Emergy Evaluation of the Urban Solid Waste Handling in Liaoning Province, China
Abstract
:1. Introduction
2. Methodology
2.1. Description of the Present Urban Solid Treatment System in Liaoning
2.2. Emergy Accounting
2.3. Evaluating the Impacts of Emissions
2.3.1. Quantifying Ecological Services
2.3.2. Quantifying Ecological and Economic Losses
Impact category | CAS no. | Group | Initial emission | Unit | 1# DALY | 2# DALY | 3# DALY | 4# DALY | 5# PDF*m2*yr | 6# PDF*m2*yr |
---|---|---|---|---|---|---|---|---|---|---|
Carbon dioxide (CO2) | 124-38-9 | inorganic | air | kg | - | - | - | 2.10 × 10−7 | - | - |
Carbon Monoxide (CO) | 630-08-0 | inorganic | air | kg | - | - | - | - | - | - |
Nitrogen oxides (as NOx) | 11104-93-1 | inorganic | air | kg | - | - | 8.87 × 10−5 | - | - | 5.71 |
Sulphur dioxide (SO2) | 7446-09-5 | inorganic | air | kg | - | - | 5.46 × 10−5 | - | - | 1.04 |
Dust (PM10) | - | inorganic | air | kg | - | - | 3.75 × 10−4 | - | - | - |
Dinitrogen oxide (N2O) | 10024-97-2 | inorganic | air | kg | - | - | - | 6.90 × 10−5 | - | - |
Methane (CH4) | 74-82-8 | nonaromatic (alkane) | air | kg | - | 1.28 × 10−8 | - | 4.40 × 10−6 | - | - |
Mercury (II) ion | 14302-87-5 | metal | fresh water | kg | - | - | - | - | 1.97 × 102 | - |
Cadmium (II) ion | 22537-48-0 | metal | fresh water | kg | 7.12 × 10−2 | - | - | - | 4.80 × 102 | - |
Chromium (III) ion | 16065-83-1 | metal | fresh water | kg | 3.43 × 10−1 | - | - | - | - | - |
Lead (II) ion | 14280-50-3 | metal | fresh water | kg | - | - | - | - | 7.39 | - |
Arsenic (V) ion | 17428-41-0 | metal | fresh water | kg | 6.57 × 10−2 | - | - | - | 1.14 × 101 | - |
Volatile phenol | 108-95-2 | aromatic | fresh water | kg | 1.05 × 10−5 | - | - | - | - | - |
Cyanide | - | aromatic | fresh water | kg | 4.16 × 10−5 | - | - | - | - | - |
Chemical oxygen demand (COD) | - | organic | fresh water | kg | - | - | - | - | - | - |
Oil | - | organic | fresh water | kg | 2.29 × 10−4 | - | - | - | - | - |
NH4-N | 14798-03-9 | inorganic | fresh water | kg | - | - | - | - | - | - |
3. Results
3.1. Emergy Flows
Category | Items | Basic data | Per Unit | Transformity (seJ/unit) | Reference | Solar emergy (seJ/t-waste) |
---|---|---|---|---|---|---|
Rw* | Oxygen involved in combustion processes | 2.15 × 108 | J/t-waste | 4.14 × 105 | [41] | 8.88 × 1013 |
G | Diesel (transportation) | 5.62 × 107 | J/t-waste | 1.11 × 105 | After [42] | 6.22 × 1012 |
Electricity (transportation) | 5.18 × 104 | J/t-waste | 1.74 × 105 | After [42] | 9.04 × 109 | |
Diesel (landfill) | 3.47 × 106 | J/t-waste | 1.11 × 105 | After [42] | 3.84 × 1011 | |
Electricity (landfill) | 1.34 × 106 | J/t-waste | 1.74 × 105 | After [42] | 2.33 × 1011 | |
Electricity (Leachate disposal) | 0.00 | J/t-waste | 1.74 × 105 | After [42] | 0.00 | |
Sulfuric acid (Leachate disposal) | 2.00 × 10−2 | kg/t-waste | 2.65 × 1012 | [43] | 5.30 × 1010 | |
Chemical cleaners (Leachate disposal) | 1.00 × 10−1 | kg/t-waste | 2.65 × 1012 | [43] | 2.65 × 1011 | |
F | Maintenance cost and services | 5.65 | $/t | 1.13 × 1012 | Country Emergy/$ ratio | 6.38 × 1012 |
Output | Electricity | 2.46 × 107 | J/t-waste | 1.74 × 105 | After [42] | 4.28 × 1012 |
Transportation | NMVCOC | 1.36 × 10−2 | kg/t-waste | |||
CO | 1.50 × 10−2 | kg/t-waste | ||||
NOx | 4.39 × 10−2 | kg/t-waste | ||||
CO2 | 4.14 × 10−2 | kg/t-waste | ||||
SO2 | 9.28 × 10−4 | kg/t-waste | ||||
LFG emission | CH4 | 1.83 × 101 | kg/t-waste | |||
CO2 | 3.35 × 101 | kg/t-waste | ||||
H2S | 1.30 × 10−1 | kg/t-waste | ||||
NH3 | 6.00 × 10−2 | kg/t-waste | ||||
CO | 5.00 × 10−2 | kg/t-waste | ||||
Electricity generation | CO2 | 8.20 × 101 | kg/t-waste | |||
NOx | 1.70 × 10−1 | kg/t-waste | ||||
SO2 | 9.00 × 10−2 | kg/t-waste | ||||
Leachate | COD | 3.00 | kg/t-waste | |||
TOC | 9.00 × 10−1 | kg/t-waste | ||||
SS | 7.50 × 10−2 | kg/t-waste | ||||
NH3-N | 3.00 × 10−2 | kg/t-waste |
Category | Items | Basic data | Per Unit | Transformity (seJ/unit) | Reference | Solar emergy (seJ/t-waste) |
---|---|---|---|---|---|---|
Rw* | Oxygen involved in combustion processes | 9.85 × 1011 | J/t-waste | 4.14 × 105 | [41] | 4.08 × 1017 |
G | Diesel (transportation) | 6.78 × 107 | J/t-waste | 1.11 × 105 | After [42] | 7.50 × 1012 |
Electricity (transportion) | 5.18 × 105 | J/t-waste | 1.74 × 105 | After [42] | 9.04 × 1010 | |
electricity (pretreatment) | 1.44 × 106 | J/t-waste | 1.74 × 105 | After [42] | 2.51 × 1011 | |
limestone | 1.00 | kg/t-waste | 1.02 × 1010 | After [44] | 1.02 × 1010 | |
Electricity (incineration) | 1.13 × 106 | J/t-waste | 1.74 × 105 | After [42] | 1.97 × 1011 | |
Diesel (Ignition) | 6.91 × 107 | J/t-waste | 1.11 × 105 | After [42] | 7.64 × 1012 | |
Oxidizer (Coal) | 2.90 × 108 | J/t-waste | 6.69 × 104 | After [17] | 1.94 × 1013 | |
Lotion (flue gas treatment) | 5.00 × 10−2 | kg/t-waste | 2.65 × 1012 | [43] | 1.33 × 1011 | |
Electricity (flue gas treatment) | 7.20 × 105 | J/t-waste | 1.74 × 105 | After [42] | 1.26 × 1011 | |
DTC-dithiocarbamate (ash treatment) | 3.00 × 10−2 | kg/t-waste | 2.65 × 1012 | [43] | 7.95 × 1010 | |
Cement (ash treatment) | 5.58 × 101 | kg/t-waste | 1.04 × 109 | [45] | 5.82 × 1010 | |
Electricity (ash treatment) | 7.56 × 105 | J/t-waste | 1.74 × 105 | After [42] | 1.32 × 1011 | |
F | Maintenance cost and services | 6.24 | $/t | 1.13 × 1012 | Country Emergy/$ ratio | 7.05 × 1012 |
Output | Electricity | 2.04 × 108 | J/t-waste | 1.74 × 105 | After [42] | 3.56 × 1013 |
Slag | 1.66 × 102 | kg/t-waste | 2.70 × 1012 | [18] | 4.47 × 1014 | |
Flue gas discharge | CO2 | 1.26 × 103 | kg/t-waste | |||
CO | 7.11 × 10−1 | kg/t-waste | ||||
SO2 | 7.56 × 10−1 | kg/t-waste | ||||
NOx | 6.86 × 10−1 | kg/t-waste | ||||
Incineration | HCL | 9.39 × 10−2 | kg/t-waste | |||
PCDDs/PCDFs | 1.50 × 10−10 | kg/t-waste | ||||
PM10 | 1.64 × 10−1 | kg/t-waste | ||||
NMVOC | 1.77 × 10−2 | kg/t-waste | ||||
CO | 1.95 × 10−2 | kg/t-waste | ||||
Transportation | NOx | 1.22 × 10−1 | kg/t-waste | |||
CO2 | 5.45 | kg/t-waste | ||||
SO2 | 2.58 × 10−3 | kg/t-waste |
Category | Items | Basic data | Per Unit | Transformity (seJ/unit) | Reference | Solar emergy (seJ/t-waste) |
---|---|---|---|---|---|---|
Rw* | Oxygen involved in combustion processes | 4.56 × 1011 | J/t-waste | 4.14 × 105 | [41] | 1.89 × 1017 |
G | Diesel (transportation) | 6.91 × 107 | J/t-waste | 1.11 × 105 | After [42] | 7.64 × 1012 |
Electricity (incineration) | 1.13 × 106 | J/t-waste | 1.74 × 105 | After [42] | 1.97 × 1011 | |
Diesel (incineration) | 1.45 × 108 | J/t-waste | 1.11 × 105 | After [42] | 1.60 × 1013 | |
Activated carbon (flue gas treatment) | 7.20 | kg/t-waste | 2.65 × 1012 | [43] | 1.91 × 1013 | |
Electricity (flue gas treatment) | 7.20 × 105 | J/t-waste | 1.74 × 105 | After [42] | 1.26 × 1011 | |
Diesel (flue gas treatment) | 8.48 × 105 | J/t-waste | 1.11 × 105 | After [42] | 9.38 × 1010 | |
Lotion (flue gas treatment) | 5.00 × 10−2 | kg/t-waste | 2.65 × 1012 | [43] | 1.33 × 1011 | |
DTC-dithiocarbamate (ash treatment) | 3.00 × 10−2 | kg/t-waste | 2.65 × 1012 | [43] | 7.95 × 1010 | |
Cement (ash treatment) | 5.58 × 101 | kg/t-waste | 1.04 × 109 | [45] | 5.82 × 1010 | |
F | Maintenance cost and services | 7.49 | $/t | 1.13 × 1012 | Country Emergy/$ ratio | 8.46 × 1012 |
Output | Electricity | 8.25 × 107 | J/t-waste | 1.74 × 105 | After [42] | 1.44 × 1013 |
Slag | 2.57 × 102 | kg/t-waste | 2.70 × 1012 | [18] | 6.94 × 1014 | |
Flue gas discharge | CO2 | 6.34 × 102 | kg/t-waste | |||
CO | 3.80 × 10−1 | kg/t-waste | ||||
SO2 | 4.26 × 10−1 | kg/t-waste | ||||
NOx | 1.19 | kg/t-waste | ||||
HCL | 1.12 × 10−1 | kg/t-waste | ||||
PM10 | 7.70 × 10−2 | kg/t-waste | ||||
Transportation | NMVOC | 1.62 × 10−2 | kg/t-waste | |||
CO | 1.79 × 10−2 | kg/t-waste | ||||
NOx | 5.30 × 10−2 | kg/t-waste | ||||
CO2 | 5.01 | kg/t-waste | ||||
SO2 | 1.12 × 10−3 | kg/t-waste |
Category | Items | Basic data | Per Unit | Transformity (seJ/unit) | Reference | Solar emergy (seJ/t-waste) |
---|---|---|---|---|---|---|
Rw* | Air | - | ||||
G | Diesel (transportation) | 5.62 × 107 | J/t-waste | 1.11 × 105 | After [42] | 6.22 × 1012 |
Electricity (transportation) | 9.96 × 104 | J/t-waste | 1.74 × 105 | After [42] | 1.74 × 1010 | |
Diesel (landfill) | 8.31 × 105 | kg/t-waste | 1.11 × 105 | After [42] | 9.19 × 1010 | |
Electricity (Leachate disposal) | 1.16 × 106 | kwh/t-waste | 1.74 × 105 | After [42] | 2.02 × 1011 | |
Sulfuric acid (Leachate disposal) | 2.00 × 10−2 | kg/t-waste | 2.65 × 1012 | [43] | 5.30 × 1010 | |
F | Maintenance cost and services | 3.17 | $/t-waste | 1.13 × 1012 | Country Emergy/$ ratio | 3.59 × 1012 |
LFG emission | CH4 | 2.93 × 101 | kg/t-waste | |||
CO2 | 5.44 × 101 | kg/t-waste | ||||
H2S | 2.00 × 10−1 | kg/t-waste | ||||
NH3 | 1.00 × 10−1 | kg/t-waste | ||||
CO | 8.00 × 10−2 | kg/t-waste | ||||
Transportation | NMVOC | 1.36 × 10−2 | kg/t-waste | |||
CO | 1.50 × 10−2 | kg/t-waste | ||||
NOx | 4.39 × 10−2 | kg/t-waste | ||||
CO2 | 4.14 | kg/t-waste | ||||
SO2 | 9.28 × 10−4 | kg/t-waste | ||||
Leachate | CODcr | 2.43 | kg/t-waste | |||
NH3-N | 2.63 × 10−2 | kg/t-waste | ||||
SS | 7.70 × 10−2 | kg/t-waste |
3.2. Emission Impacts
Impact category | Sanitary landfills | Fluidized bed incineration | Grate type incineration | Current landfills | ||||
---|---|---|---|---|---|---|---|---|
DALY Lw,1 | PDF Lw,2 | DALY Lw,1 | PDF Lw,2 | DALY Lw,1 | PDF Lw,2 | DALY Lw,1 | PDF Lw,2 | |
CO2 | 7.21 × 1014 | - | 7.91 × 1015 | - | 3.99 × 1015 | - | 3.65 × 1014 | - |
CO | 0.00 | - | 0.00 | - | 0.00 | - | 0.00 | - |
NOx | 5.63 × 1014 | 2.42 × 1015 | 2.13 × 1015 | 9.14 × 1015 | 3.27 × 1015 | 1.41 × 1016 | 1.16 × 1014 | 4.97 × 1014 |
SO2 | 1.47 × 1014 | 1.87 × 1014 | 1.23 × 1015 | 1.56 × 1015 | 6.92 × 1014 | 8.81 × 1014 | 1.50 × 1012 | 1.91 × 1012 |
TSP | 0.00 | - | 1.83 × 1015 | - | 8.57 × 1014 | - | 0.00 | - |
N2O | 0.00 | - | 0.00 | - | 0.00 | - | 0.00 | - |
CH4 | 2.39 × 1015 | - | 0.00 | - | 0.00 | - | 3.83 × 1015 | - |
Category | Equation | Sanitary landfills | Fluidized bed incineration | Grate type incineration | Current landfills |
---|---|---|---|---|---|
Rw* | - | 8.88 × 1013 | 4.08 × 1017 | 1.89 × 1017 | 0.00 |
G | - | 7.16 × 1012 | 3.56 × 1013 | 4.34 × 1013 | 6.58 × 1012 |
F | - | 6.38 × 1012 | 7.05 × 1012 | 8.46 × 1012 | 2.26 × 1013 |
Y | - | 4.28 × 1012 | 4.83 × 1014 | 7.08 × 1014 | 0.00 |
Lw,1* | Lw,1*=∑mi* × DALYi × τH | 3.82 × 1015 | 1.31 × 1016 | 8.81 × 1015 | 4.31 × 1015 |
Lw,2* | Lw,2*=∑mi* × PDF(%)i × EBio | 2.61 × 1015 | 1.07 × 1016 | 1.50 × 1016 | 4.99 × 1014 |
Lw,3 | - | 3.23 × 1016 | - | - | 3.23 × 1016 |
U | G + F + Lw,1* + Lw,2* + Lw,3 | 3.87 × 1016 | 2.38 × 1016 | 2.39 × 1016 | 3.71 × 1016 |
4. Discussion
Type | Title | Note |
---|---|---|
Core law | Law of the People’s Republic of China on the Prevention and Control of Solid Waste Inducing Environmental Pollution. | Y |
Regional guidance law | Law of Urban Residential Garbage Management in Liaoning | N |
Material recycling law | The Recycling Law of Liaoning Household Electrical Appliances | N |
The Recycling Law of Liaoning Waste Battery | N | |
The Recycling Law of Liaoning Waste Wood | N | |
The Classification and Recycling Law of Liaoning Packing Bags and Containers | N | |
Liaoning Food Plastic Packaging Act | N | |
Liaoning Recycling Law of Waste Automobiles | N | |
Law of Liaoning Kitchen Waste Management | O | |
Treatment Facilities Management Law | Urban Residential Garbage Transfer Station Design Specifications in Liaoning | Y |
Urban Residential Garbage Transfer Station Operation Management Specifications in Liaoning | Y | |
Urban Residential Garbage Burning Plants Design Specifications in Liaoning | Y | |
Urban Residential Garbage Burning Plants Operation Specifications in Liaoning | Y | |
Urban Residential Garbage Compost Plant Design Specifications in Liaoning | Y | |
Urban Residential Garbage Compost Plant Operation Specifications in Liaoning | Y | |
Urban Residential Garbage Landfill Plant Design Specifications in Liaoning | Y | |
Urban Residential Garbage Landfill Plant Operation Specifications in Liaoning | Y | |
Urban Residential Garbage Treatment and Pollution Control Technological Policies in Liaoning | Y | |
Graphic Symbols of Liaoning Environmental Sanitation Facilities and Equipment | Y | |
Regulations on Clean-up of Urban Roads and Public Places in Liaoning | Y | |
Sanitation industry standards | Liaoning Environmental Sanitation Quality Standards | Y |
Technical Standards of Liaoning Environmental Sanitation Facilities | O | |
Urban Appearance Standards in Liaoning | Y | |
Liaoning Residential Garbage Can Installation Standards | N | |
Liaoning Residential Garbage Transfer Environmental Standards | N | |
Liaoning Residential Garbage Burning Plant Environmental Standards | N | |
Liaoning Residential Garbage Compost Environmental Standards | N | |
Liaoning Residential Garbage Landfill Plant Environmental Standards | N | |
Residential garbage classification act | Law of Urban Garbage Classification Deposition and Collection in Liaoning | N |
Law of Urban Residential Garbage Reduction in Liaoning | N | |
The Sorting Signs of Urban Residential Garbage in Liaoning | Y | |
The Selection and Assessment Standards of Urban Community with Residential Garbage Classification in Liaoning | O |
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Tarr, J.A. The Search for the Ultimate Sink: Urban Pollution in Historical Perspective; University of Akron Press: Akron, OH, USA, 1996. [Google Scholar]
- The United Nations Environment Programme (UNEP). Waste Management Planning—An Environmentally Sound Approach for Sustainable Urban Waste Management—An Introductory Guide for Decision-Makers; ISBN 92-807-2490-8. United Nations Publications: Nairobi, Kenya, 2004. [Google Scholar]
- Rushbrook, P.; Chandra, C.; Gayton, S.M. Starting Healthcare Waste Management in Medical Institutions—A Practical Approach. In Copenhagen, Practical Health Care Waste Management Information Series No. 1; WHO Regional Office for Europe: Copenhagen, Denmark, 2000; EUR/00/5021817. [Google Scholar]
- Wilson, D.C.; Velis, C.; Cheeseman, C. Role of informal sector recycling in waste management in developing countries. Habitat Int. 2006, 30, 797–808. [Google Scholar] [CrossRef]
- Bilitewski, B.; Härdtle, G.; Marek, K. Waste Management; Springer: Berlin, Germany, 1997; pp. 1–8. [Google Scholar]
- Burian, S.J.; Nix, S.J.; Pitt, R.E.; Durrans, S.R. Urban wastewater management in the United States: Past, present, and future. J. Urban Technol. 2000, 7, 33–62. [Google Scholar] [CrossRef]
- Hoornweg, D.A.; Thomas, L. What a Waste: Solid Waste Management in Asia; Working Paper 1. Urban and Local Government, World Bank: Washington, DC, USA, 1999. Available online: http://www.worldbank.org/html/fpd/urban/publicat/whatawaste.pdf (accessed on 10 October 2013).
- Torres, N.V. S-system modeling approach to ecosystem: Application to a study of magnesium flow in a tropical forest. Ecol. Model. 1996, 89, 109–120. [Google Scholar] [CrossRef]
- Suh, S. Theory of materials and energy flow analysis in ecology and economics. Ecol. Model. 2005, 189, 251–269. [Google Scholar] [CrossRef]
- Lotka, A.J. Elements of Physical Biology; Williams and Wilkins: Baltimore, MD, USA, 1925. [Google Scholar]
- Lindaman, R.L. The trophic dynamic aspects of ecology. Ecology 1942, 23, 399–418. [Google Scholar] [CrossRef]
- Jørgensen, S.E. The Thermodynamic Concept: Exergy. In Thermodynamics and Ecological Modeling; Jørgensen, S.E., Ed.; Lewis Publishers: New York, NY, USA, 2001. [Google Scholar]
- Chen, G.Q. Exergy consumption of the earth. Ecol. Model. 2005, 184, 363–380. [Google Scholar] [CrossRef]
- Sciubba, E. Beyond thermoeconomics? The concept of Extended Exergy Accounting and its application to the analysis and design of thermal systems. Exergy Int. J. 2001, 1, 68–84. [Google Scholar]
- Sciubba, E. Cost analysis of energy conversion systems via a novel resource-based quantifier. Energy 2003, 28, 457–477. [Google Scholar] [CrossRef]
- Sciubba, E.; Ulgiati, S. Emergy and exergy analyses: Complementary methods or irreducible ideological options? Energy 2005, 30, 1953–1988. [Google Scholar] [CrossRef]
- Odum, H.T. Environmental Accounting, Emergy and Decision Making; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Zhang, X.H.; Deng, S.H.; Wu, J.; Jiang, W.J. A sustainability analysis of a municipal sewage treatment ecosystem based on emergy. Ecol. Eng. 2010, 36, 685–696. [Google Scholar] [CrossRef]
- Cherubini, F.; Bargigli, S.; Ulgiati, S. Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration. Energy 2009, 34, 2116–2123. [Google Scholar] [CrossRef]
- Yuan, F.; Shen, L.Y.; Li, M.Q. Emergy analysis of the recycling options for construction and demolition waste. Waste Manag. 2011, 31, 2503–2511. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H.; Deng, S.H.; Zhang, Y.Z.; Yang, G.; Li, L.; Qi, H.; Xiao, H.; Wu, J.; Wang, Y.L.; Shen, F. Emergy evaluation of the impact of waste exchanges on the sustainability of industrial systems. Ecol. Eng. 2011, 37, 206–216. [Google Scholar] [CrossRef]
- Song, Q.B.; Wang, Z.S.; Li, J.H. Sustainability evaluation of e-waste treatment based on emergy analysis and the LCA method: A case study of a trial project in Macau. Ecol. Indic. 2013, 30, 138–147. [Google Scholar] [CrossRef]
- Mendes, M.R.; Aramaki, T.; Hanaki, K. Assessment of the environmental impact of management measures for the biodegradable fraction of municipal solid waste in São Paulo city. Waste Manag. 2003, 23, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Agostinho, F.; Almeida, C.M.V.B.; Bonilla, S.H.; Sacomano, J.B.; Giannetti, B.F. Urban solid waste plant treatment in Brazil: Is there a net emergy yield on the recovered materials? Resour. Conserv. Recycl. 2013, 73, 143–155. [Google Scholar] [CrossRef]
- Ulgiati, S.; Brown, M.T.; Bastianoni, S.; Marchettini, N. Emergy-based indices and ratios to evaluate the sustainable use of resources. Ecol. Eng. 1995, 5, 519–531. [Google Scholar] [CrossRef]
- Ulgiati, S.; Brown, M.T. Quantifying the environmental support for dilution and abatement of process emissions: The case of electricity production. J. Clean. Prod. 2002, 10, 335–348. [Google Scholar] [CrossRef]
- Hau, J.L.; Bakshi, B.R. Promise and problems of emergy analysis. Ecol. Model. 2004, 178, 215–225. [Google Scholar] [CrossRef]
- Brown, M.T.; Ulgiati, S. Emergy, Transformity and Ecosystem Health. In Handbook of Ecological Indicators for Assessment of Ecosystem Health; Jørgensen, S.E., Costanza, R., Xu, F.L., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 333–352. [Google Scholar]
- Lei, K.P.; Wang, Z.S. Emergy synthesis and simulation for Macao. Energy 2008, 33, 613–625. [Google Scholar] [CrossRef]
- Zhang, X.H.; Jiang, W.J.; Deng, S.H.; Peng, K. Emergy evaluation of the sustainability of Chinese steel production during 1998–2004. J. Clean. Prod. 2009, 17, 1030–1038. [Google Scholar] [CrossRef]
- Udo de Haes, H.A.; Lindeijer, E. The Conceptual Structure of Life Cycle Impact Assessment, Final Draft for the Second Working Group on Impact Assessment of SETAC Europe (WIA-2); Society of Environmental Toxicology and Chemistry (SETAC): Brussels, Belgium, 2001. [Google Scholar]
- Besiou, M.; Georgiadis, P.; van Wassenhove, L.N. Official recycling and scavengers: Symbiotic or conflicting? Eur. J. Oper. Res. 2011, 218, 563–576. [Google Scholar] [CrossRef]
- Brown, M.; Ulgiati, S. Emergy measures of carrying capacity to evaluate economic investment. Popul. Environ. 2001, 22, 471–501. [Google Scholar] [CrossRef]
- Campbell, D.E.; Brandt-Williams, S.L.; Meisch, M.E.A. Environmental Accounting Using Emergy: Evaluation of the State of West Virginia; United States Environmental Protection Agency (USEPA): Narragansett, RI, USA, 2005. [Google Scholar]
- Liu, G.Y.; Yang, Z.F.; Chen, B.; Zhang, Y.; Zhang, L.X.; Zhao, Y.W.; Jiang, M.M. Emergy-based urban ecosystem health assessment: A case study of Baotou, China. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 972–981. [Google Scholar] [CrossRef]
- Liu, G.Y.; Yang, Z.F.; Chen, B.; Ulgiati, S. Analysis of the scientific collaboration patterns in the emergy accounting field: A review of the co-authorship network structure. J. Environ. Account. Manag. 2013, 1, 1–13. [Google Scholar] [CrossRef]
- Goedkoop, M.; Spriensma, R. The Eco-indicator 99: A Damage Oriented Method for Life Cycle Impact Assessment: Methodology Report; Pre. Consultans: Amersfoort, The Netherlands, 2000. Available online: http://www.pre-sustainability.com/download/misc/EI99_methodology_v3.pdf (accessed on 10 October 2013).
- Murray, C.J.L.; Lopez, A.D.; Jamison, D.T. The global burden of disease in 1990: Summary results, sensitivity analysis and future directions. Bull. World Health Organ. 1994, 72, 495–509. [Google Scholar] [PubMed]
- Ukidwe, N.U.; Bakshi, B.R. Industrial and ecological cumulative exergy consumption of the United States via the 1997 input–output benchmark model. Energy 2007, 32, 1560–1592. [Google Scholar] [CrossRef]
- Brown, M.T.; Ulgiati, S. Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline. Ecol. Model. 2010, 221, 2501–2508. [Google Scholar] [CrossRef]
- Losowska, M. Embodied Energy Counting of Sustainable Heat, Power and Steel Processes. Master Thesis; The School for Renewable Energy Science, University of Iceland & University of Akureyri: Akureyri, Iceland, February 2011; pp. 53–54. Available online: http://skemman.is/stream/get/1946/7735/20130/1/MagdalenaLosowska.15.02.11.pdf (accessed on 10 October 2013).
- Odum, H.T.; Brown, M.T.; Brandt-Williams, S. Handbook of Emergy Evaluation Folio 1: Introduction and Global Budget; Center for Environmental Policy, University of Florida: Gainesville, FL, USA, 2000. Available online: http://www.epa.gov/aed/html/collaboration/emergycourse/presentations/Folio1.pdf (accessed on 10 October 2013).
- Grönlund, E.; Klang, A.; Falk, S.; Hanæus, J. Sustainability of wastewater treatment with microalgae in cold climate, evaluated with emergy and socio-ecological principles. Ecol. Eng. 2004, 22, 155–174. [Google Scholar] [CrossRef]
- Brandt-Williams, S.L. Handbook of Emergy Evaluation: Folio #4; Center for Environmental Policy, Environmental Engineering Sciences, University of Florida: Gainesville, FL, USA, 2001. Available online: http://www.cep.ees.ufl.edu/emergy/documents/folios/Folio_04.pdf (accessed on 10 October 2013).
- Pereira, J.T.V.; Nebra, S.A. Transformities and Exergetic Cost—A Discussion. In Emergy Synthesis: Theory and Application of the Emergy Methology; Brown, M.T., Ed.; Department of Environmental Engineering Sciences: Gainesville, FL, USA, 2000; pp. 71–80. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liu, G.; Yang, Z.; Chen, B.; Zhang, Y.; Su, M.; Zhang, L. Emergy Evaluation of the Urban Solid Waste Handling in Liaoning Province, China. Energies 2013, 6, 5486-5506. https://doi.org/10.3390/en6105486
Liu G, Yang Z, Chen B, Zhang Y, Su M, Zhang L. Emergy Evaluation of the Urban Solid Waste Handling in Liaoning Province, China. Energies. 2013; 6(10):5486-5506. https://doi.org/10.3390/en6105486
Chicago/Turabian StyleLiu, Gengyuan, Zhifeng Yang, Bin Chen, Yan Zhang, Meirong Su, and Lixiao Zhang. 2013. "Emergy Evaluation of the Urban Solid Waste Handling in Liaoning Province, China" Energies 6, no. 10: 5486-5506. https://doi.org/10.3390/en6105486
APA StyleLiu, G., Yang, Z., Chen, B., Zhang, Y., Su, M., & Zhang, L. (2013). Emergy Evaluation of the Urban Solid Waste Handling in Liaoning Province, China. Energies, 6(10), 5486-5506. https://doi.org/10.3390/en6105486