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Abstract: With the increasing penetration of distributed generation (DG), the supply–
demand imbalance and voltage overruns in the distribution network have intensified,
and there is an urgent need to introduce flexibility resources for regulation. This paper
proposes co-planning of electric vehicles (EVs) and soft opening points (SOPs) to improve
the flexibility of the active distribution network, thereby improving the economics and
flexibility of the distribution network. Firstly, this paper establishes a charging pile day-
ahead dispatchable prediction model and a real-time dispatchable potential assessment
model through Monte Carlo sampling simulation. It replaces the traditional energy storage
model with this model and then solves the EV and SOP collaborative planning model
using a second-order conical planning algorithm with the objective function of minimizing
the annual integrated cost. At the same time, the flexibility of the distribution network is
analyzed by two indicators: power supply and demand balance and branch load margin.
Finally, the optimization method proposed in this paper is analyzed and validated on
an improved IEEE 33-node distribution system. Example results show that the planning
method proposed in this paper can effectively reduce the annual comprehensive operating
cost of distribution networks, meet the flexibility index, and be conducive to improving the
economy and flexibility of distribution network operation.

Keywords: distributed generation; soft open point; electric vehicle; Monte Carlo sampling;
second-order cone programming

1. Introduction
In response to the national goals of ‘carbon peaking’ and ‘carbon neutrality’, building

a new type of power system dominated by new energy sources, and promoting widespread
access to clean energy, China is actively promoting the transformation and upgrading of
its power system. However, the uncertainty of DG generation brings problems such as
voltage overruns and power overloads to the distribution network, which increases the
difficulty of stable operation of the distribution network [1]. EVs, as mobile energy storage
devices, have a huge load storage potential as their residence time at charging stations far
exceeds the charging time, which is often overlooked. Studies have shown that rational
management of EV charging and discharging through charging stations can provide spare
capacity for the grid [2,3]. Meanwhile, SOPs, as flexible interconnected power electronic
devices, can provide the ability to distribute tidal currents on a spatial scale [4], but their
energy storage capacity is small, while the energy storage system, although effective in
solving this problem, is difficult to promote on a large scale due to its own high cost.
Therefore, considering the dispatchable potential of EV clusters and aggregating them into
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charging stations instead of energy storage systems through SOP collaborative planning is
important to improve the economy and flexibility of the distribution system.

At present, scholars have carried out a number of studies on the flexibility caused
by the high penetration of DG in the distribution network. Ref. [5] proposes an optimal
configuration scheme of the distribution network considering the operation strategy and
investment benefits, analyzes and determines the installation location of the energy stor-
age device by establishing a comprehensive node voltage sensitivity index, and uses an
improved particle swarm optimization algorithm to solve the optimal configuration model
of double-layer multi-objective energy storage, so as to improve the voltage quality and
economy of the distribution network. Ref. [6] proposes an active distribution network
voltage optimization method to optimize the distribution network voltage distribution
and improve system stability and efficiency through coordinated source-network-load-
storage interaction. In ref. [7], a stochastic programming model is proposed to evaluate
and optimize smart grid technology options in distribution networks to deal with network
constraint violations caused by the increasing penetration of distributed generation. Ref. [8]
proposes a hierarchical zoning planning method incorporating quantum genetic algorithms;
Ref. [9] proposes a local control strategy based on SOP to suppress the voltage fluctuations
and irregularities caused by high-permeability distributed generation in the distribution
network, and realizes fast voltage regulation independent of communication by flexibly
interconnecting the end nodes of multiple distribution station areas (DSAs); and ref. [10]
proposes a genetic algorithm (GA)-based optimization technique to determine the optimal
location and capacity of DG systems in distribution networks to reduce network losses,
regulate voltage levels, and improve the impact of high permeability DG on network opera-
tions. In reference [11], by optimizing the location and capacity of distributed photovoltaic
power generation and network reconfiguration, the real-time power loss is reduced and the
voltage curve is improved. In the above literature, most of the planning is carried out on an
existing basis and only a few papers introduce new resources to improve the flexibility and
reliability of the distribution network.

The core of electric vehicles as load-side flexibility resources lies in the schedulable
potential of their clusters, which are able to utilize their dispatch potential by participating
in demand response based on the amount of energy required for future driving, using
the storage capacity and charging and discharging capabilities of the vehicle’s batteries.
Ref. [12] focuses on the simulation of EV usage patterns and uncertainty analysis of the
impact of EV charging on the grid. Ref. [13] proposes a two-stage voltage control strategy
based on deep reinforcement learning to alleviate the problem of voltage violations in the
distribution network caused by electric vehicle charging. Ref. [14] proposes a two-layer
collaborative optimal scheduling method for electric vehicles and distribution networks
considering demand response and carbon quota benefits, so as to reduce the total operating
cost of the distribution network, reduce network loss, and improve the economy and
low-carbon performance of the system. Ref. [15] mainly studies the planning model of EV
charging facilities based on the spatial and temporal characteristics of charging demand,
including charging load forecasting and the number and layout optimization of charging
facilities. Ref. [16] studies how to improve the frequency stability of isolated microgrids
through the orderly charging and discharging of electric vehicles, and designs an electric
vehicle-based power control strategy (EVPC) to manage the process of electric vehicles
participating in frequency control in microgrids. Although this literature regards electric
vehicles as a flexible resource, most of it lacks detailed modeling of electric vehicle capacity
and charging and discharging power.

At this stage, there have been some studies on SOP planning. Ref. [17] proposes a
distribution network optimization scheduling method considering the demand response
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and carbon quota income of electric vehicles, and uses a two-layer co-optimization model
to determine the optimal location and size of the SOP to improve the economics and
low-carbon performance of the distribution network. Ref. [18] proposes a strategy for
optimal allocation of SOPs in a flexible interconnected distribution network by determin-
ing the optimal installation location of SOPs through improved sensitivity analysis and
optimizing the SOP capacity using second-order cone planning in order to reduce the
annual operating cost of the distribution network. Ref. [19] proposes a DC distribution
network co-optimization method based on EV charging, discharging, and SOP topology
reconfiguration to optimize the EV discharge power and SOP access configuration through
a two-layer optimization model in order to reduce the system losses and voltage deviations,
and to improve the economy and reliability of the system. Ref. [20] proposes a two-layer
co-optimization planning model for distributed energy resources (DERs) including SOP
in active distribution networks (ADNs), which aims to reduce the total investment and
operating costs of the system by optimizing the location and capacity of DER and SOP,
as well as coordinating the operation of DER, SOP, and voltage/reactive power control
equipment, while improving system reliability and reducing carbon emissions. Ref. [21]
proposes an optimal SOP allocation method considering DG stochasticity and volatility.
Ref. [22] proposes a SOP allocation method that takes into account the risk of loss of critical
customer loads. Ref. [23] proposes a flexible distribution network optimization method
based on multiterminal SOP, which optimizes the layout and operation of distributed
energy resources and reduces the investment and operating costs of the system by trans-
forming the nonconvex nonlinear programming problem into a mixed integer second-order
cone programming (MISOCP) model. The above literature is not sufficiently refined in
modeling EVs and does not fully consider the dynamic characteristics of their capacity
and charging/discharging power, leading to insufficient exploitation of the potential of EV
flexibility resources, while the planning of SOPs is mostly focused on siting and capacity
determination, and lacks synergistic planning with other flexibility resources, such as EVs,
which makes it difficult to give full play to the comprehensive benefits of EVs in terms of
enhancing the flexibility and economy of the power distribution network.

Based on the above background, this paper proposes a collaborative planning method
for EVs and SOPs for active distribution network flexibility enhancement. The main
contributions are as follows:

(1) The dispatchable potential of EVs is analyzed through Monte Carlo simulation and
clusters of EVs are aggregated into a broad energy storage device centered on charging
piles to replace traditional energy storage systems. This approach makes full use
of the energy storage potential of EVs and avoids the limitation of the high cost of
traditional energy storage systems, providing a new way of resource utilization to
improve the flexibility of the distribution network.

(2) A collaborative planning method for EVs and smart soft opening points (SOPs) ori-
ented to the flexibility enhancement of active distribution networks is proposed. With
the objective function of minimizing the annual comprehensive operating cost, a
second-order cone planning algorithm is used to solve the siting and capacity-setting
planning model of SOPs, and the optimal allocation of EVs and SOPs is realized.
The method significantly improves the flexibility and reliability of the distribution
network while optimizing the economy.

(3) A supply–demand balance flexibility index and a branch load margin flexibility index
are constructed for comprehensively assessing the flexibility of distribution networks.
The validation results show that the proposed collaborative planning method can
effectively reduce the annual comprehensive operating cost of the distribution network
and significantly improve the flexibility index of the system, which provides a new
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technical idea for the distribution network planning under the high penetration of
distributed power sources.

Currently, research on EVs as flexibility resources has made some progress, but most
of the existing research focuses on the assessment of EV dispatch potential and lacks
refined modeling of charging and discharging power and capacity. Meanwhile, although
planning research into smart SOPs has been carried out, it is mostly for the siting and
capacity determination of a single device, and lacks synergistic planning with flexibility
resources such as EVs. The synergistic planning method proposed in this paper fills this
research gap and provides a new technical idea for the flexibility enhancement of active
distribution networks.

2. Considering EV Dispatch Potential Characterization Models
2.1. EV Dispatchable Potential Modeling Analysis

The charging modes of EVs are mainly categorized as fast charging and slow charging.
In fast charging mode, EVs are charged at the maximum rate with a fixed charging power
and can therefore be categorized as regular loads. In slow charging mode, EVs stop much
longer than the time required for charging, and charging stations can regulate the charging
and discharging power of EVs to achieve load shifting and reverse power supply, thus
improving the flexibility of the distribution network and making it an adjustable and
flexible load [24].

2.2. Modeling of Generalised Energy Storage Devices

If EVs are modeled individually, on the one hand, too many variables will be intro-
duced, increasing the complexity of the model; on the other hand, it is difficult to predict
the driving characteristics of each EV in the day-ahead phase. The charging station, as
a centralized manager of EVs, can be used as an adjustable load resource for distribu-
tion network planning by regulating the charging and discharging process of EVs in the
charging station.

Since there are some differences in the definition domains of EVs due to their different
grid connection times, it is necessary to extend these different definition domains into a
unified scheduling timeframe in order to construct the model shown in Equation (1).

0 ≤ Pch
j,t ≤ Pch,max

j,t ∀t ∈ T
0 ≤ Pdis

j,t ≤ Pdis,max
j,t ∀t ∈ T

Sj,t = Sj,t−1 + ∆Sj,t + ηch pch
j,t∆t −

ηre f pdis
j,t ∆t

ηdis

Smin
j,t ≤ Sj,t ≤ Smax

j,t

(1)

where Pch,max
j,t and Pdis,max

j,t are the sum of the maximum charging and discharging power

of charging station j in time period t, respectively; Pch
j,t and Pdis

j,t are the sum of the actual
charging and discharging power of charging station j in time period t, respectively; Sj,t

is the actual power of charging station j at time t; Sj,t−1 is the actual power of charging
station j at time t − 1; Smax

j,t and Smin
j,t are the upper and lower limits of EV battery capacity,

respectively; ∆Sj,t is the change in power consumption of the charging station as a result of
the EV being on or off the grid during the time slot; ∆t is the time interval of change; ηch

and ηdis are EV charging and discharging efficiencies, respectively; and ηre f is the discharge
compensation factor.
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2.3. Calculation Model of Dispatchable Capacity Before EV Day

In the day-ahead phase, the charging station makes a forecast of its dispatchable
potential based on past data. In the case of a particular charging station, for example,
historical operational data are first determined as follows.

Ωv = {EV1, EV2, · · · , EVn, · · · , EVNv} (2)

where Ωv is the EV data; Nv is the number of EVs; and EVn is the historical data of electric
vehicle charging at charging stations.

The charging station records daily data on the EVs it serves, covering the moments of
EV entry and exit, the battery power at the time of entry and exit, and the model of the EV
(which involves the upper limits of battery capacity and charging and discharging power),
as follows:

EVn =

{
Tarr

n , Tlea
n , sn,arr,sn,lea,

smin
n , smax

n , pch
n,max, pdis

n,max

}
(3)

where Tarr
n and Tlea

n are the moments when the electric car enters and leaves the charging
station; sn,arr and sn,lea are the battery levels of the electric vehicle as it enters and exits
the charging station; smax

n and smin
n are the upper and lower limits of battery capacity for

electric vehicles, respectively; and pch
n,max and pdis

n,max are the upper limits of charging and
discharging power for electric vehicles, respectively.

The derivation of the generalized energy storage parameters of the charging station is
given in reference [2], and the parameters are derived as shown in Equation (5). Equation (6)
reflects the EV cluster’s dispatchable potential.

Xn,t =

{
0 ∀t /∈ [Tarr

n , Tlea
n ]

1 ∀t ∈ [Tarr
n , Tlea

n ]
(4)



pch,max
j,t = ∑

n∈NEV
j

pch
n,maxXn,t

pdis,max
j,t = ∑

n∈NEV
j

pdis
n,maxXn,t

Smin
j,t = ∑

n∈NEV
j

smin
n Xn,t

Smax
j,t = ∑

n∈NEV
j

smax
n Xn,t

∆Sj,t = ∑
n∈NEV

j

(sn,arrXn,t(Xn,t − Xn,t−1)−
sn,leaXn,t−1(Xn,t−1 − Xn,t))

(5)

Λv =
{

pch,max
j,t , pdis,max

j,t , ∆Sj.t, Smin
j,t , Smax

j,t

}
(6)

where Xn,t denotes the state of EV n at time t; Xn,t−1 denotes the state of EV n at time t − 1;
Xn,t = 1 denotes that EV n is on-grid at time t; and Xn,t = 0 denotes that EV n is off-grid at
time t. Λv is an ensemble consisting of the charging and discharging power upper limit,
power upper and lower limits, and power variation of the EV cluster, and also represents
the dispatchable potential of the EV cluster.

2.4. Methodology for Forecasting Day-Ahead Dispatchable Potential

In real-time operation, the charging station evaluates the EV scheduling capability
through actual monitoring data. In this study, it is assumed that EV users are willing to
share their car schedules and power demand with the charging station; otherwise, it is
treated as maximum charging power. The charging station evaluates the dispatchable
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potential of EVs based on real-time data from the station, as shown in Equation (5). As
time progresses, the charging station refreshes its dispatchability assessment but only
implements schedules within a consecutive time window in the dispatch operation.

3. SOP Principles and Optimized Configuration Models
3.1. SOP Operation Principle

The Figure 1 shows the standard structure of an SOP, which consists of two symmet-
rical VSCs and an energy storage system. The operation of an SOP is mainly affected by
the control mode of the VSCs, and PQ-VQ droop control is usually adopted to control
the current of the distribution network. During normal operation, the two converters
(VSCs) are operated in rectifier and inverter states, respectively, the electrical connection
between the two systems is realized through the AC-DC-AC conversion process, and the
energy is exchanged. Capacitors are connected on the DC side to the energy storage system
to stabilize the DC voltage, ensure bi-directional consistency of the energy transfer, and
increase the resistance to transient disturbances. In addition, the energy storage system can
be used for new energy storage and consumption, giving the SOP the ability to regulate
electric energy in time and space [25].
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The SOP can accurately control the active and reactive power of the feeder to which
it is connected, thus using the active and reactive power outputs of the two converters as
decision variables. Despite the high operating efficiency of the B2B VSC, the two converters
inevitably incur losses during large-scale active power transfers. Therefore, the converter
loss coefficients are taken into account in the optimization model. Due to the isolation of
the DC, the reactive power outputs of the two converters are independent of each other
and only need to satisfy their respective capacity constraints. PQ − VdcQ control is chosen
as the SOP control mode [26].

The operational constraints are as follows [21]:

PSOP
a,t + PSOP

b,t + PSOP
ab,t = 0 (7)

PSOP
ab,t = ASOP,a

∣∣∣PSOP
a,t

∣∣∣+ ASOP,b

∣∣∣PSOP
b,t

∣∣∣ (8)√
(PSOP

a,t )
2
+ (QSOP

a,t )
2 ≤ SSOP

a,t (9)√
(PSOP

b,t )
2
+ (QSOP

b,t )
2 ≤ SSOP

b,t (10)

where PSOP
a,t , PSOP

b,t and QSOP
a,t , QSOP

b,t are the active and reactive powers flowing into the
moment converter a and b, respectively; PSOP

ab,t is the transmission loss at time t; ASOP,a and
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ASOP,b are the energy consumption coefficients for inflow of converter a and b, respectively;
and SSOP

a,t and SSOP
b,t are the capacities of the two converters, which are usually equal.

3.2. SOP Configuration Mode

The configuration costs of SOPs are categorized into investment costs, operation and
maintenance (OM) costs, and power supply loss costs:

WSOP = WTZ
SOP + WYW

SOP + WLOSS
SOP (11)

WTZ
SOP =

n

∑
i=1

∑
j∈Ωi

wSOPSSOP,ij

ySOP
(12)

WYW
SOP = η

n

∑
i=1

∑
j∈Ωi

wSOPSSOP,ij

ySOP
(13)

WLOSS
SOP = 365λ

n

∑
i=1

Tt

∑
t=1

(Pi,t + PLOSS
SOP,i,t)∆t (14)

where WSOP is the average annual configuration cost of the SOP; WTZ
SOP is the average

annual investment cost of the SOP; WYW
SOP is the average annual OM cost of the SOP; WLOSS

SOP
is the average annual cost of power supply losses for the SOP; Ωi is the set of all nodes
adjacent and connected to node i; wSOP is the investment cost per unit of capacity of the
SOP; ySOP is the service life of the SOP; SSOP,ij is the size of the SOP capacity installed
between nodes i and j; η is the SOP annual OM cost factor; λ is the annual cost factor for
power supply losses in the distribution network; Tt is the total number of time periods; ∆t
is the size of the interval for each time period; Pi,t is the amount of active power injected at
the node i during time period t; and PLOSS

SOP,i,t is the active loss of the SOP at node i at time
period t.

4. Planning Models and Solution Algorithms and Processes for
Distribution Networks
4.1. Distribution Network Planning Models
4.1.1. Economic Indicators

The planning model uses the annual integrated minimum cost as the objective function,
which is calculated as follows:

minFJ = WSOP + CPC + CNLC (15)

CPC = 365
T

∑
t=1

cgPMG
t (16)

CNLC = 365
T

∑
t=1

clossPloss
ij,t (17)

where FJ is the annual consolidated cost; CPC is the annual cost of purchasing power from
the higher-level grid; CNLC is the annual cost of network loss; cg denotes the unit price of
the power purchased by the distribution grid from the main grid; closs denotes the cost
of each unit of power loss in the distribution grid; PMG

t denotes the magnitude of active
power supplied to the distribution grid by the higher-level grid at time t; and Ploss

ij,t denotes
the grid loss power of the branch ij at time t.
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4.1.2. Flexibility Indicators

Distribution network flexibility energy is often described in terms of the ability to
regulate and transmit flexibility resources. The formulae for the calculation of its indicators
are given in reference [22].

• Calculation of supply and demand balance indicators

The supply–demand balance of the distribution network is mainly reflected in the
supply–demand side power balance. Therefore, this paper evaluates the supply–demand
balance flexibility using the net load adaptation rate IF. The larger the value of IF, the
greater the flexibility resources that can fully satisfy the flexibility demand of the load side.

IF =
T

∑
t=1

Ft
U − Ft

D

T
(

Pnl
t+1 − Pnl

t
) (18)


Ft

U = ∑
i∈ΩEV

Fup
EV,i,t + Fup

MG,t

Ft
D = ∑

i∈ΩEV

Fdown
EV,i,t + Fdown

MG,t
(19)

where Ft
U and Ft

D denote the upstream and downstream flexibility of the distribution
network at time t, respectively; T is 24 h, i.e., the total dispatch cycle, with each cycle being
1 h; Pnl

t and Pnl
t+1 are the net load power values of the distribution network at time periods

t and t + 1, respectively; Fup
EV,i,t and Fdown

EV,i,t are the regulation capacities of the charging
piles of the distribution network at time t, respectively; ΩEV is the set of charging pile
installation locations; and Fup

MG,t and Fdown
MG,t are the regulation capacity of the superior grid

on the distribution grid at time t, which is divided into forward and reverse.

• Calculation of load margin indicators

In order to achieve flexible matching of supply and demand in the distribution net-
work, flexible matching at the network level is necessary. Given the unpredictable fluctua-
tion of net load, branch circuits must have sufficient load margin. In this paper, the average
load profile of the network is evaluated using the branch load margin IBF. The smaller
the value of IBF, the more adequate the load margin of the branch, the more flexible the
distribution network, and the more capable it is to cope with the changing demand.

IBF =
1
T

T

∑
t=1

∑
ij∈ΩB

Lij,t

NB
(20)

where ΩB is the set of all branches in the distribution network; NB is the number of its
branches; and Lij,t is the ratio of the actual value of the current in branch ij at t to the
maximum value allowed for that branch.

In the planning process, the supply–demand balance flexibility index is combined
with the feeder load adequacy flexibility index to jointly characterize the flexibility of the
system, such that the optimal flexibility index function maxF is

maxF = IF − IBF (21)

4.2. Solving Algorithm and Process

In this paper, sensitivity analysis is used to determine the potential installation lo-
cations of SOPs, and the specific calculation process is referred to in the literature [27].
Therefore, in the optimization model, the siting location of SOPs is regarded as a known
parameter rather than a decision variable. Meanwhile, this paper divides EV clusters into
four charging stations and includes them as energy storage systems in the distribution
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network planning, in which the storage capacity and charging and discharging power of
EVs are treated as known parameters, and the charging and discharging power of charging
stations are treated as a decision variables.

The optimization problem is divided into two phases: in the first phase, the objective
is to minimize the annual integrated operating cost of the distribution network, and the
optimization decision variables are the capacity size of the SOP and the charging and
discharging power of the charging station; in the second phase, the optimization objective
is to maximize the flexibility of the operation of the distribution network, subject to the
satisfaction of the voltage constraints. The solution flow of the model is shown in Figure 2.
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In the above optimization problem, the uncertainty mainly comes from the charging
and discharging behavior of EVs and the output power of DG. The charging and discharg-
ing behaviors of EVs are affected by the user’s travel plan and charging demand, while
the output of distributed power sources is affected by factors such as weather conditions.
In this paper, we simulate the charging and discharging behaviors of EVs through Monte
Carlo sampling to predict the dispatchable potential of EVs, and we introduce a flexibility
index to assess the adaptive capability of the distribution network, while solving the opti-
mization model using a second-order cone planning algorithm. Together, these methods
enable the optimization model to find the optimal planning solution in terms of economy
and flexibility, taking into account the uncertainties of EVs and distributed power sources.
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5. Calculus Analysis
In this paper, the effectiveness of the proposed collaborative planning approach is

verified using a modified IEEE 33-node power distribution network, the structure of which
is shown in Figure 3, with specific data referenced from the literature [28].
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In order to investigate the impact of high DG penetration on the distribution network,
four photovoltaic (PV) generators and three wind turbine (WT) generators were integrated
into the distribution network in this study. The PV units were installed at nodes 7, 15, 22,
and 26 with installed capacities of 800, 800, 500, and 400 kW, respectively, and the wind
turbine units were installed at nodes 9, 23, and 30 with installed capacities of 800, 500, and
300 kW, respectively. The daily load operating curves of the system were obtained in hourly
steps through load forecasting techniques, as shown in Figure 4, and the output of the DG
was also processed by this method. When power was purchased from the superior grid,
peak and valley time-sharing tariffs were adopted, with peak tariffs from 09:00–11:00 and
14:00–18:00; level tariffs from 06:00–08:00, 12:00–13:00, and 19:00–22:00; and valley tariffs
from 23:00–5:00. Other relevant parameters are shown in Table 1.
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Table 1. System parameters.

SOP Parameters Discount Rate
Investment Cost per

Unit of
Capacity/(RMB/KV-A)

Loss Factor Years of Use/Year
Purchased Power

Tariffs from
Higher-Level Grids

value 0.08 1000 0.98 20
Higher: 0.6;
equal: 0.4;
lower: 0.3

EV parameters
Rated

charge/discharge
power/kW

Rated capacity/kW-h Charge and
Discharge Efficiency SOC limits

Aggregate energy
storage power

variation range/MW

value 6.6 32 0.95 [0.15, 0.9] [−5, 5]

At the same time, a total of 2000 EVs were Monte Carlo sampled in this paper. Firstly,
the EV clusters were classified into three categories of private cars, net cars, and commuter
cars, and classified according to different charging time periods. The time of arriving and
leaving the charging station during the charging time of different types of cars varied, and
the article dealt with this by normal distribution. The battery power when arriving at the
charging station varied slightly, and the article dealt with this by uniform distribution.
Sampling at uniform, different EVs arriving at and leaving the charging station and the
battery capacity at the time of arrival are shown in Table 2, and the specific data for each
EV are shown in Table 3.

Table 2. EV sampling parameters.

Parameter
Distribution of EVs Tarr

n Tlea
n sn,arr

Type I vehicle N(18, 4) N(8, 4) U(0.2sB, 0.4sB)
Type II vehicle N(21, 1) N(7, 1) U(0.4sB, 0.6sB)
Type III vehicle N(9, 2) N(17, 2) U(0.4sB, 0.6sB)

N(µ, σ2): A normal distribution with mathematical expectation µ and standard deviation σ; U(a, b): The uniform
distribution of the interval [a, b]; sB: The rated capacity of EV batteries. This paper assumes that EVs have
uniform specifications.

Table 3. Charging station sampling parameters.

Number of EVs Type I Vehicle Type II Vehicle Type III Vehicle

Charging station 1 M (180, 220) M (190, 210) 0
Charging station 2 M (180, 220) M (80, 120) M (380, 420)
Charging station 3 0 M (900, 110) M (380, 420)
Charging station 4 M (380, 420) 0 0

5.1. Comparison of the Economics of Different Programmes

In order to verify the economics of EV and SOP collaborative planning, this paper sets
up the following four planning scenarios for accessing the traditional distribution system
of distributed power IEEE nodes:

• Plan 1: Traditional active distribution network.
• Plan 2: Active distribution network considering only SOP optimization planning.
• Plan 3: Active distribution grid with conventional energy storage and SOP co-planning.
• Plan 4: Active distribution grid for EV and SOP co-planning.

For each of the above four scenarios, the planning costs and economic benefits were
calculated. The results of the SOP co-planning are shown in Table 4, and the charging and
discharging scenarios for the charging station are shown in Figure 5. The average annual
investment costs in the table cover the commissioning costs of the SOP and the economic
comparison of the various planning scenarios are shown in Table 5.
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Table 4. SOP planning results. (∗ means multiply).

Plan
SOP Planning

Result/Node Number
(Capacity (kV-A))

Consolidated
Cost/∗104 RMB

Economic
Benefits/∗104 RMB

1 / 1644.0 0

2 12–22 (210), 25–29
(310), 8–21 (380) 1434.5 209.5

3 12–22 (190), 25–29
(310), 8–21 (340) 1331.2 312.8

4 12–22 (190), 8–21
(380), 25–29 (500) 1255.7 388.3
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Table 5. Economy comparison.

Plan CSI/∗104 RMB COMS/∗104 RMB CPC/∗104 RMB CNLC/∗104 RMB

1 0 0 1615.7 28.3
2 11.6 2.3 1399.5 21.0
3 16.2 1.74 1287.1 26.2
4 11.5 2.7 1214.2 27.8

From the economic comparison of the four scenarios in Table 4, it can be seen that
planning the SOP with EV dispatchable potential is the most economically efficient, thus
verifying the advantage of considering EV dispatchable potential when planning the SOP.

The data in Table 5 show that Option 4 is the most effective in terms of improving
economic efficiency. Although the deployment of ESS and SOP requires some upfront
investment, they also significantly reduce the OM costs of the distribution network, and con-
sidering the dispatchable potential of EVs, the investment in energy storage can be further
scaled down, which in turn increases the revenue of the distribution network accordingly.
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5.2. Comparison of the Flexibility of Different Programmes

As shown in Table 6, compared to Scenario 1, Scenarios 2, 3, and 4 all have smaller
branch flexibility adequacy metrics. This is due to the fact that Scenarios 2, 3, and 4
are equipped with SOPs, which optimize the distribution system’s power allocation and
improve the system’s ability to adapt to demand fluctuations, thereby reducing network
losses and the cost of purchasing power from the higher grid. The branch circuit flexibility
margin indicator increases for Options 3 and 4 compared to Option 2. This is due to the
fact that with the addition of energy storage, balancing the load also increases the power
transfer on the line, resulting in a decrease in the margin.

Table 6. Flexibility comparison.

Plan IF IBF Max F

1 1.091 0.471 0.620
2 3.283 0.211 3.072
3 4.631 0.324 4.307
4 11.046 0.341 10.705

6. Conclusions
In this paper, an innovative EV and SOP cooperative planning method is proposed,

aiming to improve the operational efficiency and economy of the active distribution network
(ADN). By capturing the uncertainty of EV charging behavior and renewable energy output
through Monte Carlo simulation and combining it with a second-order cone planning
algorithm, this study successfully achieved the optimal configuration of EV clusters and
SOPs. Compared with the traditional active distribution model, the optimal planning model
proposed in this paper reduces the operating cost by about 24.8% in terms of economics,
which improves the overall system efficiency and return on investment, while in terms of
flexibility, the flexibility index of the model proposed in this paper is much higher than that
of the traditional model, which indicates that it can better adapt to the uncertainty brought
by the high penetration of distributed power sources.

The model in this paper takes into account the practical constraints and uncertainties
of EV charging behavior and renewable energy output, making it more suitable for practical
applications. Through Monte Carlo simulation and the introduction of flexibility metrics,
the model is able to better adapt to complex grid operating environments, providing grid
operators with a more effective tool to manage the growing EV charging demand. Future
research will delve into the feasibility of applying the model to a wider range of real-world
grid environments, including grids of different regions, sizes, and structures. This will help
to better understand the complexity of EV–grid interactions and provide grid operators
with more effective tools to manage the growing demand for EV charging.
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