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Abstract: Accurate prediction of the remaining useful life (RUL) of lithium-ion batteries is 

important for battery management systems. Traditional empirical data-driven approaches 

for RUL prediction usually require multidimensional physical characteristics including the 

current, voltage, usage duration, battery temperature, and ambient temperature. From a 

capacity fading analysis of lithium-ion batteries, it is found that the energy efficiency  

and battery working temperature are closely related to the capacity degradation, which 

account for all performance metrics of lithium-ion batteries with regard to the RUL and  

the relationships between some performance metrics. Thus, we devise a non-iterative 

prediction model based on flexible support vector regression (F-SVR) and an iterative 

multi-step prediction model based on support vector regression (SVR) using the energy 

efficiency and battery working temperature as input physical characteristics. The experimental 

results show that the proposed prognostic models have high prediction accuracy by using 

fewer dimensions for the input data than the traditional empirical models. 

Keywords: lithium-ion batteries; remaining useful life (RUL); energy efficiency;  

working temperature; flexible support vector (SV) 
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1. Introduction 

Given the increase in economic development and the growing demand for energy, available energy 

supplies decrease sharply each year, particularly oil supplies. In light of this fact, environmental 

problems and global warming are becoming increasingly serious issues owing to the depletion of 

fossil fuels; therefore, there is an urgent need for new energy sources to be able to meet the daily 

requirements of energy across the globe [1]. As compared with other types of batteries, lithium-ion 

batteries have high energy density, a long lifetime, stable electrochemical properties, the ability to 

store electrical energy with low loss, and no memory effect [2]. Despite their overall advantages, 

their rated capacity will fade over repeated charge and discharge cycles [3]. 

Prognostics and health management (PHM) for batteries is an enabling discipline including 

technologies and methods to accurately assess the lifetime of a product to maintain the normal 

operation of electronic systems or equipment [4–6]. PHM for batteries has garnered considerable 

attention in the research community for work on various performance metrics [7–10]. The operation of 

a battery is dynamic, and the battery’s performance is strongly influenced by the ambient temperature 

and different load conditions [11]. Battery-life prediction metrics are, most importantly, used to 

evaluate the state of health (SOH) [12–15] of batteries; the SOH measures the stored energy and the 

ability to deliver the available power. Battery failure could lead to reduced performance, operational 

impairment, and even catastrophic failure. Therefore, estimating the end of life (EOL) or providing 

the remaining useful life (RUL) [16,17] estimates of lithium-ion batteries plays a significant role  

in PHM. 

Traditionally, prognostics can be implemented using either model-based or data-driven approaches. 

Model-based approaches [3] need to know the battery characteristics and physical structure, but these 

are difficult to obtain under typical conditions. Data driven approaches [18–21] are not based on 

accurately modeling the physics of a system but do mine the hidden information via a variety of data 

analysis methods; such approaches are practical forecast methods that avoid deriving a complex model. 

There are some classical data-driven approaches for RUL prediction, such as an auto-regressive 

moving average (ARMA) model [22], a neural network (NN) model [23,24], a fuzzy logic method [23,25], 

a support vector machine (SVM) method [26], a relevance vector machines (RVM) method [27] and 

other intelligent computation methods. However, these methods based on lithium-ion batteries of the 

same size and chemical composition are suitable for offline analysis by collecting sensor data and 

historical test data for various load operations. These methods only consider the current, voltage, 

capacity, and time, and ignore the battery temperature and ambient temperature because the 

relationships in their physical quantities are neglected. This leads to the lack of rationality and  

low prediction accuracy. 

The previous PHM models ignore the correlation in current, voltage and operation time. In this paper, 

a new battery PHM approach is proposed. The proposed method takes into account the process of 

lithium-ion battery capacity fading, battery performance metrics (current, voltage, time, battery 

temperature, and ambient temperature) and the correlation in current, voltage and operation time. 

Energy efficiency has a direct relationship between the charge and discharge process of the battery. 

In investigating the root causes of degradation mechanisms and their effect on capacity loss, 

changes in the electrical, chemical and physical properties of anode, cathode and electrolyte during 
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controlled cycling test must be studied. The chemistries of the lithium-ion batteries generate this heating, 

and it causes surface temperature increasing. The lithium-ion battery capacity degradation is also 

closely related with the ambient temperature. Ambient temperature is a significant factor that influences 

the RUL prediction. During the different ambient temperature, capacity degradation of the lithium-ion 

will be different. Especially, the lithium-ion battery capacity is fading very quickly at low temperature [28]. 

Furthermore, a dimension reduction is used to determine the two characteristic quantities, namely, 

the energy efficiency and battery working temperature. Because the battery capacity degradation 

exhibits regional variation, our new method introduces a non-iterative prediction model based on 

flexible support vector regression (F-SVR) [29]. The F-SVR method divides the training sample dataset 

into several domains according to the distribution complexity, and generates a different parameter set 

for each domain. In addition, a multi-step prediction model based on support vector regression (SVR) [14] 

is used to iteratively predict by using the part of the current status to predict the next state. The proposed 

two models consider the effects of all the performance metrics of the lithium-ion battery on the RUL 

and their relationships. 

The remainder of this paper is organized as follows: Section 2 introduces the experimental equipment, 

data sources, and lithium-ion battery capacity degradation; Section 3 presents two characteristic 

quantities obtained via computation: the energy efficiency and battery working temperature; Section 4 

introduces the SVR and F-SVR theory and presents the non-iterative prediction model and multi-step 

predictive mode; Section 5 summarizes the experimental procedures and the prognostic results; finally, 

Section 6 presents the conclusions and future work. 

2. Analysis of Lithium-Ion Battery Capacity Degradation 

2.1. Experimental Equipment and Data Sources 

The battery data used to perform the prognostics were obtained from the data repository of the National 

Aeronautics and Space Administration (NASA) Ames Prognostics Center of Excellence (PCoE) [30]. 

The experiments were stopped when the batteries reached the EOL criterion, which was a 30% fade in 

rated capacity (from 2 A·h to 1.4 A·h). 

2.2. Capacity Degradation 

The remaining capacity of a lithium-ion battery is influenced by many factors. Further, a lithium-ion 

battery does not undergo a complete charge process or a complete discharge process in actual operation. 

In this study, a typical charge and discharge process is regarded as a valuable cycle. It should be noted 

that the maximum capacity of the battery decreases with an increase in the battery working time [6] 

according to the current two sets of battery data. The battery capacity degradation for different 

discharging levels and different ambient temperatures is shown in Figure 1. 

The measurements in Figure 1a were carried out at a constant current (CC) level of 2 A for 

Batteries Nos. 5 and 7 discharging at an ambient temperature of 24 °C; the measurements in Figure 1b 

were carried out at a CC level of 1 A to discharge Batteries Nos. 47 and 48 at an ambient temperature 

of 4 °C. Figure 1 shows that the battery capacity does not always decrease monotonically, but instead 

experience a sudden increase during the cycle. As an example, Figure1a shows the capacity of 
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different batteries increasing rapidly during the 90th cycle, resulting from self-charging [31] during the 

rest period. The explanation for this effect is that some chemical reactions occur during battery use, 

and some chemical products appear near the two electrodes, which retard the internal chemical 

reactions. Therefore, the battery needs a short rest period to melt these chemical products. The capacity 

of the battery increases suddenly owing to an increase in the available capacity in the next cycle. 

Figure 1 shows that the capacity degradation of the lithium-ion battery is regional; thus, the non-iterative 

prediction model is suitable for the F-SVR method. The F-SVR method will be detailed in Section 4. 

Figure 1. Capacity degradation at different ambient temperatures of (a) 24 °C and (b) 4 °C. 

 
(a) (b) 

3. Energy Efficiency and Working Temperature 

Current, voltage, and temperature have direct impacts on the battery capacity because of the nature of 

the battery mechanism and the electrochemical characteristics. The remaining capacity of a lithium-ion 

battery is influenced by many factors. Table 1 lists the symbols related to these parameters. 

Table 1. Descriptions of symbols and acronyms. 

Symbols Description Symbols Description 

ICi Charge current in the ith cycle WCi Charge power in the ith cycle 
IDi Discharge current in the ith cycle WDi Discharge power in the ith cycle 
UCi Charge voltage in the ith cycle ηi Energy efficiency in the ith cycle 
UDi Discharge voltage in the ith cycle Ci The capacity in the ith cycle 
tCi Charge time in the ith cycle i Cycle 
tDi Discharge time in the ith cycle RUL Remaining useful life 
wti Temperature in the ith cycle SVR Support vector regression 
T Ambient temperature F-SVR Flexible support vector regression 
bti Working temperature in the ith cycle SSE Sum of squared errors 
W Power of the battery RMSE Root mean square error 

The charging and discharging conditions for Batteries Nos. 5 and 48, respectively, from the data 

repository of the NASA Ames PCoE are shown in Figure 2. 

Figure 2a,c,e shows the current, voltage, and temperature of Batteries Nos. 5 and 48 during the 

charging condition, respectively. Battery No. 5 is charged at an ambient temperature of 24 °C, in a 

CC mode at 1.5 A until the battery voltage reaches 4.2 V (190th sampling point), following which it 

continues to trickle charge [32]. Trickle charging means charging a fully charged battery under no-load 
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at a rate equal to its self-discharge rate, thus enabling the battery to remain at its fully charged level. 

At the 230th sampling point, the battery temperature is at the highest position. At the same time, 

Battery No. 48 is charged at an ambient temperature of 4 °C until the battery voltage reaches 4.2 V 

(227th sampling point), following which it continues to trickle charge. 

Figure 2b,d,f shows the current, voltage, and temperature of Batteries Nos. 5 and 48 during the 

discharging condition, respectively. Batteries Nos. 5 and 48, are discharged in a CC mode at 2 A. 

At the 180th and 459th sampling points for Batteries Nos. 5 and 48, respectively, the battery current is 

close to 0 A, the battery voltage reaches the lowest point, and the battery temperature is at its 

highest position. After the 180th and 459th sampling points, their temperatures decrease sharply, 

and their voltages increase slightly, which is called self-charging [33]. The ambient temperature is 

related to the battery capacity; therefore, the temperature should be used in the prediction models as 

the battery characteristic. 

Figure 2. Charging and discharging conditions of Batteries No. 5 and 48: (a) current during 

charging; (b) current during discharging; (c) voltage during charging; (d) voltage during 

discharging; (e) temperature during charging; and (f) temperature during discharging. 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 
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In this paper, we define the input as a set comprising the charge current, discharge current, charge 

voltage, discharge voltage, charge time, discharge time, battery temperature, and ambient temperature, 

and we regard the capacity as the output space. In other words, we take the known quantities as the 

input space X = (ICi, IDi, UCi, UDi, tCi, tDi, wti, T), where there are some known relationships among 

these quantities as the following equations: 

W = I × U × t (1)η = ୈܹେܹ × 100%  (2)

bti = wti − T (3)

Equation (1) shows the expression for electrical work that is the work done on a charged particle by 

an electric field. Three dimensions including current, voltage and time turn to only one dimension. 

Equation (2) is the definition of energy efficiency that the discharging electrical power divides by the 

charging electrical power during one valuable cycle. Equation (3) means that the working temperature 

is equal to the difference between battery temperature and ambient temperature. This is the actual 

temperature of the battery due to the operations. In addition, Equation (4) reduces two dimensions 

including battery temperature and ambient temperature by one dimension. Their relationships can 

reduce dimensions of input space and the computational complexity. 

Therefore, there is a dimension reduction mapping Ø: R8 → R2: Ø(ܺ) = ቆ∑ ୈܫ × ܷୈ × ∑ୈୀݐ େܫ × ܷେ × େୀݐ × 100%,∑ ݐݓ) − ܶ)ୀ ݅ ቇ (4)

where i = 1, 2, 3 …. The first item of Equation (4) is the battery energy efficiency and the last item is the 

average working temperature according to Equations (1)–(3). The current methods establish prediction 

model using current, voltage, operation time, ambient temperature and so on. These current methods 

ignore the correlation of some performance metrics. Current, voltage and operation time jointly determine 

the physical performance called energy efficiency. Meantime, energy efficiency is closely related to 

the charge and discharge process of the battery. Therefore, we introduce energy efficiency as a key 

feature to predict the RUL of the lithium-ion batteries. In addition, the prediction models in this paper 

use energy efficiency and average working temperature as input data. These two physical quantities 

can not only preserve all the physical quantities (current, time, temperature and voltage) of the battery 

but also reduce the input dimensions (energy efficiency and average working temperature). 

3.1. Energy Efficiency 

Energy efficiency [17] is defined as the percentage of energy use which actually achieves the 

energy service required: η = ୈܹܹେ × 100% (5)

where WD is the energy efficiency during discharging, and WC is the energy efficiency during charging. 

The energy efficiency of lithium-ion batteries reflects discharging and charging energy powers at the 

same cycle, so it is closely related to the battery capacity. 
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3.2. Working Temperature 

Equation (3) indicates that the battery’s working temperature is the result of subtracting the ambient 

temperature from the battery temperature owing to the operation of the battery. Furthermore, the 

battery’s working temperature is composed of two parts: the charging temperature and the discharging 

temperature. In this paper, we define that the mapping of the battery temperature in Equation (4) 

represents the average working temperature as a scalar value for each cycle. 

4. Prediction of the Remaining Useful Life for Lithium-Ion Batteries 

In this study, we calculate the energy efficiency and average working temperature via computation 

with the original data, which reduces the dimensions of the input data. Then, we present a non-iterative 

prediction model and a multi-step prediction model using F-SVR [29] and SVR [14] theory, 

respectively, in the training process. The capacity degradation of the lithium-ion battery is regional; 

therefore, the non-iterative prediction model is suitable for the F-SVR method. The F-SVR method 

divides the training sample dataset into several regions according to the distribution complexity and  

then generates a different parameter set for each region, so it can accurately fit the RUL trend.  

The non-iterative prediction model provides the battery capacity forecasting results of all the cycles, 

whereas the multi-step prediction model forecasts the battery capacity of the next cycle, and the 

prediction results are obtained through data iteration, as shown in Figure 3. 

Figure 3. Battery RUL prediction model based on energy efficiency and the average 

working temperature: (a) the non-iterative prediction model based on the F-SVR method; 

and (b) the iterative multi-step prediction model based on the SVR method. 

 
(a) 

(b) 
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4.1. Support Vector Regression 

The support vector (SV) algorithm [34] is a nonlinear generalization of the generalized portrait 

algorithm developed by Vapnik [35] in the 1960s. SVR [14] adopts the original machine learning 

algorithm and applies it for non-parametric function estimation. Conventional SVR is formulated 

as a convex quadratic programming (QP) problem and has been successfully applied in identifying 

nonlinear dynamic systems. SVR is chosen for this study because of its excellent approximation and 

generalization capability and its demonstrated potential in the realm of nonlinear system identification. 

We assume that we are given training data {(x1, y1), … , (xl, yl)} with unknown distribution 

function, the core technique for SVR is to find a proper parameter vector p0 and the optimal  

hyper-plane (the vector w0): (, (ݓ = argmin,௪ : ܴௌோெ(௪,) = ܴாோெ + ϕ(ݓ)
= argmin,௪ : 1݈ݏݏܮ൫ݕ, f(ݔ, ,ݓ ൯( + 12୪

୧ୀଵ ݓ) ⋅ (6) (ݓ

where Loss(yi, f(xi, w, p)) = (Ci|yi − (∑l 
iβiK (x, y) + b)|ε, p: C, ε, K(·), C is the penalty parameter, ε is the 

insensitive parameter, K(·) is the kernel function, w is the weight vector, p is the regression parameter,  

βi is the Lagrange multiplier and |yi − (∑l 
iβiK(x, xi) + b)|ε is the slack variable. 

4.2. Flexible Support Vector Regression 

Considering the penalty parameter C = c(xi), the insensitive parameter ε = g(xi), and the parameter 

for the RBF kernel width σ = s(xi) as flexible parameters, the following Lagrangian can be obtained to 

compute the regression using a direct development of Hao’s work [36]: min: (α)ܮ = 12 +(ݓ,ݓ) (ξ(ݔ)ܿ	 + ξ∗)
ୀଵ−α(ݕ − ,ݓ) (ݔ − ܾ + g(ݔ) + ξ)

ୀଵ−α∗(−ݕ + ,ݓ) (ݔ + ܾ + g(ݔ) + ξ∗) −(βξ + β∗ξ∗)	
ୀଵ


ୀଵ  

(7)

where: 

ξ = อݕ − (β ݔ‖ − (ݔ)ݏ‖ଶ2ݔ
ୀଵ + ܾ)อ(௫) (8)

However, there are too many variables in this Lagrangian formula, and the optimization will require 

considerable computation which reduces its feasibility. Thus, F-SVR has partly combined the work of 

Cherkassky and Ma [37] and the idea of Hao’s variable parameters to set flexible parameters. The basic 
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idea of the proposed F-SVR is that the training samples should be divided into several regions according 

to the distribution complexity, and different parameters should be set for different regions. 

If the distribution is complicated, rigorous parameters should be set, on the other hand, slack parameters 

should be set. The F-SVR method is used to obtain a group of parameter sets p* = {p* 
1 , p* 

2 , ..., p* 
k } that 

can minimize the following formula: ܴ(ݓ, ( = ∬ భ்ܮ൫ݕ, f(ݔ, ,ݓ ,ݔ)ଵ)൯p ݕdݔd(ݕ + ∬ మ்ܮ൫ݕ, f(ݔ, ,ݓ ,ݔ)ଶ)൯p 	ݕdݔd(ݕ + ⋯ +∬ య்ܮ൫ݕ, f(ݔ, ,ݓ ,ݔ)ଷ)൯p (9) ݕdݔd(ݕ

Equation (9) can be minimized by solving a QP problem. Therefore, we propose a flexible method 

to implement SVR, which divides the training samples into several regions and generates variable 

parameters in different regions. It replaces the fixed parameter set p: {ε, σ, C} with a group of adaptive 

parameter sets: ൜∗ = ሼ(εଵ, σଵ, ,(ଵܥ (εଶ, σଶ, ⋯,(ଶܥ , (ε, σ, )ሽεܥ = gଵ( ܶ), σ = gଶ( ܶ), ܥ = gଷ( ܶ)  (10)

where the training samples have been divided into k regions and where Ti and pi are the training 

samples and parameter set for the ith region, respectively. The significant of their work is the idea of 

flexibility: parameters should vary according to sample distribution but not as constants. However, 

only one of the three parameters was investigated in his paper, and in some cases, it is insufficient for 

practical application. Therefore, we propose a flexible method for SVR, which divides the training 

samples into several regions, and generates variable parameters in different regions. It replaces the fixed 

parameter set p: {ε, σ, C} with a group of adaptive parameter sets Equation (10). 

The specific implementation process of F-SVR is as follows: 

Step 1. Selecting SVs for each region: the samples have been divided into k regions with different 

CP values which are used to measure the distribution complexities. In addition, a suitable set of 

parameters p is given for each region according to the CP value. As mentioned above, the selected 

parameter p determines which samples should be picked up as SVs. 

Step 2. Selecting a new training set: if TSi is the selected SV for the ith region, we obtain the new 

training set SVs = {TS1, TS2, …, TSk} = {SVj}m 
j=1. 

Step 3. Selecting the function approximation: according to Equation (11), the regression could be 

managed by approximating the unknown function of the new training set which is composed of all SVs: f(ݔ) =γ
ୀଵ K(ݔ, ܵ ܸ) + γ (11)

Generally, a large value for k may lead to more reasonable choosing of SVs but also causes a 

significant increase in computing time. There exists a trade-off between the computing time and the 

k regions. In many cases, a setting of 1 ≤ k ≤ 5 is more than enough. CP is the complexity estimating 

function. S is the function to evaluate the quality of the sample division. If the training samples have 

been divided into k regions, the complexity for each region is CPi = 1, 2, …, k. 

The SVR method aims to obtain the global optimal fitting results from the total training data. 

This method is more suitable for short-term or medium-term prediction and real-time monitoring systems. 
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Because the SVR can obtain the optimal one-step prediction, we can adopt a period of data to obtain 

the predictive results. However, the F-SVR method aims to obtain the local optimal fitting results 

from the original data that divide the training sample into several regions according to the 

distribution complexity of all data. In this way, the F-SVR method will generate different parameters 

for each sub-dataset; thus, it is suitable for predicting the whole trend. 

In the prediction models presented in this paper, we set k1 and k2 as 3 and 2, respectively, according 

to Figure 1. The capacities of Batteries No. 5 and 7 increased rapidly at the 48th and the 90th cycle, 

whereas the capacities of Batteries Nos. 47 and 48 increased rapidly at the 14th cycle, resulting from 

self-charging during the rest period. Figure 1b shows that the capacity decreased rapidly and reached 

the EOL at the 16th cycle. Therefore, we only consider 29 cycles and k2 = 2 is more than enough for 

Batteries Nos. 47 and 48. Figure 4 presents the regions of capacity at different ambient temperatures. 

Figure 4. Regions of the capacity at different ambient temperature of (a) 24 °C and (b) 4 °C. 

(a) (b) 

4.3. Non-Iterative Prediction Model 

The non-iterative prediction model is used to consider the influence of the energy efficiency and the 

average working temperature on the remaining capacity. This model uses the known ith cycle energy 

efficiency ηi and the average working temperature bti to forecast the ith cycle battery capacity as follows: 

Ci = h(ηi,bti) (12)

The battery data for charging at a CC level of 2 A, at an ambient temperature of 24 °C, have been 

divided into three regions on the basis of the F-SVR concept, as shown in Figure 4a. Therefore,  

the non-iterative prediction model at an ambient temperature of 24 °C can be described as follows: 

ܥ = ቐ ℎଵ(η, (ݐܾ 1 ≤ ݅ ≤ 47ℎଶ(η, (ݐܾ 48 ≤ ݅ ≤ 89ℎଷ(η, (ݐܾ 90 ≤ ݅ ≤ 168 (13)

The battery data for charging at a CC level of 2 A and an ambient temperature of 24 °C, have been 

divided into three regions. Because the battery capacity degradation of Batteries Nos. 47 and 48 is 

rapid as shown in Figure 1b, and the capacity exhibits complex behavior after reaching the failure 
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threshold, we only consider 29 cycles for Batteries Nos. 47 and 48 as shown in Figure 4b. Figure 4b 

shows that only the T1 and T2 region can be used for making predictions. Therefore, the non-iterative 

prediction model at an ambient temperature of 24 °C can be described as follows: ܥ = ൜ ℎସ(η, (ݐܾ 1 ≤ ݅ ≤ 11ℎହ(η, (ݐܾ 12 ≤ ݅ ≤ 29 (14)

4.4. Iterative Multi-Step Prediction Model 

It should be noted that the maximum available capacity decreases with an increase in the battery 

working time. The iterative multi-step prediction model is used to predict the capacity of the next cycle 

from the capacities of the previous cycles, and it is then used to obtain extrapolation forecasting results 

after multiple iterations. A lithium-ion battery does not undergo a complete charge process or a 

complete discharge process in actual operation; therefore, ηi and bti for each cycle have an impact on 

the capacity variation as follows: 

ΔCi = z(ηi,bti) (15)

The battery capacity variation is the difference between the remaining battery capacity of a given 

cycle and that of the next cycle: 

ΔCi = Ci−1 − Ci (16)

Therefore, the iterative multi-step prediction model can be described as follows: 

Ci = Ci−1 − Ci (17)

5. Prognostic Results and Discussion 

In the experiment, we adopt the sum of squared errors (SSE), the root mean square error (RMSE), 

and the RUL estimate error to analyze the prediction results and quantitatively evaluate the comparison 

results. The SSE is the sum of the squared differences between each observation and its group’s mean 

and can be used as a measure of the variation within a cluster. The formula for the SSE is given as follows:  ܵܵܧ =(ݕො − )ଶݕ
ୀଵ  (18)

The RMSE gives the standard deviation of the model prediction error. A smaller value indicates 

better model performance. The formula for the RMSE is given as follows: 

ܧܵܯܴ = ඩ1݊(ݕො − )ଶݕ
ୀଵ  (19)

The RUL estimate error is the absolute value of the difference between the number of real cycles 

and the predicted number of cycles. The formula for the RUL estimate error is given as follows: ܧோ = หܴܷܮ୰ୣୟ୪ − ୮୰ୣୢ୧ୡ୲୧୭୬ห (20)ܮܷܴ
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This section presents the experimental results of the two proposed models. According to distribution 

complexity of different samples, the real value of parameter is a certain probability to be around the 

certain rang. In this paper, we think that all the parameters are normal distribution. In the first case, the 

data of Battery No. 5’s even-number cycles are used for training to obtain the parameters of the 

prediction model with Equations (13) and (14). The data of Battery No. 5’s odd-number and  

No. 7’s cycles are for testing. Because the capacities of Batteries Nos. 47 and 48 decrease sharply and 

their lifetimes are short, the data for Batteries Nos. 47 and 48 are used to train and test. The detailed 

results are shown in Figures 5 and 6 and Table 2. 

Figure 5. Comparison between the results obtained from the results of the SVR and F-SVR 

methods at an ambient temperature of 24 °C. Predictive results of the SVR method for: 

(a) Battery No. 5’s odd-number cycles; and (b) Battery No. 7. Predictive results of the 

F-SVR method for: (c) Battery No. 5’s odd-number cycles; and (d) Battery No. 7. 

(a) (b) 

(c) (d) 

The experimental results show that the F-SVR method can more accurately fit the RUL trend than 

the SVR method. The predicted values for Battery No. 7 in the T3 region with the F-SVR method are 

not accurate with respect to the real data because Battery No. 7 does not reach the EOL, and its 

capacity slowly degrades. 
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Figure 6. Comparison between the results obtained from the results of the SVR and F-SVR 

methods at an ambient temperature of 4 °C. Predictive results of the SVR method for:  

(a) Battery No. 47; and (b) Battery No. 48. Predictive results of the F-SVR method for: 

(c) Battery No. 47; and (d) Battery No. 48. 

(a) (b) 

(c) (d) 

Table 2. Comparisons between the results obtained from the SVR and F-SVR methods for 

predicting the RULs of different batteries. 

Battery Method SSE RMSE Real cycle Predictive cycle ERUL 

No. 5’s odd-number cycle 
SVR 0.6378 0.0394 62 60 2 

F-SVR 0.1250 0.0231 62 61 1 

No. 7 
SVR 0.6216 0.0202 168 168 0 

F-SVR 0.8642 0.0407 168 150 18 

No. 47 
SVR 0.0369 0.0097 10 7 3 

F-SVR 0.0337 0.0099 10 11 1 

No. 48 
SVR 0.0473 0.0050 11 9 2 

F-SVR 0.0318 0.0069 11 11 0 

In the second case, the forecasts of the RUL of a lithium-ion battery are not significant because 

the battery degrades sharply and the short lifetime is at a low temperature. Thus, the data from 
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Battery No. 5’s current states are used to determine the iterative multi-step prediction model 

parameters by using Equations (16) and (17), whereas Battery No. 5 is used for testing to show the 

capacity fading trend compared to the forecast at 40, 60, and 80 cycles due to Battery No. 7 not 

reaching the EOL. The detailed results are shown in Figure 7 and Table 3. The experimental results 

show that the RUL estimate error decreases with an increase in the number of cycles. 

Figure 7. RUL estimation based SVR method for Battery No. 5 at different starting points: 

(a) at the 40th point; (b) at the 60th point; and (c) at the 80th point. 

(a) (b) 

(c) 

Table 3. Comparisons at different starting points for predicting the RUL of Battery No. 5. 

ith cycle SSE RMSE Real Cycle Predictive Cycle ERUL 
40th cycle 6.7649 0.1150 124 112 12 
60th cycle 0.6719 0.0210 124 140 16 
80th cycle 0.2807 0.0300 124 118 6 

From the above discussion, we concluded that the working temperature has some effects on the 

RUL of lithium-ion batteries and the energy efficiency is related to the RUL of lithium-ion batteries. 

Thus, it is feasible to develop a lifetime prediction model for lithium-ion batteries on the basis of the 

energy efficiency and working temperature. 
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6. Conclusions 

A lithium-ion battery will decrease in capacity over repeated charge and discharge cycles which 

may lead to failure of a battery even catastrophic failure. Accurate prediction of the RUL of a lithium-ion 

battery is of vital importance. From the analysis of the lithium-ion battery data, we use the energy 

efficiency and working temperature as the input data of the proposed models. In contrast with other 

methods, the proposed method considers the effects of all the performance metrics of a lithium-ion 

battery on the RUL and the relationships between each performance metric. The non-iterative 

prediction model based on F-SVR is suitable for long-term prediction, whereas the iterative multi-step 

prediction model based on SVR is suitable for short-term or medium-term prediction and real-time 

monitoring systems. 

The following contributions of this study include: 

(1) the energy efficiency and the battery working temperature are used as input physical 

characteristics of the two proposed models; 

(2) the energy efficiency is found to be closely related to the capacity of the lithium-ion battery; 

(3) a non-iterative prediction model based on the F-SVR method is proposed; 

(4) an iterative multi-step prediction model based on the SVR method is proposed. 

Our future work includes estimation of the RUL of the lithium-ion battery using the energy 

efficiency. Furthermore, the current linear prediction model has a one-step prediction value; therefore, 

further research should be focused on modifying the linear model with the energy efficiency and 

obtaining more accurate nonlinear iterative multi-step prediction. 
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