optimization process of this paper, the weights are all 0.5.

By using the above normalization and linear weighting methods, the two optimization
objectives in this paper can be unified into one optimization objective.

All the above-mentioned innovations are considered in the control scheme to best
match the real situation. All the control strategy is shown in Figure 3. The algorithm is
briefly presented as Algorithm 3.
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The specific optimization process is shown as follows:
Step 1: Monte Carlo Simulation generates the initial population;
Step 2: Generate chaotic variables and apply them to solution space;
Step 3: Obtain perturbation of particles and chaotic variables;
Step 4: Calculate the initial fitness of particles and sort by quality;
Step 5: Obtain the elite particle, general particle, and learning particle, apply multi-

strategy to different type particles;
Step 6: Update the fitness of newly obtained particles, compare the fitness with current

optimal solutions, and reserve or replace the solution according to the fitness;
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Step 7: If achieve the maximum iteration number, output the solution, or back to
Step 4.

Algorithm 3 Multi-role Multi-strategy PSO algorithm

Input: number of EVs, load, average electricity price
Output: adjusted electricity price and load
1. Input
2. obtain parameters using Monte Carlo simulation method
procedure MOPSO
3. for each particle i
4. Initialize velocity Vi and position Xi for particle i
5. Particle.position = Tent(postion)
6. Evaluate particle i and set pBesti = Xi
7. end for
8. gBest = min{pBesti}
9. particle.sorting = MMMO(npop,position,obj1,obj2)
10. while not stop
11. for i = 1 to N
12. update the velocity and position of particle i
13. Evaluate particle i
14. if fit(Xi) better than fit(pBesti)
15. pBesti = Xi;
16. if fit(pBesti) < fit(gBest)
17. gBest = pBesti;
18. end for
19. end while
20. print gBest
end procedure

3. Simulation and Case Study Results
To verify the effectiveness of the proposed multi-role and multi-strategy algorithm

(IMSDC-PSO), simulation analysis was conducted on a microgrid with large-scale integra-
tion of EVs in a specific area. Case studies were performed by considering the number
of EVs in specific regions within the United States, along with the maximum number
of EVs that can be accommodated in the microgrids [57]. The scenarios tested involved
setting the number of EVs to 50, 100, and 150 while taking into account the impact of
EVs and the integration of EVs into microgrids [58]. Additionally, the proposed algorithm
will be compared to the results obtained from other algorithms to further demonstrate its
effectiveness.

The case study is operated on Matlab R2016b platform with a Core I7-6700, 3.40 GHz,
16 GB RAM personal computer, involved conducting experiments on 50, 100, and 150 EVs.
The particle size for this study was 26 individuals, with a maximum of 200 iterations. The
inertia weight of the proposed IMSDC-PSO and other PSO algorithms are ωmax = 0.9 and
ωmin = 0.4; the learning factors are c1 = 2 and c2 = 2. The crossover probability and
mutation probability of NSGA2 are 0.9 and 0.02, respectively. Additionally, this article will
compare the proposed algorithm with the outcomes achieved by multi-objective particle
swarm optimization (MOPSO) [18], multi-objective chaotic perturbation particle swarm
optimization (TMOPSO) [37], multi-objective multi-role multi-strategy particle swarm
optimization (MOPSO_RS) [51], genetic algorithm (NSGA2) [34], chaotic perturbation
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genetic algorithm (C-NSGA2), artificial bee colony (ABC) algorithm [23], and chaotic
perturbation artificial bee colony algorithm (C-ABC).

3.1. Analysis of the Impact of the Number of EVs on Microgrids

Tables 1–3 display the results of implementing an orderly charging and discharging
strategy for 50/100/150 EVs in a microgrid, as well as the daily load and quantified
comprehensive user satisfaction indicators of the microgrid. The proposed algorithm in
this article is highlighted in bold in the table.

Table 1. Comparison of 50 EVs in load and user satisfaction.

Method Load (kW) Users’ Satisfaction Convergence Speed

IMSDC-PSO 204.555 5.21 12.3 min
MOPSO 210.970 5.26 11.6 min

TMOPSO 204.457 5.24 13.5 min
MOPSO_RS 209.820 5.23 17.4 min

NSGA2 204.621 5.25 22.3 min
C-NSGA2 204.535 5.24 24.1 min

ABC 225.191 5.39 27.4 min
C-ABC 221.573 5.28 30.7 min

Table 2. Comparison of 100 EVs in load and user satisfaction.

Method Load (kW) Users’ Satisfaction Convergence Speed

IMSDC-PSO 210.787 5.24 25.3 min
MOPSO 218.884 5.30 24.1 min

TMOPSO 210.926 5.28 26.4 min
MOPSO_RS 218.991 5.26 28.2 min

NSGA2 215.014 5.29 28.7 min
C-NSGA2 214.891 5.28 30.4 min

ABC 243.635 5.61 31.4 min
C-ABC 244.832 5.58 32.1 min

Table 3. Comparison of 150 EVs in load and user satisfaction.

Method Load (kW) Users’ Satisfaction Convergence Speed

IMSDC-PSO 214.377 5.29 35.4 min
MOPSO 222.046 5.35 33.7 min

TMOPSO 217.492 5.34 36.8 min
MOPSO_RS 227.259 5.29 38.6 min

NSGA2 228.700 5.30 39.2 min
C-NSGA2 228.943 5.31 40.1 min

ABC 263.882 5.73 41.1 min
C-ABC 262.783 5.68 42.5 min

The results obtained from implementing an ordered charging and discharging strategy
for 50 EVs in the microgrid, as well as the quantified load and user satisfaction of the
microgrid, are presented in Table 1. From Table 1, it can be observed that the load for
IMSDC-PSO is 204.555 kW, while for TMOPSO, it is 204.457 kW. TMOPSO exhibits a
0.05% reduction. Furthermore, IMSDC-PSO achieves the highest user satisfaction with
a score of 5.21, whereas MOPSO_RS yields a score of 5.23. IMSDC-PSO demonstrates a
0.38% decrease in comprehensive performance, indicating that IMSDC-PSO outperforms
MOPSO_RS.

Based on the data presented in Table 1, it can be observed that IMSDC-PSO, NSGA2,
and TMOPSO have achieved optimal results in the first tier with regard to load optimization.
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IMSDC-PSO has a relatively fast convergence speed, and also great load results and users’
satisfaction. Conversely, MOPSO, MOPSO_RS, and MOPSO belong to the second tier, and
ABC is classified as a third-tier algorithm. Notably, the average load optimization results of
the first tier are approximately 6 kW better than those of the second tier, with a relatively
small difference of less than 100 W between the algorithms of the first tier; if the average
electricity tariff is utilized to convert this to a cost, the proposed algorithm can save up to
60.4 dollars. Regarding user satisfaction, it is evident that IMSDC-PSO outperforms other
algorithms when the number of connected EVs is low, indicating better optimization results
in terms of user satisfaction under such conditions.

The results of implementing an orderly charging and discharging strategy for
100 EVs in the microgrid, along with the load and user satisfaction, are shown in Table 2.
The algorithm proposed in this study is highlighted in the table. As the number of EVs
increases, the microgrid’s load also increases, and user satisfaction increases. This phe-
nomenon can be attributed to the fact that user satisfaction is influenced by both conve-
nience and economic factors. By applying Formula (10) and taking the reciprocal of user
satisfaction, it becomes evident that smaller values indicate higher levels of user satisfaction.
In scenarios where the number of EVs increases while the number of available charging
ports remains constant, users may experience queues for charging, leading to reduced con-
venience and subsequently impacting their overall satisfaction. Also, the algorithm needs
more time to converge, as shown in the table. IMSDC-PSO still has great convergence speed
and results compared to the other algorithms. In Table 2, the load result for IMSDC-PSO is
210.787 kW, while for TMOPSO it is 210.926 kW, indicating a 0.2% decrease in load. The
user satisfaction for IMSDC-PSO is 5.24, while MOPSO_RS and TMOPSO have 5.26 and
5.28, respectively. Compared to MOPSO_RS and TMOPSO, IMSDC-PSO shows the best
overall result.

Similarly, when the number of participating EVs increases to 100, a more distinct three-
tier performance is observed, and the algorithms employed remain relatively consistent.
However, it is worth noting that the results obtained from the NSGA2 significantly differ
from those of TMOPSO and IMSDC-PSO, with a noticeable gap of approximately 4 kW.
The average electricity tariff is utilized to convert this to a cost, the proposed algorithm can
save up to 120.9 dollars. In terms of user satisfaction, IMSDC-PSO continues to exhibit a
comparatively higher performance compared to other algorithms. Analyzing Tables 1 and 2,
it becomes evident that MOPSO_RS consistently outperforms the other four algorithms in
terms of user satisfaction optimization results.

Table 3 shows the results of implementing an orderly charging and discharging strat-
egy for 150 EVs in the microgrid, along with the load and user satisfaction. It is evident
from Table 3 that the microgrid load and users’ satisfaction have increased further. The
convergence time of different algorithms also increased, compared to other algorithms,
the proposed IMSDC-PSO algorithm is able to achieve an increase in convergence speed
of up to 20%. This can be attributed to the convenience benefit of user satisfaction. The
load result for IMSDC-PSO is 214.377 kW, while for TMOPSO it is 217.492 kW, indicating a
1.4% decrease in load. Compared with the other algorithms, the average electricity tariff is
utilized to convert this to a cost, the proposed algorithm can save up to 171.8 dollars. The
user satisfaction score for IMSDC-PSO is 5.29, while for MOPSO_RS, it is 5.29. IMSDC-PSO
performs better in both load optimization and user satisfaction.

According to the results obtained from the IMSDC-PSO in the three cases, it can be
observed that for 50 EVs, the result shows 204.555 kW; for 100 EVs, the result is 210.787 kW;
and for 150 EVs, the result is 214.377 kW. It is evident that the best outcome is achieved
when optimizing an orderly charging and discharging strategy for all EVs. In terms of user
satisfaction, the IMSDC-PSO yields comprehensive satisfaction scores of 5.21, 5.24, and 5.29
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for the respective cases. The data suggest that the IMSDC-PSO algorithm is suitable for
scenarios with a small number of EVs connected to the grid. Given that the area covered by
the microgrid is roughly equivalent to that of several small communities, the number of EVs
tested was selected based on the microgrid’s capacity to support charging infrastructure.
Specifically, the experiments were conducted using 50, 100, and 150 EVs to ensure that the
number of EVs tested fell within the scope of the microgrid’s coverage capabilities. Based
on the above considerations, we will proceed with the optimization process using 110 EVs.

3.2. Load Optimization

The load values and user satisfaction scores optimized by various algorithms were
analyzed for 110 EVs. The particle count was set to 26, and the number of iterations
was set to 200. The optimization results of the six algorithms are presented in Figure 4,
indicating that the IMSDC-PSO algorithm achieved minimal and stable load values and
drew a significant gap compared to other algorithms. From Figure 5, the NSGA2 algorithm
exhibited better load values than the IMSDC-PSO algorithm in some iterations, it lacked
stability and fluctuated within a certain range after about 50 iterations. This demonstrates
the poor stability of the NSGA2 algorithm and suggests that IMSDC-PSO and TMOPSO
are more suitable for practical applications.

Table 4 shows that IMSDC-PSO and TMOPSO outperformed other algorithms signif-
icantly in enhancing search ability during the early stages of iteration from initial value.
Notably, the NSGA2 algorithm exhibited extremely weak early search ability, generating
results inferior to those of other algorithms by approximately 300 kW. Analysis of the final
values in Table 4 reveals that IMSDC-PSO and NSGA2 generated desirable outcomes, indi-
cating excellent global search ability and diversity for both algorithms. While TMOPSO’s
initial value was superior to that of IMSDC-PSO, the latter demonstrated notably better
searchability, resulting in better final results. Moreover, the mean value of IMSDC-PSO in
Table 4 is proximate to the final value, indicating fast convergence speed.
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Figure 5. Comparison of IMSDC-PSO and NSGA2 in load optimization between iteration 160
and 200.

Table 4. Comparison of 110 EVs in load.

Method Initial Value
(kW)

Mean Value
(kW)

Final Value
(kW)

IMSDC-PSO 245.327 206.294 204.485
MOPSO 281.317 216.228 213.650

TMOPSO 225.686 209.916 209.461
MOPSO_RS 266.238 218.387 215.618

NSGA2 597.771 206.875 205.119
C-NSGA2 596.624 207.248 206.754

ABC 369.592 252.034 239.652
C-ABC 370.237 253.849 241.873

3.3. User Satisfaction Optimization

The paper evaluates user satisfaction with an orderly charging and discharging strat-
egy for EVs and treats it as a variable to be optimized. From Figure 6, The results indicate
that the IMSDC-PSO has the best performance, while the ABC algorithm performs poorly.
The NSGA2 algorithm exhibits unstable results in the early stages of iteration, showing
little convergence before 20 iterations. The fluctuation range narrows between 20 and
40 iterations, but the algorithm tends to converge locally after 40 iterations. However, a
closer examination of Figure 7 reveals that the NSGA2 algorithm remains unstable, fluc-
tuating between 5.2 and 5.4. This is due to the algorithm’s tendency to converge locally,
resulting in a lack of convergence in the final result.

Figure 7 demonstrates that, in terms of user satisfaction, the result obtained by IMSDC-
PSO is even lower than the minimum value achieved by NSGA2. Comparing it with
Figure 5, the result obtained by IMSDC-PSO is only equivalent to the average value of
NSGA2. This indicates that IMSDC-PSO has a better optimization effect on user satisfaction
than NSGA2. Table 5 reveals that, unlike load optimization, IMSDC-PSO outperforms
TMOPSO in initial value, while NSGA2 and ABC exhibit weaker early search capabilities.
The final values in Table 5 show that IMSDC-PSO significantly surpasses other algorithms,
and the mean value further highlights the fast convergence speed and strong convergence
characteristics of IMSDC-PSO.
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Table 5. Comparison of 110 EVs in user satisfaction.

Method Initial Value
(kW)

Mean Value
(kW)

Final Value
(kW)

IMSDC-PSO 5.31 5.22 5.21
MOPSO 5.53 5.28 5.27

TMOPSO 5.36 5.27 5.27
MOPSO_RS 5.40 5.27 5.26

NSGA2 7.92 5.33 5.28
C-NSGA2 8.01 5.47 5.34

ABC 6.84 5.68 5.63
C-ABC 6.88 5.62 5.57

3.4. Normalization Objective Optimization

This article converts two variables into a single variable. Since the load magnitude is
significantly larger than the satisfaction magnitude, the two indicators are first adjusted to
the same order of magnitude and then multiplied by 0.5 to obtain the final variable result.
The resulting performance is illustrated in Figure 8.
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Figure 8. Comparison of BestCost between IMSDC-PSO and other algorithms.

Figure 8 demonstrates that IMSDC-PSO slightly outperforms TMOPSO. The results of
MOPSO and MOPSO_RS are similar, showing weaker optimization outcomes compared
to IMSDC-PSO and TMOPSO. The ABC algorithm exhibits limited search capability and
performs worse than the four particle swarm optimization algorithms in terms of the
final result. Although the NSGA2 algorithm performs well in some iterations, it lacks
convergence ability, constantly fluctuating within a certain interval without reaching a final
convergence result.

Regarding convergence speed and stability, MOPSO, MOPSO_RS, TMOPSO, and
IMSDC-PSO demonstrate fast convergence, stabilizing after early iterations. On the
other hand, the ABC algorithm reaches stability after medium iterations, while the
NSGA2 algorithm continues to fluctuate within an interval after early iterations without
achieving convergence.

After converting the two variables into one variable, it is represented as Bestcost.
Table 6 shows the initial results of IMSDC-PSO and TMOPSO as 11.45 and 11.25, respec-
tively. Both algorithms employ Tent chaotic perturbation, which enhances their initial
search capability, resulting in good initial results and faster convergence. The initial values
for MOPSO_RS and MOPSO are 11.74 and 11.44, respectively, indicating slower conver-
gence in the initial iteration stage for these two algorithms. However, as indicated in Table 6,
the initial results for the ABC and NSGA2 iterations are 16.08 and 22.86, respectively. These
values highlight the poor stability and convergence of the NSGA2 algorithm, while the
ABC algorithm exhibits weak searchability.

Table 6 indicates that the final value achieved by IMSDC-PSO is 10.33, which differs
significantly from the results of other algorithms, except for NSGA2 with a value of 10.41.
However, it should be noted that the NSGA2 exhibits weak convergence and poor initial
solution quality, rendering it unsuitable for practical applications, as shown in Figure 9.
Therefore, IMSDC-PSO not only yields the best results but also demonstrates superior
performance compared to the other algorithms.



Energies 2025, 18, 690 18 of 23

Table 6. Comparison of 110 EVs in normalization objective.

Method Initial Value
(kW)

Mean Value
(kW)

Final Value
(kW)

IMSDC-PSO 11.45 10.38 10.33
MOPSO 11.44 10.78 10.76

TMOPSO 11.25 10.61 10.56
MOPSO_RS 11.74 10.75 10.68

NSGA2 22.86 10.50 10.41
C-NSGA2 23.72 11.72 11.27

ABC 16.08 11.98 11.62
C-ABC 17.17 12.71 11.25
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3.5. 24 h Load Optimization

Figure 10a demonstrates that algorithm optimization effectively resolves the peak-
valley effect when the number of EVs is large, successfully achieving the objective of peak
shaving and valley filling. During the period between 24 h, load levels vary depending
on EV usage by the users. Specifically, from 22 PM to 2 AM, users return home from
work to charge EVs, resulting in increased load levels compared to initialization. Between
7 AM and 12 AM, users drive their EVs from home to work, leading to a decrease in load
levels compared to initialization. Finally, at 7 PM, a considerable number of users returned
home from work, resulting in a significant increase in load levels due to the large number
of EVs connected to the microgrid. From Figure 10b, it is observed that the 24 h load
optimization results are not significant when there are only a few EVs. There is only a
slight change at 19 PM. Hence, we can deduce that with a small number of EVs connected
to the microgrid, their presence has minimal impact on the load within the microgrid. By
comparing Figure 10a,b, it can be inferred that the results of 24 h load optimization can
effectively demonstrate peak shaving and valley filling effects when the number of EVs
exceeds a certain critical value. Therefore, the algorithm is better suited for optimizing load
in large residential areas that can accommodate multiple charging stations.
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3.6. 24 h Electricity Price Optimization

This article obtains electricity price data based on the concept of fuzzy logic [59].
Figure 11 illustrates the electricity price data before and after optimization. The yellow
block represents the optimized results, while the blue block represents the pre-optimized
results and corresponding graphs are plotted for different numbers of EVs. When a large
number of EVs are connected with microgrids, the load exhibits significant fluctuations,
and the electricity price is primarily influenced by the real-time load over the 24 h period.
Consequently, changes occur in the electricity price. If the load increases, the electricity price
also increases significantly, and vice versa. Simultaneously, the fluctuation in electricity
prices impacts economic satisfaction. An increase in electricity prices inevitably leads to
a decrease in economic satisfaction, thereby lowering user satisfaction. However, after
optimization, the algorithm reduces the value of user satisfaction, creating a negative
feedback loop. As depicted in Figure 11a, due to the influence of the 24 h load, the
electricity price increases significantly during periods of increased load and decreases with
a decrease in load. From Figures 10b and 11b, it can be observed that when the number of
EVs is small and the load fluctuation is insignificant, the impact on electricity prices caused
by load fluctuations is also not significant.
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4. Conclusions
This paper investigated the physical and equipment limitations that EVs encounter

when connected to the power grid. To address this problem, an improved multi-objective
role partitioning chaotic particle swarm optimization algorithm (IMSDC-PSO) is proposed.
This algorithm takes into account user satisfaction when scheduling EV grid connections.
To tackle the nonlinear and multi-objective issues inherent in the model, this study employs
the IMSDC-PSO algorithm, which integrates the concepts of multi-role partitioning and
chaotic disturbance to effectively manage the orderly charging and discharging of EVs.
Simulation experiments were conducted, comparing the IMSDC-PSO algorithm to five
other algorithms. The results show that the proposed algorithm is capable of achieving
up to 23% microgrid load reduction and up to 20% improvement in convergence speed
compared to other algorithms. It is superior to other algorithms in solving the problem of
orderly charging and discharging of electric vehicles and has strong usability and feasibility.
The effectiveness of the algorithm is validated, providing an effective approach to solving
the problem of orderly charging and discharging scheduling of EVs.

Based on this research, the scalability of the algorithm and a more efficient scheduling
algorithm are seen as future research directions. We intend to extend the proposed algo-
rithm to the environment of cooperative optimization of multiple microgrids to maximize
the use of the energy schedulable characteristics of EVs, and to improve and enhance
the scalability of the proposed algorithm. In addition, optimization algorithms based on
deep learning are also one of the future research focuses, where deep learning networks
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are trained by obtaining real-time data of EVs and their users; taking advantage of the
increasing EV charging stations, this information or these data can be obtained in practice.
If we can share all these data in the scope of a specific microgrid, the network of deep
learning methods can be trained and the trained networks can be used to achieve real-time
optimal scheduling of EVs.
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