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Abstract: In this paper, an asymmetrical fuzzy-logic-control (FLC)-based maximum power 

point tracking (MPPT) algorithm for photovoltaic (PV) systems is presented. Two 

membership function (MF) design methodologies that can improve the effectiveness of the 

proposed asymmetrical FLC-based MPPT methods are then proposed. The first method can 

quickly determine the input MF setting values via the power–voltage (P–V) curve of solar 

cells under standard test conditions (STC). The second method uses the particle swarm 

optimization (PSO) technique to optimize the input MF setting values. Because the PSO 

approach must target and optimize a cost function, a cost function design methodology that 

meets the performance requirements of practical photovoltaic generation systems (PGSs) is 

also proposed. According to the simulated and experimental results, the proposed 

asymmetrical FLC-based MPPT method has the highest fitness value, therefore, it can 

successfully address the tracking speed/tracking accuracy dilemma compared with the 

traditional perturb and observe (P&O) and symmetrical FLC-based MPPT algorithms. 

Compared to the conventional FLC-based MPPT method, the obtained optimal asymmetrical 
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FLC-based MPPT can improve the transient time and the MPPT tracking accuracy by 25.8% 

and 0.98% under STC, respectively. 

Keywords: fuzzy logic control; maximum power point tracking; particle swarm optimization 

 

1. Introduction 

In recent years, because of global warming and the rise in crude oil price, countries worldwide have 

begun to invest heavily in research and development related to renewable energy sources. Among 

renewable energy generation systems, solar power generation has received the most attention; from 

small-scale applications (e.g., energy provision to consumer electronics) to large-scale operations (e.g., 

solar power plants), the scope of solar power applications is broad. However, because the energy 

conversion efficiency of photovoltaic (PV) generation system (PGS) is low and the cost of solar power 

generation is higher than that of thermal power generation or nuclear generation, determining how to 

acquire maximum power from a PGS has become an essential topic. The characteristic curves of a solar 

cell are nonlinear and depend on the irradiance level and ambient temperature, resulting in a unique 

current‒voltage (I‒V) curve. Consequently, the operating point (OP) of a PGS must be adjusted to the 

extent in which the maximum efficiency of the solar cells can be achieved, and this technique is called 

maximum power point tracking (MPPT) [1–3].  

The perturb and observe (P&O) method is the most common MPPT approach applied in commercial 

PGSs [4]. This method determines the system control commands according to the difference in the power 

output between the current system state and previous system state. Consequently, determining the 

perturbation step applied to a system is an essential topic. When a substantial perturbation step is utilized 

by a system, the time required for the system to track the maximum power point (MPP) and achieve a 

steady state is short, but the amount of power loss caused by the perturbation is high. By contrast, a small 

perturbation step can alleviate the power loss caused by the perturbation but decrease the tracking speed 

of the system. This phenomenon is generally known as the trade-off between tracking speed and tracking 

accuracy [5–7]. Generally, MPPT methods that apply the fixed-step size method are affected by the 

trade-off. Therefore, researchers have proposed numerous variable step size MPPT methods to alleviate 

this complication. The core concept of variable step size MPPT is that, when the OP of a system is distant 

from the MPP, a substantial perturbation step is introduced to the system control, thereby increasing the 

tracking speed of the system. Alternatively, when the OP approximates the MPP, a small perturbation 

step is introduced to the system control to improve the effectiveness of the system in achieving a steady 

state [8–10]. The variable step MPPT methods mentioned in previous studies mainly determine the 

perturbation step according to the OP in the power‒voltage (P‒V) curve of solar cells. However, the 

characteristic curves of solar cells can vary according to the operating environment; thus, determining a 

perturbation step size applicable to all types of operating condition is a vital topic regarding variable step 

MPPT. Alternatively, fuzzy logic controller (FLC)-based techniques can be applied to nonlinear 

systems. Moreover, such techniques do not require accurate system parameters or complex mathematics 

models to achieve superior control performance. Therefore, FLC-based MPPT methods have become a 

worthy research topic [11–43].  
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Regarding the input variable selection, most FLC-based MPPT techniques take the error (e(t)), 

usually defined as Ppv(t) − Ppv(t−t), dPpv(t)/dVpv(t) or dPpv(t)/dIpv(t), where Ppv(t) represents the panel 

output power and the change in error (de(t)/dt) as inputs [11–23]. However, the requirement of 

differentiation not only increases the complexity of calculation, but also may induce large amounts of 

errors from merely small amounts of measurement noise. Moreover, applying difference approximation 

to the calculation can induce problems related to calculation accuracy. Therefore, additional 

considerations are required when implement. In contrast, [24–29] take power variation (ΔPpv) and 

voltage or current variation (ΔVpv or ΔIpv) as inputs. This can avoid the numerical inaccuracy and 

overflow problem when dealing with fixed-point division, and thus the calculation can be simplified. 

The inputs in [30] are dPpv/dIpv and error(t) (defined as PMPP − Ppv), while the inputs in [31] are error(t) 

and error variation (derror(t)/dt). Since the information of MPP should be obtained in prior, these 

methods are not suitable for practical implementation. The solar insolation and panel temperature are 

applied as FLC inputs in [32–39]; however, most of the small PV systems are not equipped with these 

sensors, and hence these methods are not suitable for low cost PGS. 

In terms of the design of the input/output membership functions (MFs), the following methods are 

proposed in the literatures to optimize the FLC MFs: genetic algorithm (GA), particle swarm optimization 

(PSO) and Hopfield artificial neural network (ANN) [12–14,28,40]. Among these methods, PSO is simple 

and easy to implement. In addition, for MF optimization problems, the encoding of PSO is easier than 

GA. As for control schemes, typical dual-input fuzzy logic controller that employs 9 to 49 rules is often 

adopted for control schemes [11–29]. The amount of the rules is depending on the numbers of linguistic 

variables in input MFs. Nevertheless, these methods share similar implementation complexity. On the other 

hand, a three-input FLC is proposed in [41]. In addition to conventional FLCs, various techniques can be 

used to further improve the performance. For example, ANN is applied to assist FLC in [32–36] with solar 

irradiance and cell temperature as the input variables. However, ANN technique needs a great amount of 

training data to acquire reasonable results, which could limit its application. Aim to enhance the FLC 

efficiency, fuzzy cognitive networks [15,37] and Takagi-Sugeno (T-S) fuzzy technique [38,39] are also 

employed to improve the tracking speed. Due to that the calculation of these methods is more 

complicated; these methods are hard to realize using low-cost microcontrollers compared with 

conventional FLC. Finally, FLC can also be used to assist conventional MPPT techniques such as P&O 

and incremental conductance methods [22,42,43]. This study investigated an MF design methodology 

that can improve the effectiveness of FLC-based MPPT methods. Due to the asymmetrical characteristic 

of the solar cell P‒V curve, asymmetrical MF is proposed to have a better performance. It can be 

observed from the ∆P‒∆V curve that even the same voltage step ∆Vpv is applied, the power variations 

on both left and right half planes of MPP are quite different the ∆Ppv on the left is smaller. This difference 

cannot be implemented in the rule base. Therefore, the MF of ∆Ppv in this article is suggested to be 

asymmetrical to enhance the performance. In addition, two methods are proposed to obtain appropriate 

input MF setting values. Firstly, this paper thoroughly introduces the FLC-based MPPT system 

architecture used in this study, including information on related designs and considerations for the input 

and output MF, rule base, and inference engine. To increase the effectiveness of the FLC-based MPPT 

method, two methods that can be used to determine the input MF setting values are then proposed. The 

first method rapidly determines the input MF setting values according to the P‒V curve of solar cells 

under standard test conditions (STC, i.e. 1000 W/m2, 25 °C). This method can improve the effectiveness 
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of FLC-based MPPT methods and adopts a simple method design. The second method applies the 

particle swarm optimization (PSO) technique to obtain the optimized input MF setting values. Due to 

the fact that the PSO approach must target a cost function to optimize, the methodology of designing the 

cost function which meets the performance requirements of PGS is also proposed. Finally, after 

obtaining the optimized input MF setting values, an inexpensive digital controller was adopted to 

implement the proposed FLC-based MPPT method. To validate the correctness and effectiveness of the 

proposed system, the simulations and experiments are then conducted. As shown in the simulated and 

experimental results, the proposed asymmetrical FLC-based MPPT method can surely shorten the 

tracking time and increase the tracking accuracy compared to the traditional P&O and symmetrical  

FLC-based MPPT algorithm. The rest of the paper is organized as follows: Section 2 presents the system 

configuration. Section 3 explains the derivation of the symmetrical FLC-based MPPT controller. Section 4 

describes the derivation of the proposed asymmetrical FLC-based MPPT controller. The PSO-based 

approach to determine the optimized MF setting values is proposed in Section 5. Experimental results 

are provided in Section 6. Finally, a simple conclusion is given in Section 7. 

2. System Configuration 

The block diagram of the proposed system is shown in Figure 1. From Figure 1, the whole system 

can be divided into three major parts: PV simulator, energy conversion unit and main control unit. 

Detailed descriptions about each unit will be given in the following subsections: 

(a) PV simulator: A TerraSAS DCS80-15 solar array simulator (SAS) from AMETEK Corp. 

(Berwyn, PA, USA) is adopted as the input power source in this paper. This simulator features  

long-term recording function with the recording time interval as short as 0.05 s. The recorded data will 

be stored in a spreadsheet file for validating the effectiveness of the proposed method. 

(b) Energy conversion unit: the energy conversion unit is used to supply the power to the load. The 

energy conversion unit utilized in this paper is a simple boost DC-DC converter, as shown in Figure 1. 

By appropriately controlling the PWM signal, the maximum available PV energy can be transferred to 

the load. Since the design and implementation of this circuit is conventional, it won’t be discussed further 

here [44], (pp. 22–27). The voltage conversion ratio of a boost converter can be expressed as: 

1
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


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where Vin is the input voltage; Vo is the output voltage; and D represents the duty cycle. Assuming the 

conversion efficiency of the boost converter is 100%, relationship between the output current and the 

input current can be written as: 
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From Equations (1) and (2), when duty cycle varies, relationship between the input impedance and 

the output load of the boost converter can be described using Equation (3): 
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where RL is the load. 
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(c) Main control unit: As also shown in Figure 1, the main control unit sends the PWM signal to the 

boost converter to track the peak power available from PV panel. A low cost dsPIC33FJ16GS502 digital 

signal controller (DSC) from Microchip Corp. (Chandler, AZ, USA) is used in this study to complete 

the MPPT algorithm. The utilized DSC gathers and analyzes both voltage and current data of PV panel 

from the A/D module. After obtaining the required PV panel data, a simple moving average filter is 

employed to smooth out the acquired signals. The equation describing a 16 points moving average filter 

can be expressed as Equation (4): 

15

0

1
[ ] [ ]

16 i

Y n X n i


   (4)

where n refers to the present sample instant; X is the PV voltage or current sampled data; and Y is the 

filtered PV voltage or current. After the filtered PV voltage and current are obtained, the gating signals 

are then decided by the developed MPPT controller. From Figure 1, the MPPT algorithm will determine a 

voltage command V* from the filtered PV voltage and current, and a compensation circuit (PI controller)  

will be utilized to generate the needed gating signals. In this paper, the PI controller is also implemented in 

the DSC. The design of PI controller is also conventional, hence will not be discussed further here [44],  

(pp. 348–354). 

 

Figure 1. The block diagram of the proposed system. 

3. Derivation of the Symmetrical FLC-based MPPT Controller 

Figure 2 shows the equivalent circuit of the PV cell, the I–V characteristic of the PV cell can be 

described by Equation (5): 
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k P
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nkT R
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 
 (5)

where Vpv is the panel voltage; Ipv is the panel current; RS is the equivalent series resistance; RP is the 

equivalent shunt resistance; n is the ideality factor; k is the Boltzmann constant; q is the electron  

charge; TK is the temperature in Kelvin; and Ig and IS are the photogenerated current and saturation 

current, respectively. 
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Figure 2. Equivalent circuit of the PV cell. 

Figure 3a shows the MATLAB simulated I‒V curves of the utilized Sanyo VBHN220AA01 solar 

panel under different irradiation levels. The corresponding P‒V curves and the absolute values of 

dPpv/dVpv curves for different irradiation level are given in Figures 3b and 3c, respectively. 

(a) (b) 

(c) 

Figure 3. I‒V and P‒V curve for the utilized PV panel (a) I‒V curve; (b) P‒V curve;  

(c) |dPpv/dVpv| curve. 

The detailed block diagram of the symmetrical FLC-based MPPT controller is shown in Figure 4. 

From Figure 4, the proposed FLC-based MPPT controller consists of input/output MFs, a fuzzy inference 

engine, fuzzy rules and a defuzzifier. Observing Figure 3c, the absolute value of dPpv/dVpv of a PV panel 

varies smoothly; therefore it can be used as a suitable parameter for determining the step size of the 
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proposed MPPT algorithm. Consequently, power variation (ΔPpv) and voltage variation (ΔVpv) from the 

solar cell are used as the inputs of the proposed FLC. In this paper, variation of voltage command ΔV* 

is chosen as the output of the proposed FLC. Generally, the shape of MFs in FLC can be in triangular, 

trapezoidal, symmetric Gaussian function, generalized Bell curve and sigmoidal function forms. In this 

paper, the input and output MFs are all in triangular form. Triangular MFs are selected because they are 

simple and hence suitable for low cost microcontroller implementation. In this paper, the MF setting 

values of the utilized symmetrical FLC-based MPPT controller are determined using the method similar 

to that proposed in [29]. For linguistic variables shown in Figure 4, P means positive while N means 

negative. B, S, and ZE are defined as big, small and zero, respectively. From Figure 4, each of the input 

variables ΔPpv and ΔVpv is mapped into five different linguistic values. Therefore, the proposed FLC will 

contain 25 different rules. The complete set of the fuzzy control rules for the proposed system is shown 

in Table 1 and will be explained as follows. In this paper, ΔVpv and ΔPpv are taken as the inputs and ΔV* 

is chosen as the output; therefore, the control rule should be determined according to the relationships 

between these variables. Figure 5 shows a typical P–V curve of a PV panel. From Figure 5, the operation 

of the PGS can be divided into six operating conditions: 

1. ∆Ppv/∆Vpv is positive and ∆Vpv is positive, which indicates that the OP lies on the left-hand side of 

MPP and the OP is moving toward MPP (pink arrow in Figure 5). In this situation, the control 

variable (Vpv) should increase; hence ∆Vpv is positive (pink area in Table 1). 

2. ΔPpv/ΔVpv is positive and ΔVpv is negative, which indicates that the OP lies on the left-hand side of 

MPP and the OP is moving outward from MPP (blue arrow in Figure 5). In this situation, the 

control variable (Vpv) should increase; hence ΔVpv is positive (blue area in Table 1). 

3. ΔPpv/ΔVpv is negative and ΔVpv is positive, which indicates that the OP lies on the right-hand side 

of MPP and the OP is moving outward from MPP (orange arrow in Figure 5). In this situation, the 

control variable (Vpv) should decrease; hence ΔVpv is negative (orange area in Table 1). 

4. ΔPpv/ΔVpv is negative and ΔVpv is negative, which indicates that the OP lies on the right-hand side 

of MPP and the OP is moving toward MPP (green arrow in Figure 5). In this situation, the control 

variable (Vpv) should decrease; hence ΔVpv is negative (green area in Table 1). 

5. ΔPpv equals zero, which indicates that the OP lies on the MPP (MPP1 or MPP2 in Figure 5).  

In this situation, the control variable (Vpv) should remain the same; hence ΔVpv is zero (yellow area 

in Table 1). 

6. ΔVpv is zero but ΔPpv does not equal zero, which indicates that the irradiance level has changed  

(grey arrow in Figure 5). In this situation, the control variable (Vpv) should increase/decrease  

if ΔPpv is positive (irradiance level increase)/negative (irradiance level decrease); hence ΔVpv is 

positive/negative. (grey area in Table 1). 

Next, by following the design principles stated below, the magnitude of the output variable ∆Vpv can 

then be determined. From Figure 5, it can also be observed that when the OP is far from the MPP, like 

point A or B, a larger ∆Vpv is required to rapidly reach the MPP. On the other hand, when the OP is close 

to the MPP, like point C or D, a smaller Vpv will be used to reduce the steady state oscillation. Hence, 

the value of |∆Ppv/∆Vpv | can be utilized to determine the output magnitude. Based on these concepts,  

a complete set of fuzzy rules for the proposed FLC is given in Table 1. In Table 1, darker color represents 

larger number while lighter color indicates smaller number. 
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Figure 4. Block diagram of the implemented FLC-based MPPT controller. 

Table 1. Complete rule base for the proposed FLC. 

ΔPpv 
ΔVpv 

NB NS ZE PS PB 

NB 
PS PB NB NB NS 

Rule1 Rule6 Rule11 Rule16 Rule21 

NS 
PS PS NS NS NS 

Rule2 Rule7 Rule12 Rule17 Rule22 

ZE 
ZE ZE ZE ZE ZE 

Rule3 Rule8 Rule13 Rule18 Rule23 

PS 
NS NS PS PS PS 

Rule4 Rule9 Rule14 Rule19 Rule24 

PB 
NS NB PB PB PS 

Rule5 Rule10 Rule15 Rule20 Rule25 



Energies 2015, 8 5346 

 

 

 

Figure 5. Typical P–V curve of a PV panel 

The defuzzification method used in this paper is the commonly used center of gravity method as 

shown in Equation (6): 
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where Yi is the inference result of rule i; Xi is the corresponding output of rule i; and YCOG is the output. 

4. Derivation of the Proposed Asymmetrical FLC-Based MPPT Controller  

4.1. Concept of Asymmetrical FLC-Based MPPT Controller 

In Section 3, the design procedures of the symmetrical FLC have been explained. To improve the 

performance of the proposed FLC, the derivation of asymmetrical input MF will now be explained. 

Figure 6 shows a typical P‒V curve of a PV panel which can be used to design an asymmetrical  

FLC-based MPPT controller. With a fixed step size ∆Vpv, the power variation ∆Ppv is large at the  

right-hand side of the P‒V curve, and is small at the left-hand size. Therefore, it is straightforward to 

design an asymmetrical MF for the proposed FLC-based MPPT controller according to this characteristic. 

In this paper, two designing methods are proposed, and will be describe in detail as follows. 

 

Figure 6. Concept for designing MF setting values of asymmetrical FLC-based MPPT. 
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4.2. Systematic Approach to Determine the MF Setting Values of ∆Ppv 

Figure 7 shows the concept for systematically determining the MF setting values of the input variables 

∆Ppv. Figure 7 is obtained by increasing the voltage command Vpv from 0 to open circuit voltage at a 

fixed increment (1.5 V in this paper) with x-axis represents the PV panel voltage Vpv and y-axis 

represents the absolute value of power variation ∆Ppv. In Figure 7, the simulation is conducted under 

STC. From Figure 7, when the same ∆VPV is applied, the maximum |∆Ppv| on the left-hand side of MPP 

(∆Ppv is positive) is 8.4 W, while the maximum |∆Ppv| on the right-hand side (∆Ppv is negative) is 91.03 W. 

Therefore, if the MF of ∆Vpv is symmetrical, the negative limitation of ∆Ppv MF, dP_NB, should be  

set 10.8 (=91.3/10.8) times of the positive limitation, dP_PB. Which means dP_NB = −8.4 W and  

dP_PB = 8.4/10.8 = 0.78 W. 

 

Figure 7. Concept for determining the MF setting values of the input variables ∆Ppv. 

It should be noted that although this method can efficiently determine the MF setting values of ∆Ppv 

with quite satisfactory performance, it cannot guarantee to obtain the optimal solution. To further 

improve the performance of the proposed asymmetric FLC-based MPPT controller, a PSO-based MF 

optimization method is also proposed in this paper, which will be explained in detail in Section 5. 

5. PSO-based Approach to Determine the optimized MF Setting Values of ∆Ppv 

Figure 8 shows the MF optimization concept used in this paper. From Figure 8, there are four 

parameters (dP_PB, dP_PS, dP_NS and dP_NB) that should be determined. (with dP_ZE = 0). If each 

parameter is divided into 100 levels, the total numbers of simulations required using the grid search  

method as proposed in [29] will be 108, which is tedious and requires a lot of simulation time. To deal 

with this issue, a variety of artificial intelligent (AI) methods have been proposed in the literatures to 

obtain the optimal configuration of the MFs. These AI methods include GA, PSO and Hopfield  

ANN [12–14,28,40]. Among these methods, the PSO provides a simple and effective approach that can 
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be applied to optimization problems which have many local optimal points. Therefore, it is chosen in 

this paper to determine the optimized MF setting values of ∆Ppv. Detailed description of the proposed 

PSO-based optimization method is presented as follows. 

 

Figure 8. The implementation concept of the MF optimization method. 

5.1. Basic Concept of PSO 

PSO is a swarm intelligence optimization algorithm developed by Eberhart and Kennedy in 1995, 

and inspired by the social behavior of flocking birds and schooling fishes. In this algorithm, several 

cooperative agents are used to exchange information obtained in its respective search process. Each 

agent is referred to a particle following two simple rules, i.e., following the best performing particle, and 

moving towards the best position found by the particle itself. Through this way, each particle eventually 

approaches an optimal or close to optimal solution. The standard PSO method can be defined using the 

following equations [45]: 

1 1 , 2 2( 1) ( ) ( ( )) ( ( ))i i best i i best iv k wv k c r p x k c r g x k       (7)

( 1) ( ) ( 1)i i ix k x k v k     (8)

where xi and vi denote the position and the velocity of particle i, respectively; k is the iteration number 

while w is the inertia weight; r1 and r2 are random variables uniformly distributed within [0,1]; and c1, 

c2 are the cognitive and social coefficients. The variable pbest,i is set to store the best position that the  

i-th particle has found so far, and gbest is set to store the best position among all particles. The flowchart 

of a basic PSO algorithm is illustrated in Figure 9. From Figure 9, the operating principles of a basic 

PSO method can be described as follows: 

Step 1: PSO Initialization 

Particles are usually initialized randomly following a uniform distribution over the search space, or 

are initialized on grid nodes that cover the search space with equidistant points. Initial velocities are 

taken randomly. 

Step 2: Fitness Evaluation 

Evaluate the fitness value of each particle. Fitness evaluation is conducted by supplying the candidate 

solution to the cost function. 
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Step 3: Update Individual and Global Best Data 

Individual and global best fitness values (pbest,i and gbest) and positions are updated by comparing the 

newly calculated fitness values against the previous ones, and replacing the pbest,i and gbest as well as their 

corresponding positions as necessary. 

Step 4: Update Velocity and Position of Each Particle 

The velocity and position of each particle in the swarm is updated using Equations (7) and (8). 

Step 5: Convergence Determination 

Check the convergence criterion. If the convergence criterion is met, the process can be terminated; 

otherwise, the iteration number will increase by 1 and go to step 2. 

 

Figure 9. Flowchart of a standard PSO. 
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5.2. Application of PSO to Optimize the MF Setting Values of ∆Ppv  

The MF optimization problem can be described as: 

Maximize FLC_Fit_value (dP_PB, dP_PS, dP_NS, dP_NB) 

Subject to dP_PB > dP_PS > 0, 0 > dP_NS > dP_NB, dP_PB < POSmax and dP_NB > NEGmax 

The complete implementation steps of applying PSO to optimize the MF setting values of ∆Ppv are 

presented as follows: 

Step 1: Parameter Selection 

From Figure 8, the parameters to be optimized are dP_PB, dP_PS, dP_NS and dP_NB. By changing 

the parameter values, the MF will shrink or expand. Therefore, the particle in the proposed PSO method is 

a vector with four elements, and these particles will keep changing until an optimal value is reached.  

It should be noted that these obtained parameters should meet the inequality constraints. From Figure 7, 

the maximum ∆Ppv value along the P–V curve is 91. Therefore, the boundary value for POSmax and NEGmax 

are chosen as 100 and −100, respectively. In PSO, a larger number of particles result in better obtained 

results. However, a larger number of particles also lead to longer computation time. Since the MF 

optimization problem is an off-line optimization problem, the computation time is not very important. 

Hence, a typical value of particle number N = 50 is chosen in this paper. 

Step 2: PSO Initialization 

In PSO initialization phase, particles can be placed at a fixed position or be placed in space randomly. 

According to [45], uniform random initialization is the most popular scheme in PSO due to the necessity 

for equally treating each part of a search space with unrevealed characteristics. Therefore, the particles 

are initialized using uniform random initialization technique. 

Step 3: Perform the Simulation 

According to the MF setting values of each particle, simulations are conducted under a step change 

in solar irradiation from 0 W/m2 to 200 W/m2, 400 W/m2, 600 W/m2, 800 W/m2 and 1000 W/m2 for the 

proposed system. To take every tracking situation into account, the simulation is carried out using two 

initial conditions—initial voltage command value equals to 10% of Voc (representing the tracking from 

left to right along the P‒V curve) and 95% of Voc (representing the tracking from right to left along the 

P‒V curve). The tracking results will be recorded and utilized for fitness value calculation. 

Step 4: Fitness Evaluation 

The goal of the proposed MPPT algorithm is to simultaneously maximize the generated power and 

minimize the MPP tracking time. Hence, the cost function is defined in Equation (9) and is composed of 

30% transient response and 70% steady state response. Figure 10 shows how these parameters are 

defined in this paper. The transient response is defined as the amount of rise time tr during the total 

testing time tf and is displayed as a percentage. The rise time is defined as the time required for the output 

power level to reach 90% of the maximum power level. From Equation (9), it can be observed that the 

shorter the rise time, the score of the transient response will be higher. On the other hand, the steady 

state response is the MPPT efficiency displayed as a percentage and is defined as the sum of the tracking 
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efficiency during the period from the rise time tr to the total testing time tf (i.e., power obtained by the 

simulated algorithm divided by the sum of maximum available power during steady state).  

In most papers, only tracking performances under STC is considered. To take a more realistic operating 

condition into account, five distinctive levels of irradiance (200 W/m2, 400 W/m2, 600 W/m2, 800 W/m2, 

1000 W/m2) were adopted to determine the system performance in this study. According to the 

distribution of daily sunshine in Taiwan, various levels of sunshine intensity exhibit unequal sunshine 

durations. Thus, the contribution of different irradiance levels to PGSs differs. Therefore, the cost 

function value for each irradiance level will be multiplied by the corresponding weight values, and the 

sum of their products were calculated as the final fitness value, as shown in Equation (10). In this article, 

the irradiance levels are divided into 5 levels: 200 W/m2 (the irradiance level is between 0 W/m2 and 

200 W/m2), 400 W/m2 (200~400 W/m2), 600 W/m2 (400~600 W/m2), 800 W/m2 (600~800 W/m2) and 

1000 W/m2 (800~1000 W/m2). The output power for each irradiance level using a VBHN220AA01 solar 

panel (Sanyo, Moriguchi, Osaka, Japan) is then accumulated and the weights of these five irradiance 

levels are then calculated accordingly. For the cost function shown in Equation (10), a higher value 

means that the performance is better: 
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2_ ,    200, 400, 600, 800, 1000 W/mj jFit value ω C j   (10)

where 200 = 0.054; 400 = 0.112;600 = 0.273;800 = 0.344;1000 = 0.217. 

Step 5: Update Individual and Global Best Data 

The fitness value of particle i is set to be the new pbest,i, if it is better than the best value in history, 

note as pbest,i. Then, the best fitness value among all particles is chosen to be gbest. These steps are similar 

to step 3 of the standard PSO method. 

Step 6: Update Velocity and Position of Each Particle 

After all the particles are evaluated, the velocity and position of each particle in the swarm needs to 

be updated. In conventional PSO method, Equations (7) and (8) are used to perform the update, in which 

the parameters w, c1 and c2 are constants. To speed up the convergence, the parameter w here is set as 

a variable, thus Equation (7) can be rewritten as: 

1 1 , 2 2( 1) ( ) ( ) ( ( )) ( ( ))i i best i i best iv k w k v k c r p x k c r g x k       (11)

In Equation (11), the first term w(k)vi(k) is utilized to keep the particle heading in the same direction 

as it used to be; therefore, it controls the convergence behavior of PSO. To accelerate convergence, the 

inertia weight shall be selected such that the effect of vi(k) vanishes during the execution of the algorithm. 

As such, a decreasing value of w with time is preferable. A common way is to initially set the inertia 

weight to a larger value for better exploration and gradually reduce it to get improved solutions. In this 

paper, a linearly decreasing scheme for w is used, as shown in Equation (12) [45]: 
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In Equation (12), wmin and wmax are the lower and upper bounds of w; and kMAX is the maximum 

allowed number of iterations. In this paper, wmin = 0.1, wmax = 1.0, kMAX = 300, c1 and c2 are chosen as  

c1 = 1 and c2 = 2 for better global exploration. 

Step 7: Convergence Determination 

After completing all the simulations in the i-th iteration, fitness values can be evaluated and 

convergence criteria can then be checked. Two convergence criteria are utilized in this paper. If the 

velocities of all particles become smaller than a threshold, or if the maximum number of iterations is 

reached, the proposed MPPT algorithm will stop and output the obtained gbest solution. In this paper,  

the maximum allowable iteration number is set as 300. If the convergence criterion is met, the process 

can be terminated; otherwise, the iteration number will increase by 1 and go to step 3. 

 

Figure 10. Concept of computing the fitness value for one irradiance level. 

5.3. The obtained Optimal MF Setting 

Figure 11 shows the obtained gbest value for each iteration. From Figure 11, the obtained optimal 

solution converges after 175 iterations.  

 

Figure 11. Convergence profile. 
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The obtained optimal solution gives the shape of the MFs shown in Figure 12. Simulated and 

experimental results for MF settings obtained in Section 4.2 and Section 5.2 will be provided in Section 

6 for comparison.  

 

Figure 12. The obtained optimal MF setting. 

6. Experimental Results 

In this paper, a 300 W prototyping circuit is implemented from which experiments are carried out 

accordingly. The proposed algorithm will be validated by both simulations and experiments. In this 

study, the simulations are carried out using systems implemented in MATLAB, and the experiments are 

performed using an AMETEK TerraSAS DCS80-15 Solar Array Simulator in SAS mode as a power 

source. The parameters of the utilized PV panel are listed in Table 2 and the specifications of the utilized 

power converter are listed in Table 3.  

Table 2. Parameters of the utilized PV panel. 

PV Model Sanyo VBHN220AA01 

Maximum Power (Pmax) 220 W Short Circuit Current (Isc) 5.65 A 
Open Circuit Voltage (Voc) 52.3 V Maximum Power Current (Imp) 5.17 A 

Maximum Power Voltage (Vpm) 42.7 V Temperature Coefficient (αv) −0.336%/°C 

Table 3. Specification of the utilized boost converter. 

Specification Designed Parameter 

Input Voltage Vin = 20~70 V Kp 0.1 
Rated Output Voltage Vo = 100 V Ki 0.008 
Rated Ouput Current Io = 3 A L1 2 mH 
Rated Output Power Po = 300 W C1 66 μF 
Switching Frequency fs = 50 kHz Q1 IRFP460 

Output Voltage Ripple ∆Vo/Vo = < 1% D1 STPS20150CT 

In order to validate the effectiveness of the proposed MPPT controller, simulations and experiments 

will be carried out using the following algorithms: Two P&O MPPT methods with different perturbation 

step settings, one symmetrical FLC-based MPPT method and two asymmetrical FLC-based MPPT 

methods with different settings. All tests are conducted under the same power circuit. The parameters 

used in each MPPT algorithm are listed in Table 4. In this paper, low cost DSC dsPIC33FJ16GS502 

from Microchip Corp. is used to realize the five algorithms mentioned above. Using a 40 MHz oscillator, 

the required execution times of the P&O MPPT, the symmetrical FLC-based MPPT and the 
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asymmetrical FLC-based MPPT are 1.5 μs, 120 μs and 120 μs, respectively. In this paper, the updating 

period of all the five implemented MPPT algorithms are 200 ms. A photo of the experimental setup and 

the testing environment is shown in Figure 13.  

Table 4. Parameters of the implemented algorithms. 

No. Description Parameters Note 

1 P&O (∆V = 0.5 V) Fixed Perturbation Step denoted as method 1 

2 P&O (∆V = 3.5 V) Fixed Perturbation Step denoted as method 2 

3 Symmetrical FLC 
dP_PB = 8.4 W dP_NB = −8.4 W 
dV_PB = 1.5 V dV_NB = −1.5 V 

denoted as method 3 

4 Asymmetrical FLC #1 
dP_PB = 0.78 W dP_NB = −8.4 W 
dP_PS = 0.39 W dP_NS = −4.2 W 
dV_PB = 1.5 V dV_NB = −1.5 V 

denoted as method 4 
Parameters from Section 4.2 

5 Asymmetrical FLC #2 
dP_PB = 1.17 W dP_NB = −10.32 W 
dP_PS = 0.55 W dP_NS = −0.19 W 
dV_PB = 1.5 V dV_NB = −1.5 V 

denoted as method 5 
Parameters from Section 5.2 

 

Figure 13. Experimental setup and the testing environment. 

Figure 14 shows the starting waveform of these five methods for 200 W/m2 solar irradiance and  

25 °C PV panel temperature, and Figure 15 shows the starting waveform of these five methods for  

1000 W/m2 solar irradiance and 25 °C PV panel temperature. Observing Figures 14 and 15, the P&O 

method with large step shows good dynamic performance, but larger steady state oscillations which 

makes the MPPT accuracy low. On the contrary, using a small step can improve the tracking accuracy 

at the cost of slower dynamic performance. The dilemma can be solved by using the asymmetrical  

FLC-based MPPT methods shown in Figures 14 and 15. It can be seen that although the transient time 

of the proposed method is slightly higher than the P&O method using large step size, the oscillation 

around the MPP is much smaller. It should be noted that although the FLC-based MPPT method can 

successfully address the tracking speed/tracking accuracy problem, it fails to track the real MPP when 

irradiance level is 200 W/m2. This fact conforms that when determining MF setting values, various 

operating conditions should all be considered to obtain a better performance. 
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(a) 

 
(b) 

Figure 14. Measured starting waveform of five different algorithms when irradiance level is 

200 W/m2 (Starting from the right-hand side). (a) Simulated results; (b) Measured results. 

 
(a) 

Figure 15. Cont. 
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(b) 

Figure 15. Measured starting waveform of five different algorithms when irradiance level is 

1000 W/m2 (Starting from the left-hand side). (a) Simulated results; (b) Measured results. 

The performance of the methods under testing is summarized in Tables 5 and 6. In these tables, the 

tracking accuracy values are obtained using the built-in data logging function of the solar array simulator. 

The system begins to record the accuracy data as it reaches steady state, and the recorded data contains 

1200 points with 60 seconds of recording time and sampling rate of 20Hz.  

Table 5. Summarized experimental performance of different methods (200 W/m2 test case). 

Real PMPP = 44.8 W  
Average steady state 

output power 
MPPT tracking 

accuracy 
Transient 

time 

P&O (0.5 V) 44.10 W 98.44% 1.45 s 
P&O (3.5 V) 42.71 W 95.33% 0.25 s 

Symmetrical FLC 41.57 W 92.78% 0.90 s 
Asymmetrical FLC #1 42.87 W 95.70% 0.85 s 
Asymmetrical FLC #2 44.12 W 98.48% 0.70 s 

Table 6. Summarized experimental performance of different methods (1000 W/m2 test case). 

Real PMPP = 224 W 
Average steady state 

output power 
MPPT tracking 

accuracy 
Transient 

time 

P&O (0.5 V) 222.12 W 99.16% 10.75 s 
P&O (3.5 V) 212.55 W 94.89% 1.50 s 

Symmetrical FLC 220.11 W 98.21% 7.55 s 
Asymmetrical FLC #1 219.98 W 98.26% 5.65 s 
Asymmetrical FLC #2 222.18 W 99.19% 5.60 s 

From Tables 5 and 6, the tracking accuracies of the optimal asymmetrical FLC-based MPPT methods 

are better than both of the P&O method under different operating conditions. It can also be learned from 

Tables 5 and 6 that asymmetrical FLC-based MPPT methods can improve tracking speed over the 

symmetrical FLC-based MPPT method. Although the asymmetrical FLC-based MPPT method 

discussed in Section 4.2 does not have optimal tracking speed and accuracy, the design procedure is 

simple and its performance is still better than that of symmetrical FLC-based MPPT method. The thing 
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worth mentioned is that the only difference between these two methods is the design of the ΔPpv MF; 

hence, the implementation complexity is the same. In summary, the asymmetrical FLC-based MPPT 

method can enhance the tracking speed and tracking accuracy over the symmetrical FLC-based MPPT 

method without increasing the calculation burden. To further validate the performance improvement of 

the proposed methods, simulations and experiments results for five different irradiance levels (200 W/m2, 

400 W/m2, 600 W/m2, 800 W/m2, 1000 W/m2) are also provided. These obtained data is used to compute 

the fitness values as defined by Equation (10), and the calculated fitness values are provided in Table 7. 

From Table 7, asymmetrical FLC-based MPPT method #2 have the best fitness value, which validates 

that PSO can be successfully applied to optimize the MF settings. 

Table 7. Simulated and experimental fitness values. 

MPPT methods Simulated results Experimental results 

P&O (0.5 V) 94.58% 96.12% 
P&O (3.5 V) 94.97% 96.11% 

Symmetrical FLC 72.48% 73.46% 
Asymmetrical FLC #1 96.54% 96.82% 
Asymmetrical FLC #2 97.11% 97.69% 

7. Conclusions 

In this paper, an FLC-based MPPT method is proposed. The design and implementation of the 

proposed method is discussed in detail. To further improve the performance of the proposed MPPT 

method, two design methodologies are presented to determine the input MF setting values. The first 

method determines the input MF setting values according to the P‒V curve of solar cells under STC. 

Comparing with the symmetrical FLC-based MPPT method, the transient time and the MPPT tracking 

accuracy are improved by 25.2% and 0.05% under STC, respectively. Moreover, since the symmetrical 

FLC-based MPPT method fails to track the real MPP when irradiance level is low and asymmetrical 

FLC-based MPPT method can successfully deal with this problem; therefore, the improvement of 

tracking accuracy will be more significant under low irradiance levels. The advantages of the first design 

method is that it is simple and easy to adopt. The second method applies the PSO technique to obtain 

the optimized input MF setting values. Compared with the first design method, the transient time and 

the MPP tracking accuracy can further be improved by 0.88% and 0.93%, respectively. This proves that 

PSO can be successfully applied to obtain the optimized MF setting values. In addition, since the PSO 

approach must target a cost function and optimize, a cost function design methodology that meets the 

performance requirements of practical PGSs is also proposed. According to the simulated and 

experimental results, the fitness values of the proposed two asymmetrical FLC-based MPPT method are 

both higher than those of P&O and conventional symmetrical FLC-based MPPT methods. 
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