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Abstract: Lignin is an abundant component in biomass that can be used a feedstock for 

producing several value-added products, including biofuels. However, lignin is a complex 

molecule (involving in its structure three types of phenylpropane units: coumaryl, coniferyl 

and sinapyl), which is difficult to implement in any process simulation task. The lignin from 

softwood is formed mainly by coniferyl units; therefore, in this work the use of the guaiacol 

molecule to model softwood lignin in the simulation of the syngas process (H2 + CO) is 

proposed. A Gibbs reactor in ASPEN PLUS® was feed with ratios of water and guaiacol 

from 0.5 to 20. The pressure was varied from 0.05 to 1.01 MPa and the temperature in the range 

of 200–3200 °C. H2, CO, CO2, CH4, O2 and C as graphite were considered in the output 

stream. The pressure, temperature and ratio water/guaiacol conditions for syngas production 

for different H2/CO ratio are discussed. The obtained results allow to determine the operating 

conditions to improve the syngas production and show that C as graphite and water 

decomposition can be avoided. 
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1. Introduction 

Lignin is one of the most abundant biomass components. It exhibits complex structures that 

depending on the wood type can include a mixture of the following primary phenylpropane units: 

cuomaryl, coniferyl and sinapyl. In the lignin from softwood, the amount of coniferyl units is about 

90%–95%, the sinapyl units from 5% to10 % and there are no coumaryl units [1]. Some compounds, 

such as guaiacol, anisole, and diphenyl ether have been used as a representative structures of lignin for 

simulation and experimental studies [2–4]. In others works, the lignin is specified as a non-conventional 

component using ultimate and proximate analysis [5,6]. Guaiacol comes from coniferyl alcohol, and it 

can be used as a softwood lignin model compound to analyze biomass decomposition processes such as 

pyrolysis and gasification, among others. Figures 1 and 2 show the structural formulas for guaiacol and 

lignin [7], respectively. It should be noticed that the guaiacol structure frequently appears in the structure 

of lignin, so this compound represents a large portion of it and it could be considered representative  

of lignin. 

 

Figure 1. The structure of guaiacol, the lignin model compound used in this study. 

Lignin has a high potential for producing biofuels and aromatic compounds. The technology for using 

lignin as a raw material has not been developed much in comparison with technologies to process 

polysaccharides and, in all cases, lignin is a sub-product of these processes, which opens an opportunity 

to consider it as a feedstock to downstream process that add value to this important renewable polymer. 

It can be noted that carbon materials increase the possibilities of mass/energy generation [8], and syngas 

production is one of them. Syngas is a mixture of hydrogen and carbon monoxide (H2 + CO), which can 

be obtained by gasification of different materials. Currently, several options like natural gas [9], ethanol [10] 

and glycerol [11] have been studied to produce syngas or hydrogen in several processes [12,13].  

Rostrup-Nielsen proposed a syngas cycle that involves steam reforming and gasification to produce 

syngas from complex materials andFisher-Tropsch synthesis to obtain complex materials [14]. Another 

interesting option is to consider biomass [15], such as lignin, as a raw material to produce energy in an 

integral way [16,17]. 

Process simulation has been used to determine the best options and operating conditions for producing 

biofuels [5,6,18–26], particularly the software ASPEN PLUS® (Aspen Technology, Inc., Bedford, MA, 

USA) has been widely used. However, the models used for lignin have oversimplified the process.  

To produce syngas (smaller molecules that can be obtained) from biomass the simplified models are 

good, but for bigger molecules (phenol, benzene, etc.) is necessary to use the lignin chemical structure 

or a model compound.  
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Figure 2. Structure in softwood lignin. 

Therefore, in this work there is proposed to use the molecule of guaiacol, which has a H/C and O/C 

ratio in the range reported in other studies [20], as a lignin model during the simulation of the gasification 

process of softwood. This will serve as a starting point that will surely culminate in the use of models 

very close to the actual chemical structure of lignin, so that research can be performed by process 

simulators for processing into intermediate products with high added value and production chain 

initiators, all under the concept of biorefineries. 

2. Materials and Methods 

A Gibbs reactor was implemented in the software ASPEN PLUS® for the syngas production, which 

was fed with water (w) and guaiacol (g). The ratio water/guaiacol (w/g) was varied from 0.25 to 20,  

four levels of pressure were tested (0.05, 0.1, 0.51 and 1.01 MPa) and the analyzed temperature range 

was from 200 to 3200 °C. We propose Reaction (1) as the main gasification reaction: 

ଶሺሻ଼ܱܪܥ  ଶܪ	5 ሺܱሻ 	→ 7 ܥ ሺܱሻ  9 ଶሺሻ, ∆H298 K = 682 kJ/mol (1)ܪ

The following parallel reactions are also involved, in general, these describe the main pathways to 

obtain the products proposed: 

ଶሺሻ଼ܱܪܥ  ଶܱሺሻܪ	12 	→ 7 ଶሺሻܱܥ  16 ଶሺሻ, ∆H298 K = 395 kJ/mol (2)ܪ

ሺሻܱܥ 	ܪଶܱሺሻ 	→ ଶሺሻܱܥ  ଶሺሻܪ , ∆H298 K = −41 kJ/mol (3)
ሺሻܱܥ 	3ܪଶሺሻ 	→ ସሺሻܪܥ	  ଶܪ ሺܱሻ, ∆H298 K = −205.5kJ/mol (4)

ଶሺሻܱܥ  ଶሺሻܪ4 	→ ସሺሻܪܥ	  ଶܪ2 ሺܱሻ, ∆H298 K = −164.5 kJ/mol (5)

ܥ2 ሺܱሻ 	→ ሺ௦ሻܥ2	  ܱଶሺሻ, ∆H298 K = 222 kJ/mol (6)

ଶሺሻܱܥ 	→ ሺ௦ሻܥ	  ܱଶሺሻ, ∆H298 K = 394 kJ/mol (7)
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ସሺሻܪܥ 	→ ሺ௦ሻܥ	  ଶሺሻ, ∆H298 K = 74.5 kJ/mol (8)ܪ2

ሺሻܱܥ2 	→ ଶሺሻܱܥ	  ሺ௦ሻ, ∆H298 K = −172 kJ/mol (9)ܥ

ଶܱሺሻܪ2 	→ 	ܱଶሺሻ  ଶሺሻ, ∆H298 K = 484 kJ/mol (10)ܪ2

The Gibbs free energy is a thermodynamic variable used to identify the chemical equilibrium in a 

system, its global minimization allows identifying the amount of substances present in the process.  

If the system contains n components, the molar fraction of component i is xi; the change of Gibbs free 

energy, gsys, in the system is defined in Equation (11): 

݃௦௬௦ ൌݔ  ܴܶݔ݈݊ݔ (11)

If Equation (11) is derived with respect to ݔ  and if only two components are present (a and b),  

the change of the free energy of the system with respect to each component is obtained by Equation (12): 

݀݃௦௬௦
ݔ݀

ൌ ݃° െ ݃
°  ܴܶ ݈݊

ݔ
1 െ ݔ

 (12)

Here, ݃°  corresponds to the standard Gibbs free energy for the pure component a, R is the universal 

gas constant and T is the temperature for the system. The minimum free energy of a system is found 

when Equation (12) is equal to zero and by solving the system it is possible to find the equilibrium 

composition [27], which gives the products and the amount of each one that is present. 

3. Results and Discussion 

The effects of pressure, temperature and water/guaiacol ratio (w/g) on the syngas production were 

studied in this work. The best operating conditions that improve the H2 and CO (syngas) production for 

gasification were determined. This process was analyzed at 0.05, 0.1, 0.51 and 1.01 MPa, whereby it 

was found that the syngas production decreases when the pressure increases and increases with 

temperature until a maximum is reached and then it drops. The best yields were obtained at the pressures 

of 0.05 and 0.1 MPa, where the maximum H2 productions were 1300 mol/h at 0.05 MPa and 1289 mol/h 

at 0.1 MPa the Figure 3a,b show the results. For 0.51 MPa the production was 1109 and 930 mol/h for 

1.01 MPa, the yield were lower at same temperature (700 °C). It should be noticed in Figure 3a,b that 

the H2 production exhibits a maximum at around 700 °C, which can be explained by the gasification 

process, and another one around 3200 °C that confirms the thermal decomposition of water, as it was 

reported previously [28–31] and is proposed in Reaction (10). Figure 3c,d are for the case of carbon 

monoxide production at pressures of 0.05 and 0.1 MPa and exhibit the same highest value (700 mol/h) 

at both pressures. From these results, the pressure of 0.1 MPa is the one selected for the analysis,  

which corresponds to the atmospheric pressure. The ratio w/g that allows obtaining the highest values 

for hydrogen production is from 15 to 20. 
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Figure 3. Production of H2 at (a) 0.05 and (b) 0.1 MPa; production of CO at (c) 0.05 and  

(d) 0.1 MPa. 

On the other hand, the oxygen production increases at high temperatures (2200 to 3200 °C), which is 

shown in Figure 4a; this is consistent with the water decomposition area, Reaction (10). Additionally, 

the carbon formation as graphite [10,11], Reactions (6)–(8), has to be avoided because it can cause 

troubles in the processing, methane is necessary in Reaction (8) and at high temperature methane is not 

present (Figure 5c); therefore, according with the results shown in Figure 4b, the operating conditions 

have to be chosen as 0.1 MPa, 15–20 w/g ratio and 300–1200 °C as in this zone carbon as graphite  

is absent. 

 

Figure 4. Production of (a) oxygen and (b) carbon as graphite at 0.1 MPa. 

The hydrogen production increases proportionally with the w/g ratio and the temperature up to 700 °C 

and until 1000 °C. The maximum hydrogen production was obtained at 700 °C and w/g ratio of 20, 

Figure 5a shows that when the temperature continues increasing the hydrogen production drops. This 

can be because the Reaction (3) is inverted to reach equilibrium contributing to the consumption of 
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carbon dioxide as shown in Figure 5c and on the other hand Reaction (8) is not present because methane 

is absent up to 700 °C as shown in Figure 5d. It should be noted that other processes for hydrogen 

production have been reported [11] using temperatures of around 900–1000 K (627–727 °C) and also 

the pyrolysis process for hydrogen production is carried out around 700 °C [13,18]. 

 

 

Figure 5. Mol production of (a) hydrogen, (b) carbon monoxide, (c) carbon dioxide and  

(d) methane at 0.1 MPa. 

The carbon monoxide production increases proportionally with the temperature and inversely with 

the w/g ratio. For the temperature range from 300 to 1200 °C, the maximum CO production can be 

reached at 1200 °C and w/g ratios from 15 to 18 (see Figure 5b). It is important to note that the conditions 

under which the CO production is maximum are different for the hydrogen production, so the H2/CO 

mole ratio in syngas has to be observed as a response variable; this will be discussed later. 

The CO2 production exhibits a maximum at about 600 °C and then it decreases inversely proportional 

to the temperature; meanwhile, it is directly proportional to the w/g ratio (see Figure 5c). These results 

are consistent with the literature that establishes that at about 550 °C the steam reforming process yields 

the maximum CO2 production [10,12]; for this analysis, the maximum production is obtained at  

500–600 °C and with w/g ratios of 16 to 20. The proposed Reactions (2), (3) and (9) produce CO2,  

but Reaction (9) is present when carbon is in the system as graphite, and as Figure 4b has shown, this is 

possible for w/g ratios lower than 5 and in this case the w/g ratio is 20. 

Figure 5d shows that at low temperatures the production of methane is high so Reactions (4) and (5) 

are present. Methane is the only substance that has hydrogen in its structure, so if the hydrogen 

production increases the methane one decreases; the maximum production of hydrogen is observed in Figure 

5a at 700 °C, where the production of methane is close to zero [10,12] as shown in Figure 5d. As the 

Reactions (1)–(3) and (8) have hydrogen as product it can be proposed that these reactions are present 

until 700 °C, and even that Reaction (10), the water decomposition reaction present at the highest 



Energies 2015, 8 6711 

 

 

temperature has hydrogen as a product. Additionally, it is possible to see that the methane production is 

independent of the w/g ratio, as the methane production at low and high w/g ratio values is the same. 

The maximum water consumption is at temperatures of 600–700 °C and a w/g ratio of 20, which is 

shown in Figure 6a; this evidence supports the assumption that the H2 and CO2 production is carried out 

by the Reactions (1)–(3), which are present under these conditions. Figure 6b shows the other area in 

which the water consumption increases due to the water decomposition. 

 

Figure 6. Water consumption at 0.1 MPa from (a) 300 to 1200 °C and (b) 1200 to 3200 °C. 

The productions of H2, CO, CO2, CH4, O2 and C in the guaiacol gasification at different temperature 

conditions are shown in Figure 7a,b. If producing syngas (CO + H2) is the target, it is important to 

convert all the carbon to CO and to minimize the CH4 formation [17]; this condition is reached at a 

pressure of 0.1 MPa, a w/g ratio of 20 and temperatures of 700–1200 °C (see Figure 7). In Figure 7b,  

it can be observed that the water decomposition is starting at 2700 °C, and at 3200 °C the oxygen presence 

and hydrogen increase are clear. 

 

Figure 7. Production of substances from (a) 300–1200 °C and (b) 1200–3200 °C at 0.1 MPa 

and ratio w/g 20. 

Syngas is the raw material for several processes including the Fisher-Tropsch synthesis, where there 

are different building blocks according with the H2/CO ratio, as air gasification it is lower or equal to 1,  

a value higher than 1 is obtained with steam gasification and it is ideal for liquid hydrocarbons,  

a common target ratio is 2 [14,17]. Depending on the operating temperature, different H2/CO ratios are 

obtained for the syngas process (see Figure 8), from 800 °C the H2/CO ratios are from 2 to 3.5, which is 

similar to those obtained with natural gas technologies [9]. If it is decided to maximize the H2/CO ratio, 

the optimum temperature is 700 °C, pressure 0.1 MPa and ratio w/g 20; the energy required for this 

conditions is 350.87 GJ/h. 
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Figure 8. The H2/CO ratio in syngas value at 0.1 MPa, ratio w/g 20 and different temperatures. 

4. Conclusions 

The syngas production process from water and lignin modeled as guaiacol based on the Gibbs free 

energy was proposed for the first time in this work. The effects of pressure, temperature and w/g ratio 

were studied. Pressure values above 0.1 MPa decrease the syngas production and lower values do not 

significantly increase its production. The w/g ratio that lets one obtain higher hydrogen production was 

from 15 to 20. Temperatures in the range of 300–1200 °C allow obtaining different amounts of H2, CO, 

CO2, CH4 without water decomposition and in the absence of carbon as graphite. The ratio w/g 20,  

0.1 MPa and temperature from 700–1200 °C enables the production of syngas with H2/CO ratios from 

4.4 to 2.3. The water decomposition region was identified at temperatures from 2200 to 3200 °C.  

The maximum hydrogen production was observed at 700 °C and at this point the methane was practically 

absent. If water was the limiting reactant at temperatures higher than 1200 °C, graphite formation was 

observed. This work contributes to the knowledge needed to use biomass in an integrated way for the 

production of biofuels and high molecular weight compounds. 
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