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Abstract: A systematic experiment verification of Chaos Embedded Sliding Mode 

Extremum Seeking Control for maximum power point tracking and a method for detecting 

possible faults in small wind turbine systems in advance are proposed in this paper.  

The chaotic logistic map is used to replace the random function in the particle swarm 

optimization algorithm for faster searching the optimal control parameter	U. From the 

experimental results, it is verified that the Chaos Embedded Sliding Mode Extremum 

Seeking Control scheme has a better dynamic response than traditional Extremum Seeking 

Control scheme and Hill-Climbing Search scheme for maximum power point tracking.  

In the proposed scheme for fault detection, a chaotic synchronization method is used to 

transform the maximum power point tracking signal into a chaos synchronization error 

distribution diagram. It is then taken as the characteristic for fault diagnosis purposes. 

Finally, an extension theory pattern recognition technique is applied to diagnose the fault. 

Notably, the use of the chaotic dynamic errors as the fault diagnosis characteristic reduces 

the number of extracted features required, and therefore greatly reduces both the computation 

time and the hardware implementation cost. From the experimental results, it is shown that 

the fault diagnosis rate of the proposed method exceeds 98% not only in non-real-time  

but also in real-time of faults detection of the blades. 

Keywords: chaos embedded; sliding mode extremum seeking control; maximum power 

point tracking 
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1. Introduction 

It is clear from the literature [1–7] that there are already quite a few algorithms that can be used to 

increase the maximum power point tracking efficiency of a wind turbine. These include Perturbation 

and Observation (P&O) [1–3], the Hill-Climbing Search Algorithm (HCS) [4,5], Tip Speed Ratio 

Control (TSR) [6,7] and others. In addition, some investigators have made use of the Optimal Reference 

Power Curve of stability analysis to do maximum power point tracking (MPPT). This allows a 

maximum power point tracking algorithm, which uses small signal analysis on a non-linear turbine 

rotor system, to be achieved [8]. However, most maximum power point tracking control systems rely 

on measurements of wind or rotor speed and so the design must include a wind speed sensor or 

tachometer with the additional cost and complexity [9]. In addition, a lot of research has been done on 

the system architecture of wind power generators driven directly from a DC motor. This allows 

situational height and wind speed to be easily simulated by variation of motor speed. This approach 

has been mainly used for use with high power generation systems [10]. In this study, we are concerned 

mainly with small domestic wind power generation systems, and our results have been verified by the 

use of a real system. Maximum power point tracking has been done according to the Chaos Embedded 

(CE) Sliding Mode extremum seeking (SMESC) method advanced by Yau et al. in 2013 [11],  

after which signal fault diagnosis is carried out. 

There are many approaches to wind turbine fault diagnosis and analysis. For fault diagnosis of 

transmission, or the generator itself, an artificial neural Network [12], Wavelet Analysis [13],  

Fuzzy Theory [14], and some other diagnostic methods have been proposed. All diagnosis is based on 

fault conditions of the wind turbine rotor, the stator line response, etc. These fault features are manifested 

whether the fault is reflected in current or voltage. Wind turbine blade failure diagnosis [15] clearly shows 

that blade failure itself affects both rotation acceleration and vibration frequency. The characterization 

of blade failure can be carried out more easily when the blades are rotating and many non-linear and 

time-varying operational states need to be taken into account. Several different rotational vibration 

frequencies are transmitted to the sensor when a blade fails. Using Fractal Theory [16,17], the Length 

Fractal Dimension [18], the Correlation Dimension [19], the Box Dimension [20] the Frequency 

Shifting Distance Method [21] and other eigenvalues, the frequency signal can become an obvious and 

characteristic diagnostic feature. Simple observation will show if a feature is abnormal or not, the 

nature of the fault can then be determined, and the steps needed for maintenance and repair can be 

easily decided. Otherwise, the control system concept with fault detection and isolation (FDI) and 

fault-tolerant control (FTC) schemes have been already successfully applied to the fault detection of 

wind turbines [22–32]. It can be shown the more advantages of this kind schemes, especially in large 

wind power systems. 

The actual measurements part of this study relies on simulation [33] and use is made of both a 

traditional and improved parameter maximum power point tracking algorithm optimized for simulation 

comparison and analysis. Real machine tests were made on a wind turbine of small output power and 

both simulated and real testing was done to validate the results which displayed excellent dynamic 

response and systematic integration of blade failure diagnosis was achieved. The software used in this 

study for both the controller and the troubleshooting system was dSPACE DS1104. The program was 

used to capture the voltage generated by the improved maximum power point tracking algorithm and 
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to ensure fast and accurate diagnostic capability as well as an assessment of the state of the power 

generating system. 

The rest of this study is organized as follows. In Section 2, the system circuit architecture and 

controller design is described; the system status signal analysis and fault diagnosis architecture are 

presented in Section 3. The maximum power point tracking simulation analysis and experimental 

results are shown Section 4. The results of wind turbine blade failure diagnosis experiments are 

demonstrated in Section 5. Conclusions are drawn in Section 6. 

2. System Circuit Architecture and Controller Design 

2.1. System Architecture 

The wind turbine used in this study was an American Southwest Wind power AIR X series unit as 

shown in Figure 1. The output voltage is 48 VDC; rated power 160 W; rated wind speed 12.5 m/s; and 

start wind speed 3.58 m/s. The interior generator is a permanent magnet synchronous device. A King 

Fan Involute industrial fan unit was used to drive the wind turbine. The speed and strength of the wind 

could be adjusted by changing the speed and distance of the fan from the wind turbine blades. 

 

Figure 1. The AIR X wind generator. 

The wind power generation system setup is shown in Figure 2. The blade assembly is coupled 

directly to a permanent magnet synchronous generator. The AC output of the generator is converted 

into direct current by a rectifier circuit. The dSPACE DS1104 is the maximum power point tracking 

controller that captures the two signals, DC voltage and current. This is paired with a MATLAB 

R2010a Simulink Real-Time Interface, the RTI library and the related experimental machine interface. 

The DC is delivered to a DC-DC Boost Converter and a maximum power point tracking algorithm 

controls the booster duty cycle and switching Pulse Width Modulation (PWM). The boost converter is 

connected to the load that is a measure of system output power. The dSPACE controller acquires 

system voltage generated by the SMESC algorithm for fault diagnosis. The state of the power 

generation system is displayed on the PC screen which also provides information that can be used for 

signal analysis and diagnosis. The SMESC proposed in this paper is derived from this control  

(please refer to [33] for detailed ESC). The system’s reliability and robustness with uncertainty and 

disturbances under investigation are more details in [33]. 
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Figure 2. The wind power generation system schematic. 

2.2. Control Parameter Optimization and Maximum Power Point Tracking Method 

A control parameter optimization method was used in the maximum power point tracking algorithm 

to provide more effective control. This circumvented the need for direct control parameters to be 

determined empirically which requires a large number of repetitive software operations. In this way the 

convergence time of parameter optimization could be reduced using a Chaos Embedded process. 

Repeated Random number generation which affects the convergence speed during program  

execution could also be excluded. The overall dynamic response has many advantages over the more 

traditional algorithms. 

The most commonly used algorithm generally employs an empirical constant to control 

parameter	U. However, in this study a Chaos Embedded particle swarm optimization algorithm using 

mathematical iteration and improved by Logistic Maps, was used to determine the optimal control 

parameters U	(SMESC) and to define the objective function. Use was also made of a PSO algorithm 

to find the best control parameter to both minimize the objective function and reduce the number of 

mathematical iterations [33,34]. MATLAB R2010a was used to write the convergence curves of the 

system. The U	obtained was about 0.01 and the IAE optimum value was about 150, as shown in the 

convergence curves in Figures 3 and 4. Each calculation was carried out five times. 

 

Figure 3. U convergence curve using CEPSO. 
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Figure 4. IAE convergence curve using CEPSO. 

3. The System Status Signal Analysis and Fault Diagnosis Architecture 

The chaos theory is a non-linear system theory. This motion trajectory gives rise to a significant 

change in the end result when there is only a slight variation at the input end. Therefore, the chaos  

theory is suitable for analyzing the signals of a small change in systems. In this study, a master-slave 

chaotic system is used to compare normal-state signals and fault signals and generate dynamic errors. 

The dynamic errors are then used to create the matter-element model required for the extension theory. 

It needed only the MPPT voltage signals to be measured to diagnose the fault. It reduces the number of 

extracted features required, and therefore greatly reduces both the computation time and the hardware 

implementation cost. 

3.1. Master-Slave Chaos Dynamic Error System and Extenics Engineering Diagnosis 

The Lorenz Master-slave chaotic system, where use has been made of trajectory as a characteristic 

value to identify wind turbine blade fault conditions and type, has been employed in this study. 

Traditional Lorenz chaotic system can be expressed by Equation (1) and the chaos synchronization 

method for fault diagnosis can be found in the references [35] and will not be discussed here: 
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3.2. Extenics Engineering Diagnosis 

Extenics Engineering Diagnosis can eliminate the need for much repetitive work and can resolve 

conflicts and compatibility problems. In classical mathematics, set 0, 1 is used to describe the 

characteristics of things. The fuzzy set is also based on (0, 1) to indicate the degree of fuzzy 

characteristics of things and extension of the set expands the scope of the fuzzy sets to (−∞, +∞).  

A Correlation function schematic diagram is shown in Figure 5 and correlation calculation formulae 

are shown below, Equations (2) and (3), for details about Extenics engineering applications readers 

may refer to reference [36]: 
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Figure 5. Extenics set correlation function schematic. 

3.3. The Master-Slave Chaos Dynamic Error System Signal Integration Extenics Engineering 

Diagnosis Framework 

In this study use has been made of Extenics Engineering Diagnosis to develop the fault state 

diagnosis procedure shown in the flow chart in Figure 6. The fault voltage signal is captured by the 

controller and input to the master-slave chaos dynamic error system which tracks the error signal 

between them. The motion trail of the signal acts as an Extenics Engineering Diagnosis characteristic 

used to determine blade faults and establish an extension element model. A fast and accurate method 

has been developed using Extenics engineering to determine blade faults and make a quick and easy 

diagnosis to allow the problem to be corrected. 

 

Figure 6. Flowchart of the master-slave chaos dynamic error system. 
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4. The Maximum Power Point Tracking Simulation Analysis and Experimental Results 

When the wind system with failure condition, it will affect the maximum power point tracking.  

This study use this feature through the changes in maximum power point to identify various faults in 

small wind power systems. 

4.1. Maximum Power Point Tracking Algorithm Simulation 

This study was amended (see reference [33]) to set the wind turbine blade pitch angle β	to zero.  

This allows a maximum power dynamic response from the system algorithm under conditions of 

steady and changing wind speed to compare the advantages and disadvantages of transient and steady 

state response, see Figure 7. The figure shows the algorithm flow chart of the maximum power point 

tracking method used. It can be seen from the simulation results that this procedure can be used for 

wind turbine control. Changes in the dynamic output and response of the wind turbine can be observed 

when different wind speeds are entered and these observations can be used to verify the practicality of 

the Sliding Mode Extremum Seeking Control algorithm used in the wind energy industry. 

0U

ii IV、

iP

 

Figure 7. Maximum wind power point tracking flowchart based on CEPSO’s SMESC. 

Two sets of wind speed states were simulated. In Figure 8 the wind speed shown is steady at  

12.5 m/s. In Figure 9 the wind speed changes from 12.5 to 10.5 m/s after 10 s and then is further 

increased to 12.5 m/s and dropped again later. Changes in wind speed were tracked for 50 s. 
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Figure 8. Step input for wind speed of 12 m/s. 

 

Figure 9. Step input changes for wind speeds from 10.5 to 12.5 m/s. 

As can be seen in Figure 10, tracking times can be compared by observation of the transient state 

ESC for a longer time than the other two control methods. The dynamic response of HCS and SMESC 

are similar, but after the steady state, the HCS response is poorer than that of SMESC. From the figure 

it can be clearly observed that the steady-state oscillations of SMESC are smaller than for the other 

two control modes. The experimental results from our simulations show that under identical wind 

speed conditions the SMESC algorithm used here has a better dynamic response than the others. 

 

Figure 10. HCS, ESC, SMESC dynamic response comparison chart. 
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The second simulation was a test of the system output dynamic response results using the SMESC 

algorithm under varying wind speeds, see Figures 11 and 12. The input state sets wind speed changes 

between 10.5 and 12.5 m/s. The system simulation results show that although the amplitude of the ESC 

control method under varying wind speed is smaller, maximum power point tracking has more 

harmonics. Also, time taken for HCS to track the maximum power point is longer and the amplitude is 

larger than in the SMESC control mode. These results confirm that a wind power generation system 

using the SMESC control mode will have a better transient and steady state response under varying 

wind speed states. This is of great help for increasing component life and also saves simulation time. 

 

Figure 11. Three algorithm system dynamic responses: High wind speed dropped and raised again. 

 

Figure 12. Three algorithm system dynamic responses: Low wind speed raised and lowered again. 

4.2. Maximum Power Point Tracking Algorithm Experimental Results 

Software simulation was used to verify the feasibility of each of the control algorithms. The results 

of these simulations were used to establish a set of wind power generation procedures for actual wind 

maximum power point tracking, see the hardware flow chart Figure 13. To test a real machine the 

dSPACE controller utilizes the real-time library Matlab R2010a to realize various control algorithms. 

The simulation results clearly verify both power output stability and accuracy under conditions of 

steady and varying wind speed. Figure 14 is a block diagram of the Sliding Mode Extremum Seeking 

Control algorithm (SMESC) which has input and output from the Sliding Mode control. 
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Figure 13. Hardware flowchart. 

 

Figure 14. Test program block diagram. Sliding Mode Extremum Seeking Control algorithm. 

A traditional extremum seeking control method can cause the high frequency switching phenomenon. 

This results in a decrease in power output efficiency as well as power losses and the switching element 

life is also reduced. To counteract this weakness a Sliding Mode control to suppress high frequency 

switching and a maximum power point alternative switch function slide setting were added. Use was 

made of power calculated by the Sliding Mode controller to approach the sliding plane and force the 

power generation system to the maximum power point. The concept of a sliding layer can effectively 

suppress the tripping phenomenon. Figure 15 shows the actual measured maximum power tracking of 

the Sliding Mode Extremum Seeking Control with fixed wind speed of 8 m/s. It can be seen from the 

figure that the transient state response is relatively good, tracking speed is fast, and the steady-state 

response returns the best maximum power point. Output power is more stable, power loss is effectively 

reduced, and the life of the control elements is extended to provide a power generation system of  

high efficiency. 

Sliding Mode Extremum Seeking Control was also used to input varying wind speed in a simulation 

experiment, see Figure 16. The wind speed is first dropped from 8 to 5 m/s, and then raised again to  

8 m/s. The maximum power changes are between 156 and 22 W, the second output power curve is 

shown in Figure 17 where the wind speed is raised from 5 to 8 m/s and the maximum power is around 

156 W. The wind speed is then dropped from 8 to 5 m/s and here the maximum power is about 22 W. 

It can be clearly seen that the algorithm has a good dynamic response and the steady state part has 

lower oscillation. Actual experimental measurements show that the SMESC output waveform under 

varying wind speed conditions is much better than that of the traditional maximum power point 

tracking algorithm and is actually close to ideal. 
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Figure 15. Maximum power test. Sliding Mode Extremum Seeking Control, fixed wind 

speed of 8 m/s. 

 

Figure 16. Measured SMESC output power: Wind speed is dropped from 8 to 5 m/s, and 

then raised to 8 m/s again. 

 

Figure 17. Measured SMESC output power: Wind speed is raised from 5 to 8 m/s, and 

then dropped back to 5 m/s again. 

Finally, the measured output waveform and the dynamic response of three maximum power point 

tracking algorithms, under fixed wind speed, are compared (see Figure 18). It can be clearly seen that 

SMESC has the best response under both fluctuating and steady states. All three algorithms entered a 

fixed wind speed condition at 8 s. HCS has a better steady-state response than ESC, but the algorithm 

needs to measure one more speed signal and this leads to slower tracking. Although the maximum  

power point tracking speed of ESC is high, it is affected by dramatic high-frequency oscillation in the 
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steady state. However, the join concept of the sliding layer makes the tracking speed of SMESC faster 

than that of the other two and the steady-state waveform is also more stable. Simulation analysis and 

real testing of the dynamic response under changing wind speed input shows SMESC to have the best 

output waveform. 

 

Figure 18. Waveform of measured output power for the three different control algorithms 

under fixed wind speed conditions. 

In the actual tests two changing wind speed conditions were used with the three maximum power 

point tracking algorithms, see Figures 19 and 20. It was observed that the dynamic response was the 

same as for fixed input wind speed and was better than that of traditional tracking algorithms.  

Simulation results clearly show that SMESC has the fastest tracking speed in both steady state and 

variable conditions. 

 

Figure 19. Comparison map of HCS, ESC, SMESC: Wind speed is dropped from high to 

low and then raised to high again. 
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Figure 20. Comparison map of HCS, ESC, SMESC: Wind speed is increased from low to 

high and then dropped to low again. 

5. Results of Wind Turbine Blade Failure Diagnosis Experiments 

In this study generator blade fault diagnosis was integrated into the power generation system. 

Voltage captured from the generator by the SMESC algorithm is input to the slave (in the Master-Slave 

Chaos System) where it is tracked by the master. The two systems generate a chaotic dynamic error signal 

to form the trajectories and entry into the matter element model is achieved by Extenics Engineering 

Diagnosis to perform rapid and accurate blade failure detection, see Figure 21. The figure shows the 

hardware and real-time troubleshooting diagnosis software interface. The real-time recognition 

dSPACE software interface is shown in Figure 22. In this study, the voltage measurement accuracy is 

0.15 mV and the wind speed measurement accuracy is 0.1 m/s. 

 

Figure 21. The maximum power point tracking real-time status diagnosis system hardware. 

 

Figure 22. The real-time status diagnosis dSPACE software interface. 
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To simulate faults and carry out practical fault diagnosis on the AIR X wind turbine blades, various 

means were employed. Blocks were attached to the blades to cause imbalance and in some cases 

screws were loosened to cause instability and vibration, see Figure 23. This last fault condition will 

cause slightly abnormal output voltage. Figure 24 shows a block attached near the tip of a blade.  

This simulates sea salt crystallization or a bird hit and the loss of balance will result in abnormal output 

voltage. Figure 25 shows a mass hanging near the tip of a blade to simulate the attachment of  

wind-borne garbage to the blade. The loss of balance in all such cases, will result in uneven centripetal 

force, and will be reflected in changes and fluctuations of output voltage. 

 

Figure 23. A blade with a loose hug screw. 

 

Figure 24. A block attached near the tip of a blade. 

 

Figure 25. A blade with a hanging mass. 
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The number of sample points taken in these experiments was 500 and the sampling frequency was 

set to 10 kHz. The normal signal of the master, in the Master-Slave Chaos System, was set to zero.  

The slave was set to the amount of captured voltage signal change. The captured signals were fed into 

the master-slave system where they were transformed into dynamic errors. Four error states were 

compared (see Figure 26) taking the normal blade state to be 1. The four error states examined were 

C1, a normal blade; C2, a blade with a loose hug screw; C3, a blade with a block attached near the tip; 

and C4, a blade with an attached hanging mass. 

 

Figure 26. Dynamic error comparison plan map of each actual experimental state eଵሶ 	, eଷሶ . 

Ten of the 500 captured signal points for each of the four states are listed in Table 1. The data in the 

table was normalized using the Correlation function to give a diagnosis of the fault in each of the 

conditions where C1, C2, C3, C4 represent: a normal blade, a blade with a loose hub screw, a blade 

with a block attached near the tip, a blade with an attached hanging mass. From the table it can be 

clearly observed that the different fault conditions can be recognized with precision and the normal 

condition is shown in the straight column as 1. 

Non-real-time fault diagnosis was carried out to establish a database of voltage signals in the four 

different states for use during actual tests. The signals, to be used later for processing and state 

recognition, were input from the terminal. This non-real-time failure diagnosis data has to be 

established over the long term and any problems need operator follow-up treatment. The real-time fault 

diagnosis used in this study not only shortens diagnostic time, but all that is needed is for the operator 

to glance at the display to fully recognize the current state of the system. Table 2 lists the diagnosis 

rate of both non-real-time and real-time status diagnosis. From Table 2, it can be seen that the accurate 

rates approach to 100% not only in non-real time diagnostic results but also in real- time diagnostic 

results. This result verify the feasibility of this scheme. Otherwise, the main goal of this study is to take 

advantage of the experimental feasibility of SMESC from references [33] and extends the use of this 

method for fault diagnosis. It can be seen that the accuracy has been very high, so we did not do it 

again in comparison with other methods. This scheme could be applied to large-scale wind power 

generation system, and compared with other various methods in the future. 
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Table 1. Blade state diagnostic experimental results. 

Condition 
Signal numbers 

C1 C2 C3 C4 

Condition1 
1 1 0.98676 0.59245 −1 
2 1 0.985111 0.592729 −1 
3 1 0.98372 0.592967 −1 
4 1 0.984161 0.592891 −1 
5 1 0.983625 0.592984 −1 
6 1 0.982328 0.593209 −1 
7 1 0.982904 0.593108 −1 
8 1 0.980169 0.593588 −1 
9 1 0.980077 0.593604 −1 
10 1 0.977612 0.594046 −1 

Condition2 
1 0.900813 1 0.555983 −1 
2 0.898779 1 0.555519 −1 
3 0.90093 1 0.556009 −1 
4 0.900092 1 0.555819 −1 
5 0.900311 1 0.555868 −1 
6 0.901339 1 0.556102 −1 
7 0.899435 1 0.555669 −1 
8 0.899246 1 0.555626 −1 
9 0.90148 1 0.556135 −1 
10 0.901216 1 0.556074 −1 

Condition 3 
1 −0.96023 −1 1 0.646727 
2 −0.96028 −1 1 0.713212 
3 −0.96028 −1 1 0.709737 
4 −0.96022 −1 1 0.670173 
5 −0.96026 −1 1 0.716586 
6 −0.9602 −1 1 0.663943 
7 −0.96024 −1 1 0.681759 
8 −0.9602 −1 1 0.650732 
9 −0.96025 −1 1 0.708213 
10 −0.96019 −1 1 0.668025 

Condition 4 
1 −0.96471 −1 0.819589 1 
2 −0.96471 −1 0.819589 1 
3 −0.96471 −1 0.819589 1 
4 −0.96471 −1 0.819589 1 
5 −0.96471 −1 0.819589 1 
6 −0.96471 −1 0.819589 1 
7 −0.96471 −1 0.819589 1 
8 −0.96471 −1 0.819589 1 
9 −0.96471 −1 0.819589 1 
10 −0.96471 −1 0.819589 1 
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Table 2. Non-real-time and real-time diagnosis results. 

Signals Non-real-time status diagnostic results Status diagnosis rate 

500 500 Normal 100% 100% 
500 500 Loose bolt on blade hub 98.86% 98.86% 
500 500 A block attached near the tip of the blade 99.91% 99.91 
500 500 A mass hanging from the blade 99.86% 99.86% 
Signals Real-time status diagnostic results Status diagnosis rate 

500 500 Normal 100% 100% 
500 500 Loose bolt on blade hub 98.34% 98.34% 
500 500 A block attached near the tip of the blade 98.69% 98.69% 
500 500 A mass hanging from the blade 98.58% 98.58% 

6. Conclusions 

The experimental results show that the steady-state response of chaos embedded sliding mode 

extremum seeking control is more stable than that of traditional extremum seeking control and  

Hill-Climbing Search scheme, and the system has a rapid transient state response that allows fast 

maximum power point tracking and determination of desired output power. The power generation 

system incorporates a blade troubleshooter. The master-slave chaos dynamic error system, based on 

Extenics Engineering Diagnosis, does wind turbine blades diagnostic troubleshooting and a simple 

measurement of the fault voltage signal is all that is necessary. It is only necessary to input a particular 

fault signal of maximum power point tracking to the Master-Slave Chaos System to generate a dynamic 

error map which is paired with the Extenics engineering theory. There is no need for the accumulation 

of large amounts of learned data. The system provides fast, accurate and low-cost fault state diagnosis. 

Importantly, the proposed method enables potential faults to be identified in advance such that 

appropriate steps can be taken to ensure the continued safe operation of the system. The experimental 

results show that the proposed method achieves a successful fault diagnosis rate of more than 98%.  

In the further study, we will implement this scheme by embedding system for a portable device and 

extend it to the large-scale wind power generation systems. 
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