Artificial Neural Network Model for Alkali-Surfactant-Polymer Flooding in Viscous Oil Reservoirs: Generation and Application
Abstract
:1. Introduction
2. Reservoir Description
3. Chemical Injection Design
4. ANN Model
4.1. ANN Structure
4.2. ANN Processing
5. Results and Discussion
5.1. Simulation Results
5.2. ANN Model—Generation and Validation
5.3. Applications of the Network Model
6. Conclusions
- -
- The network model was successfully generated by a huge of simulation data which were basically referenced from a typical chemical project in terms of reservoir and chemical properties, thereby the model can be extended into a higher reservoir scale that have identical characteristics. Owing to the highly accurate estimation between the outputs calculated by ANN with that by simulation, the model thereby can absolutely simulate the performance of ASP flooding with a wide variation of parameters within their thresholds
- -
- The sensitivity study affirmed the prevailing contribution of ASP slug size on the success of the injection process compared to others, particularly the driving polymer slug performed more predominantly than the first polymer and AS slugs. These findings reflect substantially the physical aspects of the model, absolutely confirm the quality and reliability of the model as well as the numerical results.
- -
- The feasibility of the project by the optimal chemical designs and injection strategy under given expenses surely presents the profitability of the chemical project for the high viscosity oil reservoir. This assigned condition clarifies the potential utilizations of the generated ANN on economic and uncertainty analyses in other projects. In other words, the proposed output of the model being ultimate recovery factor instead of NPV helps the model adapt flexibly the change of market situation that is represented by the alteration of oil price.
Author Contributions
Conflicts of Interest
References
- Karambeigi, M.S.; Zabihi, R.; Hekmat, Z. Neuro-simulation modeling of chemical flooding. J. Pet. Sci. Eng. 2011, 78, 208–219. [Google Scholar] [CrossRef]
- Janssen, P.H.; Codreanu, D.B. The impact of shale barriers and injection strategy on CO2-flooding and sequestration performance. In Proceedings of the 2005 SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 9–12 October 2005.
- Ampomah, W.; Balch, R.; Cather, M.; Rose-Coss, D.; Dai, Z.; Helth, J.; Dewers, T.; Mozley, P. Evaluation of CO2 storage mechanisms in CO2 enhanced oil recovery sites: Application to Morrow sandstone reservoir. Energy Fuels 2016, 30, 8545–8555. [Google Scholar] [CrossRef]
- Si, L.V.; Chon, B.H. Numerical studies on the effects of various complicated barrier configuration on sweep efficiency in surfactant/polymer flooding. J. Ind. Eng. Chem. 2016, 38, 200–210. [Google Scholar]
- Olajire, A.A. Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy 2014, 77, 963–982. [Google Scholar] [CrossRef]
- Delamaide, E.; Zaitoun, A.; Renard, G.; Tabary, R. Pelican Lake field: First successful application of polymer flooding in a heavy-oil reservoir. In Proceedings of the SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 2–4 July 2013.
- Delamaide, E. Polymer flooding of heavy oil—From screening to full-field extension. In Proceedings of the SPE Heavy and Extra Heavy Oil Conference—Latin America, Medellin, Comlombia, 24–26 September 2014.
- Wang, C.; Wang, B.; Cap, X.; Li, H. Application and design of alkaline-surfactant-polymer system to close well spacing pilot GUdong oilfield. In Proceedings of the 1997 SPE Western Regional Meeting, Long Beach, CA, USA, 25–27 June 1997.
- Elkamel, A. An artificial neural network for predicting and optimizing immiscible flood performance in heterogeneous reservoirs. Comput. Chem. Eng. 1998, 22, 1699–1709. [Google Scholar] [CrossRef]
- Zerpa, L.E.; Queipo, N.V.; Pintos, S.; Salager, J.L. An optimization methodology of alkaline-surfactant-polymer flooding processes using field numerical simulation and multiple surrogates. J. Pet. Sci. Eng. 2005, 47, 197–208. [Google Scholar] [CrossRef]
- Zerpa, L.E.; Queipo, N.V.; Pintos, S.; Tillero, E.; Alter, D. An efficient response surface approach for the optimization of ASP flooding processes: ASP pilot project LL-03 Reservoir. In Proceedings of the 2007 SPE Latin American and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 15–18 April 2007.
- Dai, Z.; Middleton, R.; Viswanathan, H.; Fessenden-Rahn, J.; Bauman, J.; Pawar, R.; Lee, S.Y.; McPherson, B. An integrated framework for optimizing CO2 sequestration and enhanced oil recovery. Environ. Sci. Technol. Lett. 2014, 1, 49–54. [Google Scholar] [CrossRef]
- Dai, Z.; Viswanathan, H.; Middleton, R.; Pan, F.; Ampomah, W.; Yang, C.; Jia, W.; Lee, S.Y.; McPherson, B.; Balch, R.; et al. CO2 accounting and risk analysis for CO2 sequestration at enhanced oil recovery sites. Environ. Sci. Technol. 2016, 50, 7546–7554. [Google Scholar] [CrossRef] [PubMed]
- Ampomah, W.; Balch, R.S.; Grigg, R.B.; McPherson, B.; Will, R.A.; Lee, S.Y.; Dai, Z.; Phan, F. Co-optimization of CO2-EOR and storage processes in mature oil reservoirs. Greenh. Gases Sci. Technol. 2016. [Google Scholar] [CrossRef]
- Jawad, M.S.A.; Jreou, G.N.S. Application of neural network in the identification of the cumulative production from AB unit in Main pays reservoir of South Rumaila Oil Field. Iraqi J. Chem. Pet. Eng. 2009, 10, 37–41. [Google Scholar]
- Elmabrouk, S.; Shirif, E.; Mayorga, R. Artificial neural network modeling for the prediction of oil production. Pet. Sci. Technol. 2014, 32, 1123–1130. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Soleimani, R.; Lee, M.; Kashiwao, T. Determination of oil well production performance using artificial neural network (ANN) linked to the particle swarm optimization (PSO) tool. Petroleum 2015, 1, 118–132. [Google Scholar] [CrossRef]
- Alizadeh, M.; Moshirfarahi, M.M.; Rasaie, M.R. Mathematical and neural network prediction model of three-phase immiscible recovery process in porous media. J. Nat. Gas Sci. Eng. 2014, 20, 292–311. [Google Scholar] [CrossRef]
- Zarringhalam, A.; Alizadeh, M.; Rafiee, J.; Moshirfarahi, M.M. Neural network prediction model of three-phase fluids flow in heterogeneous porous media scaling analysis. J. Pet. Sci. Eng. 2016, 138, 122–137. [Google Scholar] [CrossRef]
- Shafiei, A.; Dusseault, M.B.; Zendehboudi, S.; Chatzis, I. A new screening tool for evaluation of stemflooding performance in naturally fractured carbonate reservoirs. Fuel 2013, 108, 502–514. [Google Scholar] [CrossRef]
- Wang, C.; Hou, J.; Cao, X.; Wu, G.; Wang, Y. Evaluation of polymer flooding potential based on orthogonal design and BP artificial neural network. In Proceedings of the International Petroleum Technology Conference, Kuala Lumpur, Malaysia, 10–12 December 2014.
- Ai-Dousari, M.M.; Garrouch, A.A. An artificial neural network model for predicting the recovery performance of surfactant polymer floods. J. Pet. Sci. Eng. 2013, 109, 51–62. [Google Scholar] [CrossRef]
- Zhijian, Q.; Yigen, Z.; Xiangsong, Z.; Jianlin, D. A successful ASP pilot in GUdong oil field. In Proceedings of the 1998 SPE/DOE Improved OIl Recovery Symposium, Tulsa, Oklahoma, 19–22 April 1998.
- Si, L.V.; Chon, B.H. Chemical flooding in heavy-oil reservoirs: From technical investigation to optimization using response surface methodology. Energies 2016, 9, 711. [Google Scholar] [CrossRef]
- Dusseault, M.B.; Shafiei, A. Oil Sands. In Ullman’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2016. [Google Scholar]
- Bhuyan, D.; Lake, L.W.; Pope, G.A. Mathematical modeling of high-pH chemical flooding. SPE Reserv. Eng. 1990, 5, 213–220. [Google Scholar] [CrossRef]
- Hou, J.; Pan, G.; Lu, X.; Wei, C.; Qiu, M. The distribution characteristics of additional extracted oil displaced by surfactant-polymer flooding and its genetic mechanisms. J. Pet. Sci. Eng. 2013, 112, 322–334. [Google Scholar] [CrossRef]
- Rai, K.; Johns, R.T.; Delshad, M.; Lake, L.W.; Goudarzi, A. Oil-recovery predictions for surfactant polymer flooding. J. Pet. Sci. Eng. 2013, 112, 341–350. [Google Scholar] [CrossRef]
- Najafabadi, N.F.; Delshad, M.; Han, C.; Sepehrnoori, K. Formulation for a three-phase, fully implicit, parallel, EOS compositional surfactant-polymer flooding simulator. J. Pet. Sci. Eng. 2012, 86, 257–271. [Google Scholar] [CrossRef]
- Pope, G.A.; Nelson, R.C. A chemical flooding compositional simulator. SPE J. 1978, 18, 339–354. [Google Scholar] [CrossRef]
- Quy, N.V.; Labrid, J. A numerical study of chemical flooding comparison with experiments. SPE J. 1983, 23, 461–474. [Google Scholar]
- Computer Modelling Group Ltd. STARS User Guide; Computer Modelling Group Ltd.: Calgary, AB, Canada, 2014. [Google Scholar]
- Zhou, X.; Dong, M.; Maini, B. The dominant mechanism of enhanced heavy oil recovery by chemical flooding in a two-dimensional physical model. Fuel 2013, 108, 261–268. [Google Scholar] [CrossRef]
- Al-Bulushi, N.I.; King, P.R.; Blunt, M.J.; Kraaijveld, M. Artificial neural networks workflow and its application in the petroleum industry. Neural Comput. Appl. 2012, 21, 409–421. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, F.; Sun, Y.; Zhou, X.; Dong, J.; Zhang, L. Modeling and optimization for curing of polymer flooding using an artificial neural network and a genetic alforithm. J. Taiwan Inst. Chem. Eng. 2014, 45, 2217–2224. [Google Scholar] [CrossRef]
- Nakutnyy, P.; Asghari, K.; Torn, A. Analysis of waterflooding through application of neural networks. In Proceedings of the Canadian International Petroleum Conference/SPE Gas Technology Symposium 2008 Joint Conference, Calgary, AB, Canada, 17–19 June 2008.
- Kumoluyi, A.O.; Daltaban, T.S. Higher-order neural networks in petroleum engineering. In Proceedings of the Western Meeting, Long Beach, CA, USA, 23–25 March 1994.
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, Q.; Zhang, X.; Zhang, X.; Yuan, N.; Wen, S.; Wang, S.; Zhang, A. The use of an artificial neural network to estimate natural gas/water interfacial tension. Fuel 2015, 157, 28–36. [Google Scholar] [CrossRef]
- Ahmadloo, F.; Asghari, K.; Renoul, G. Performance prediction of waterflooding in Western Canadian heavy oil reservoirs using artificial neural network. Energy Fuels 2010, 24, 2520–2526. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Pournik, M. A predictive model of chemical flooding for enhanced oil recovery purposes: Application of least square support vector machine. Petroleum 2016, 2, 177–182. [Google Scholar] [CrossRef]
- Kamari, A.; Gharagheizi, F.; Shokrillahi, A.; Arabloo, M.; Mohammadi, A.H. Integrating a robust model for predicting surfactant-polymer flooding performance. J. Pet. Sci. Eng. 2016, 137, 87–96. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Gridblock size | 2.195 × 2.195 × 2.195 m3 |
Reservoir size | 43.90 × 43.90 × 11 m3 |
Well distance | 50 m |
Porosity | 0.35 |
Average absolute permeability | |
- Layer 1 | 3596–3850 mD |
- Layer 2 | 3342–3596 mD |
- Layer 3 | 3088–3342 mD |
- Layer 4 | 2834–3088 mD |
- Layer 5 | 2580–2834 mD |
Average absolute permeability | kH × 0.1 mD |
Reservoir temperature | 68 °C |
Reservoir pressure | 12.7 MPa |
Initial oil saturation | 0.6 |
Oil viscosity | 41.3 cp |
Oil gravity | 17.45 °API |
Salinity of connate water | 1393 ppm |
Injection Design | Gudong Field | This Work |
---|---|---|
Injection scheme | Water flooding → Polymer slug (0.05 PV) → AS slug (0.05 PV) → ASP slug (0.35 PV) → Polymer slug (0.1 PV) → postflushing water flooding | Water flooding → Polymer slug → AS slug → ASP slug → Polymer slug → postflushing water flooding |
Chemical injection rate | 240 m3/day | 15 m3/day |
Water injection rate | 400 m3/day | 25 m3/day |
Type of Values | A1 (wt %) | A2 (wt %) | P1 (wt %) | P2 (wt %) | P3 (wt %) | S1 (wt %) | S2 (wt %) | P1_Size (PV) | AS_Size (PV) | ASP_Size (PV) | P3_Size (PV) | Preflushing Water Size (PV) | Well Distance (m) | RF (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | 0.25 | 0.25 | 0.025 | 0.025 | 0.025 | 0.05 | 0.05 | 0.0204 | 0.0204 | 0.0612 | 0.0204 | 0.967 | 34.15 | 21.92 |
Max | 2 | 2 | 0.15 | 0.15 | 0.15 | 0.5 | 0.5 | 0.204 | 0.204 | 0.449 | 0.204 | 2.901 | 58.98 | 86.95 |
Gudong field | 1.5 | 1.5 | 0.1 | 0.1 | 0.05 | 0.4 | 0.4 | 0.05 | 0.05 | 0.35 | 0.1 | _ | 50 | _ |
j | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
w1j1 | −0.05317 | 0.059647 | 0.110892 | −0.14878 | −0.02883 | 0.000403 | 0.028145 | −0.00786 |
w2j1 | −0.37675 | 0.250536 | 0.88839 | −1.40629 | −0.10828 | −0.06751 | 0.006682 | −0.17366 |
w3j1 | −0.16367 | 0.02348 | −0.0231 | 0.110563 | 0.01053 | 0.058102 | 0.111981 | 0.037069 |
w4j1 | 0.406167 | −0.34404 | 0.238361 | −0.32506 | 0.338091 | 0.097043 | 0.358702 | 0.352538 |
w5j1 | 0.008692 | 0.157214 | −0.07209 | 0.113924 | 0.021002 | −0.02121 | −0.13751 | 0.11576 |
w6j1 | 0.024874 | 0.031684 | 0.0064 | −0.01566 | −0.04848 | −0.0024 | 0.035321 | 0.006683 |
w7j1 | −0.00995 | 0.035437 | 0.059562 | −0.11203 | −0.0457 | −0.01015 | 0.01763 | −0.00079 |
w8j1 | −0.18875 | 0.096359 | −0.02628 | 0.06889 | 0.105716 | 0.072962 | 0.06106 | −0.02006 |
w9j1 | −0.06525 | 0.222975 | −0.01587 | 0.00846 | 0.032625 | 0.008633 | −0.03909 | −0.02651 |
w10,j1 | 0.241146 | 0.233057 | −0.25614 | −0.03199 | 0.354793 | 0.092027 | 0.146056 | −0.12469 |
w11,j1 | −0.10924 | −0.35605 | 0.065394 | 0.034155 | −0.05449 | −0.23064 | −0.14875 | −0.23028 |
w12,j1 | 0.194045 | −0.22242 | −0.20442 | 0.240037 | −0.27042 | −0.10344 | 0.162447 | −0.03963 |
w13,j1 | 0.014732 | −0.00058 | −0.03338 | 0.094753 | −0.05561 | 0.006522 | 0.026331 | 0.047186 |
wj2 | −1.32429 | 1.167326 | −1.44324 | −0.64451 | 1.306281 | −4.64704 | 1.648443 | 2.400282 |
bj1 | 0.80425 | 1.319694 | −0.43374 | 0.40918 | 0.558037 | 0.445683 | −0.22422 | 0.950068 |
b2 | −0.71648 | - | - | - | - | - | - | - |
Components | Values |
---|---|
Initial cost | - |
Facilities and equipment | $76,923 |
Operating costs | - |
Water flood operating cost | 625 $/month |
Chemical slug injection cost | 0.0393 $/m3 |
Polymer drive injection cost | 0.0393 $/m3 |
Produced water cost | 0.0692 $/m3 |
Oil treatment cost | 0.0692 $/m3 |
Chemical prices | - |
Alkali price | 1.32 $/kg |
Surfactant price | 4.06 $/kg |
Polymer price | 3.68 $/kg |
A1 (wt %) | A2 (wt %) | P1 (wt %) | P2 (wt %) | P3 (wt %) | S1 (wt %) | S2 (wt %) | P1_Size (PV) | AS_Size (PV) | ASP_Size (PV) | P3_Size (PV) | Preflushing Water Size (PV) | Well Distance (m) | RF (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.25 | 1.0101 | 0.1386 | 0.15 | 0.15 | 0.5 | 0.05 | 0.0204 | 0.05104 | 0.449153 | 0.1429 | 2.0502 | 58.98 | 86.95 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Van, S.; Chon, B.H. Artificial Neural Network Model for Alkali-Surfactant-Polymer Flooding in Viscous Oil Reservoirs: Generation and Application. Energies 2016, 9, 1081. https://doi.org/10.3390/en9121081
Le Van S, Chon BH. Artificial Neural Network Model for Alkali-Surfactant-Polymer Flooding in Viscous Oil Reservoirs: Generation and Application. Energies. 2016; 9(12):1081. https://doi.org/10.3390/en9121081
Chicago/Turabian StyleLe Van, Si, and Bo Hyun Chon. 2016. "Artificial Neural Network Model for Alkali-Surfactant-Polymer Flooding in Viscous Oil Reservoirs: Generation and Application" Energies 9, no. 12: 1081. https://doi.org/10.3390/en9121081
APA StyleLe Van, S., & Chon, B. H. (2016). Artificial Neural Network Model for Alkali-Surfactant-Polymer Flooding in Viscous Oil Reservoirs: Generation and Application. Energies, 9(12), 1081. https://doi.org/10.3390/en9121081